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Abstract

All distinct double circulant self-dual codes over GF(5), with a
minimum weight which is highest among all double circulant self-
dual codes, have been found for each length n < 24. For lengths
14,16 and 20, these codes are extremal. In this paper, we charac-
terize these extremal double circulant self-dual codes. In particular,
a classification of extremal double circulant self-dual codes of length
14 is given. We present other double circulant codes which improve
the lower bounds on the highest possible minimum weight. A classi-
fication of double circulant self-dual codes with parameters [18, 9, 7]
and [24, 12, 9] is also given.
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1 Introduction

A linear [n, k] code C over GF(p) is a k-dimensional vector subspace of
GF(p)*, where GF(p) is the Galois field with p elements, p prime. An
[n,k,d] code is an [n, k] code with minimum weight d. Two codes C and
C’ over GF(p) are equivalent if there exists an n by n monomial matrix P
over GF(p) with C' = C - P = {zP |z € C}. The dual code C* of C is
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defined as C+ = {z € GF(p)"| z-y =0 for all y € C}. C is self-dual if
Cc=cC*

A pure double circulant code has a generator matrix of the form [ I, R]
where I is the identity matrix of order n and R is an n by n circulant matrix.
A [2n,7n] code over GF(p) with generator matrix of the form

a B - B
o

I : R
Y

, (1)

where R' is an n — 1 by n — 1 circulant matrix, and a,8 and v € GF(p),
is called a bordered double circulant code. These two families of codes are
collectively called double circulant codes [4].

All self-dual codes over GF(5) are classified in [3] for lengths n < 12.
For larger lengths, some interesting self-dual codes were given in [3]. The
highest possible minimum weight was also given for lengths n < 24. A
self-dual code with the highest minimum weight is called eztremal.

By exhaustive search, we have found all distinct double circulant self-
dual codes over GF(5) with a minimum weight which is highest among
all double circulant self-dual codes for each length n < 24. For lengths
14, 16 and 20, these codes are extremal. In Section 2, we characterize these
extremal double circulant self-dual codes. In particular, a classification of
extremal double circulant self-dual codes of length 14 is given. In Section 3,
we present other double circulant codes which improve the lower bounds on
the highest possible minimum weight. A classification of double circulant
self-dual codes with parameters [18,9,7] and [24,12,9] is also given. Our
notation and terminology for coding theory follow that in [4].

2 Extremal Double Circulant Codes

First we present three lemmas which are useful in checking the equivalences
of double circulant self-dual codes. These lemmas can easily be proven.

Lemma 1 If the matriz [ I, A] generates a self-dual code C over GF(5),
then the matrices [ I , 4A ), [T, AT ) and [ I, 4AT | also generate
self-dual codes which are equivalent to C.



Lemma 2 Let C,C',C"” and C" be codes with generator matrices of the
flrm [(I,A),[I,A)[I,A"]and[I, A" ], respectively, where

a B - B - B - B
it -
A= aA’— . )
. R R
v it
—a -8 - -B « -B - -8
v it 4
A = . and A" = ) ,
: R : R
Y -

and R is a square matriz. Then C,C',C" and C"' are equivalent.

Lemma 3 Let C and C' be codes with generator matrices of the form
[I, A)and[I, A'), respectively. If there are permutation matrices
P and Q such that A' = PAQ, then the codes C and C' are equivalent.

2.1 Length 14

Sixteen distinct pure double circulant [14,7, 6] codes were found. The first
row of R for four of these codes is given in Table 1. All codes can be found
from the four codes using Lemmas 1 and 2. In the remainder of this paper,
we provide only those codes which must be checked further for equivalence.
All distinct codes can be found from these, as shown above. Table 2 gives
the first row of R’ for bordered double circulant codes with these parameters
along with the values of o, 8 and v in the matrix (1). These codes have the
same weight distribution, which is given in Table 3.

Table 1: Pure double circulant [14, 7, 6] codes.

code | first row of R code first row of R
Cha,1 1424110 Ch4,2 4344110
Ci14,3 3414410 Cra,4 2122311

Let R; be the matrix R or R’ for the code C14,; then it is easy to see
that there are permutation matrices P and Q such that PR;Q = Ry for
i = 1,2 and 5. By Lemma 3, Ci4,1,C14,2 and Ci4,3 are equivalent, and
Ci4,5 and Ci4,6 are equivalent. '



Table 2: Bordered double circulant {14, 7, 6] codes.

code | firstrowof R a B v code | firstrowof R a B8 v
Cha,s 203410 0 2 2 Cia6 201430 0 2 2

Table 3: Weight distribution of the [14, 7, 6] codes.

Weight Number
0 1
6 252
7 392
8 3472
9 4872
10 16324
11 15848
12 22708
13 10528
14 3728

In order to determine the inequivalence of the remaining codes, a
method given in [2] is employed. Let C be a self-dual [2n,n,d] code. Let
M = (m;;) be the A4 by 2n matrix with rows composed of the codewords
of weight d in C, where A; denotes the number of codewords of weight ¢
in C. For an integer k (1 < k < 2n), let n(j,...,J&) be the number of r
(1 €7 < Ag) such that mgj, ---m.j5, #0forl <j; <... <jp < 2n. We
consider the set

S = {n(j1,...,Jjx)| for any distinct k columns ji,...,jx }.

Let M (k) and m(k) be the maximal and minimal numbers in S, respectively.
Since two equivalent codes have the same S, these numbers are invariant
under the equivalence of codes.

For the remaining three codes, we have determined the values
(M(k),m(k), 1 < k < 5), and these are given in Table 4. This table
provides the following result:

Theorem 4 There are exactly three inequivelent eztremal double circulant
self-dual [14,7,6] codes. Two of them are pure double circulant.



Table 4: Inequivalence of the [14,7, 6] codes.

codes M(1) m(Q) M(2) m(2) M@B) m3) M@E4) m@) M(5) m(5)
Cha.1 108 108 52 32 20 8 8 0 4 0
Chra,4 108 108 48 24 20 8 12 0 4 0
Cra,5 108 108 48 28 20 8 12 0 4 0

2.2 Length 16

Previously, only one extremal [16, 8, 7] code was known, namely Q6 [3]. We
constructed 16 distinct extremal bordered double circulant self-dual codes
with these parameters. Table 5 lists the first row of R’ for the two codes
which must be checked further for equivalence, along with the values of
a, B and 7 in the matrix (1). These codes and Q¢ have the same weight
distribution, which is given in Table 6. We have not been able to establish
the equivalence or inequivalent of these codes.

Table 5: Bordered double circulant [16, 8, 7} codes.

code
Clis,2

code
Cie,1

firstrowof ' a B8 v
2 3

firstrowof R a [ ~
4434330 1 2

3323221 1 3

Table 6: Weight distribution of the [16, 8, 7] codes.

Weight Number
0 1
7 448
8 3360
9 4992
10 25536
11 38976
12 91392
13 82880
14 90048
15 41728
16 11264




2.3 Length 20

The extremal double circulant self-dual [20, 10, 8] codes over GF(5) are now
described. By exhaustive search, 24 distinct pure double circulant codes
were found. These codes can be divided into two classes by comparing
their weight distributions, which are given in Table 7. The first row of R
for only codes which must be checked further for equivalence is given in
Table 8. For the bordered type, we list in Table 9 the first row of R’ for the
codes, along with the values of @, 8 and v in the matrix (1). These codes
have weight distribution W;.

Table 7: Weight distributions of the [20, 10, 8] codes.

Wi W2
Weight Number Number

0 1 1
8 2280 1280
9 0 3200
10 23408 24848
11 72960 58560
12 241680 248480
13 437760 464960
14 1203840 1175840
15 1586880 1568000
16 2229840 2267240
17 1901520 1896720
18 1418160 1398960
19 528960 541760
20 118336 115776

Table 8: Pure double circulant (20, 10, 8] codes.

code | firstrowof R W || code | first rowof R W
C20,1 2442212000 W, C20,2 1402220240 Wiy
C20,3 1202320440 wh C20,4 2423412000 W,
Cao,5 2312201010 Wo Ca0,6 1320221010 W2

Let R; be the matrix R or R’ for the code Caq; then it is easy to see
that there are permutation matrices P and @ such that PR;Q = R;y,
for i = 1,3,5,7 and 8. By Lemma 3, Cy,; and Cs 41 are equivalent for
i = 1,3 and 5, and Cy,7,C20,8 and Cag 9 are equivalent. Moreover, from



Table 9: Bordered double circulant {20, 10, 8] codes.

code | firstrowof R o 8 v
C20.,7 314322000 0 1 1
Cz0,8 243023100 0 1 1
C20,9 432302010 0 1 1

Table 10 we have the following:

Proposition 5 Any eztremal pure double circulant self-dual [20, 10, 8] code
with weight distribution W, is equivalent to Cy, or Ca3. There is a
unique extremal pure double circulant self-dual [20,10, 8] code with weight
distribution Wy, up to equivalence. There is a unique extremal bordered
double circulant self-dual [20,10, 8] code, up to equivalence.

Remark. In all codes with weight distribution W, (resp. W2), the nonzero
coordinates of the minimum weight codewords form a 3-design (resp. 1-
design) which cannot be explained by the Assmus-Mattson theorem (cf. [1]).

Table 10: Inequivalence of the [20, 10, 8] codes.

codes || M(1) m(l) M(@2) m(2) M(@B) m3) M@4) m4) M(5) m(5)
Ca20,1 912 912 336 336 112 112 112 16 28 0
Ca0.3 912 912 336 336 112 112 112 16 28 0
Cao,5 512 512 220 160 92 32 48 0 40 0
Cao,7 912 912 336 336 112 112 48 16 16 0

3 Largest Minimum Weights for Other
Lengths

In the preceding section, extremal double circulant self-dual codes were
presented for lengths 14, 16 and 20. In this section, double circulant self-
dual codes are given which have the highest minimum weight, d,,, among
known self-dual codes of lengths 18, 22 and 24. For lengths 18 and 22, these
codes improve the lower bounds on d,.



3.1 Length 18

It was shown in [3] that the highest possible minimum weight is dyg < 8. We
found 12 distinct pure double circulant self-dual [18,9,7] codes. The first
row of R for only three codes which must be checked further for equivalence
is given in Table 11. The weight distributions of these codes are given in
Table 12. Let R; be the matrix R for the code Cs,; then it is easy to see
that there are permutation matrices P and Q such that PR;Q = R, for
i =1 and 2. It was previously not known whether self-dual [18,9] codes
with minimum weight 7 existed.
Therefore we have the following:

Proposition 6 There is a unique pure double circulant self-dual [18,9,7]
code, up to equivalence. Moreover we have 7 < dig < 8.

Table 11: Pure double circulant [18,9, 7] codes.

code first row of R code first row of R code first row of R
Cis,1 341333100 Cis.2 303334110 Cis.3 433031310

Table 12: Double circulant [18,9, 7] codes.

Weight Number
0 1
7 72
8 2340
9 5040
10 28152
11 54360
12 185136
13 259560
14 461160
15 411072
16 359640
17 150192
18 36400

10



3.2 Length 22

We constructed 200 (resp. 144) distinct pure (resp. bordered) double circu-
lant [22,11, 8] codes with 6 different weight distributions, which are given
in Table 13. This establishes that 8 < ds2 < 9. In Table 14, we give only
one code for each weight distribution due to space limitations.

Table 13: Weight distributions of the [22,11, 8] codes.

Wy W2 W3 W, Ws We
Weight Number Number Number Number Number Number
0 1 1 1 1 1 1
8 880 660 440 460 660 660
9 1408 1760 2112 2040 1320 1720
10 16104 16984 17864 17948 18788 17148
11 49984 49280 48576 48600 48840 49240
12 262768 259160 255552 255156 251196 258436
13 593120 594880 596640 597440 605440 595840
14 1925264 1932480 1939696 1939880 1941720 1933320
15 3447488 3445728 3443968 3441680 3418800 3443280
16 7016372 7005240 6994108 6995720 7011840 7005840
17 8760664 8763480 8766296 8768368 8789088 8765808
18 10729400 10739960 10750520 10747500 10717300 10737900
19 8364928 8361760 8358592 8358680 8359560 8361560
20 5364832 5356912 5348992 5350796 5368836 5357996
21 1926144 1932480 1938816 1937680 1926320 1931920
22 368768 367360 365952 366176 368416 367456

Table 14: Double circulant [22,11, 8] codes.

pure bordered
first row of R distribution first row of R'  « v distribution
24433420000 Wy 4442101200 2 1 Wy
34120331000 Wa 2444232200 2 1 1 Ws
32323022100 Wsa 2444102010 2 1 1 We

3.3 Length 24

For length 24, a self-dual [24, 12, 9] code was constructed in [3]. We found
eight distinct bordered double circulant codes with minimum weight d = 9.
Unfortunately, our search has established that no double circulant self-
dual [24,12,10] code exists. Thus the existence of a [24, 12, 10] self-dual

11



code remains an open question. However we give a classification of double
circulant self-dual [24, 12,9] codes. The first row of R’ for the eight bordered
double circulant codes is given in Table 15 along with the values of «, 8 and
7. The weight distributions of these codes are listed in Table 16. It follows
from Lemmas 1 and 2 that the eight codes are equivalent. Thus we have
the following;

Proposition 7 There is a unique double circulant self-dual (24,12, 9] code,
up to equivalence. There is no double circulant self-dual [24,12,d > 10)
code.

Table 15: Double circulant [24, 12, 9] codes.

firstrowof * |« B8 v || firstrowof R® [ a 8 ~
32333222320 0 2 2 23222333230 0 2 2
32333222320 0 2 3 23222333230 0 2 3
32333222320 0 3 2 23222333230 0 3 2
32333222320 0 3 3 23222333230 0 3 3

Table 16: Weight distributions of the [24, 12, 9] codes.

Weight Number

0 1
9 1056
10 11088
11 36960
12 212352
13 591360
14 2382336
15 5287040
16 13796640

17 23037696
18 39528720
19 46163040
20 49252896

21 35604800
22 20240352
23 6832320
24 1161968

12



Table 17: The highest possible minimum weights.

n din Non | n dn N | n dn Np
2 2 1 10 4 18 7or8 >1lor
4 2 1 12 6 1 20 8 >3
6 4 1 14 6 23| 22 8or9 2 6or
8 4 1 16 7 >1 |24 9orl0 >1lor

3.4 Summary

In summary, Table 17 presents the highest possible minimum weight d,, for
extremal self-dual codes of length n < 24, along with the number N, of
known inequivalent codes.
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