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A binary linear [n, k, d] code is a subspace of FJ* of dimension k with min-
imum Hamming distance d. The maximum possible minimum Hamming
distance, given n and k, is denoted by d2(n,k). A linear code which has
minimum distance equal to da(n,k) is called optimal. A related problem,
given k and d, is to find the smallest value of n for which there exists an
[n, k, d] code; this value is denoted by n2(k,d). For given values of ¢ and &,
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Abstract

In this paper, nineteen new binary linear codes are presented
which improve the bounds on the maximum possible minimum dis-
tance. These codes belong to the class of quasi-cyclic (QC) codes,
and have been constructed using a stochastic optimization algorithm,
tabu search. Six of the new codes meet the upper bound on minimum
distance and so are optimal.
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solving one of these problems is equivalent to solving the other. The values
of n,(k, d) have been determined for k < 7, and many values of n, (k,d) for
k < 10 are known [1]. Brouwer [1] maintains a table of upper and lower
bounds on dy(n, k) for n < 256. In this paper, bounds for nineteen values
of dy(n, k) are improved or established through the construction of quasi-
cyclic (QC) codes. Recently, non-degenerate QC codes were investigated
by Heijnen, Van Tilborg, Verhoeff, and Weijs [5] and five lower bound im-
provements were obtained. In this paper we also consider degenerate codes,
and by using a stochastic optimization algorithm, tabu search, for the code
construction we obtain the new bounds.

The next section describes the class of codes considered. Section III
discusses the construction algorithm and the stochastic search method used.
Finally, Section IV gives the construction results, and lists the codes which
have improved lower bounds on da(n, k) or established exact values of this
function.

2 Quasi-Cyclic Codes

A code is called quasi-cyclic if a cyclic shift of a codeword by p positions
results in another codeword. The blocklength, n, of a QC code is a multiple
of p, so that n = mp. A class of QC codes can be constructed from m x m
circulant matrices (with a suitable permutation of coordinates). In this
case, the generator matrix, G, can be represented as

G = [BOv Blr Bza ooy Bp*l]y

where
bo,i bii b2 ot bmo2i bm-y
bm-1:  boi bii -0 bmosi bm—2i
B; = bm-2i bm-1: bo;i - bmn—4,i bm-3a,;
by i b2i b3 o0 bmorg bog

The algebra of m x m circulant matrices over GF(2) is isomorphic to the
algebra of polynomials in the ring GF(2)[z]/(z™ — 1) if B; is mapped onto
the polynomial

bi(z) = boi + by iT + bo i + -+ + by, iT™ 7,
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formed from the entries in the first row of B; [7]. The set of polynomials
{bi(x)} are called the defining polynomials. Let bo(z) denote the all-zero
polynomial, and let M = |{bi(z) | i > 0}|. A subset of p of these polyno-
mials

{bjo(x)i b.‘il (x)1 T bjp-l (:c)}, 1<5 <M,

(Ja # Jb when a # b) defines an [mp, k] QC code, where k = m — deg(h(z))

d
an ™ -1

ng{xm - 1,bj (z), b (z),---, bjp-l (:L‘)} )
The polynomial h(z) is called the order of the QC code [9]. Codes for which
k < m are called degenerate.

The problem is to find a subset which gives the largest minimum dis-
tance, d. Only codes for 8 < m < 17 are considered in this paper because it
was found that codes with large values of m — k have poor distance proper-
ties. In addition, only codes for 8 < k < 13 are presented, as this represents
the practical computational limit of the technique used.

h(z) =

3 The Construction Algorithm

It is not necessary to check the weight of every codeword in a QC code in
order to determine d. Only a subset, N < M, of the codewords need be
considered since the Hamming weight of #;(z)b,(z) mod (z™ — 1) is equal
to the weight of i;(z)z'b,(z) mod (z™ — 1) for all I > 0. Note that this
argument also applies to the set of defining polynomials.

To simplify the process of searching for good codes, the weights of this
subset of codewords can be stored in an array. A matrix, D, can be formed
from the arrays for the subset of defining polynomials which need to be
considered

bi(z) ba(z) --- bs(z) --- by(z)
) | wn  wiz - w0 wyy
i(z) | wa  waz o0 wy  cc- wyy
D= :
() | wa w0 w, o wy
iz($) Wey Wz o Wzg o Way
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where i4(z) is the {th information polynomial, bs(z) is the sth generator
polynomial, and wy, is the Hamming weight of i;(2)b,(z) mod (z™ — 1).
Since i,(z) and b (z) correspond to the same subset of defining polynomials,
D is a square (y = z = N), symmetric (by letting i;(z) = b:(z) for all
1 <t < N) matrix.

The complete weight distribution for a QC code composed of any set of
b(z) can be constructed from D. The search for a good code consists of
finding p columns of D with a large row sum, since the weight of 2 minimum
distance codeword must be contained in these sums.

Having decided on the values of k, m, and p (and thus also n = mp),
the entries of the integer matrix D can be calculated and the problem

formulated as a combinatorial optimization problem. Namely, we want to
find

i, i &)

1<_7<N

where S C {1,2,...,N} and |S| = p. More generally, we could take a
multiset S with p elements, but it has turned out that for the new codes
found in such studies, no defining polynomial occurs more than once, so
(also because this made the optimization procedure perform better) S is
here indeed required to be a set.

The optimization method used in this work is tabu search [2]. This is
a stochastic heuristic which can produce good near-optimal solutions to
difficult optimization problems with a reasonable amount of computational
effort (but-it cannot be used to prove or disprove optimality of solutions
found). For an extensive survey of stochastic optimization methods in
coding theory, see [6]. Tabu search is based on local search, which means
that starting from an initial solution, a series of solutions is obtained so
that every new solution only differs slightly from the previous solution (is
in the neighborhood of the previous solution). To evaluate the quality of
solutions, a cost function is needed. Tabu search always proceeds to a best
possible solution in the neighborhood of the current solution. However, to
avoid the search from looping on a subset of moves, (attributes of) recent
moves are stored in a so-called tabu list, and inverses of these moves are
then not allowed for a certain period of time (here, for a predefined number
of moves, L).

Tabu search has here been applied to the problem of finding QC codes,
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defined as a minimization problem, in the following way. First, the problem
is not formulated as generally as in (1), as the desired minimum distance,
d, of the code is fixed. A solution is any set S C {1,2,..., N} of p columns,
the neighborhood of a solution is the set of solutions obtained by replacing
one column with a column that is not in the code, and the cost function is
of the form N
C= Zma.x(O,d - Zw;_,')“,
i=1 JjES

where both a = 1 and a = 2 have been used. A (globally optimal) solution
with cost 0 clearly corresponds to a code with minimum distance at least d.
The tabu list is simply the indexes of the new columns. Thus, if a column
is replaced by another, the new column must not be replaced during the L
next moves.

Although this basic approach worked well, it turned out that this search
method became even more effective using the following alternative neigh-
borhood, based on an idea from [8]. During the search, the row sums of the
current solution are kept in memory and updated after each move. Now,
we go cyclically through this array of sums, until a sum, in row ¢, is encoun-
tered that is smaller than d. Then the neighborhood consist of all possible
replacements of column j in the current solution by column j' whenever
w;jo > w;j. This reduces the size of the neighborhood and makes the
search more effective.

The values of L used were in the range p/10 < L < p/5. If a code was
not found within 5000-10000 iterations, the search was restarted from a
new random initial solution. Depending on the computer time available,
as many as 100 restarts were performed per instance. The total number
of iterations to find a code varied between about one thousand and a few
hundred thousand.

4 Construction Results

The defining polynomials of the nineteen new QC codes are compiled in
Table 1 (in octal form), and the weight distributions in Table 2. These codes
have improved the lower bounds on the maximum minimum distance given
in [1]. Six exact values are established, namely d,(189,9) = 92,d>(207,9) =
100, d»(225,9) = 110, d»(45,10) = 18,d»(91,12) = 40 and d2(140, 12) = 64,
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Table 1: Defining Polynomials for the New Binary QC Codes

n k | m d bi ()
144 1 9 9 68 127, 67, 133, 15, 23, 13, 137, 277, 53, 63, 73, 253, 135, 257, 43, 25
162 | 9 9 77 165, 1, 17, 25, 133, 67, 75, 43, 137, 153, 2563, 7, 357, 117, 147, 31, 47, 23
171 | 9 9 81 173, 377, 1717, 71, 75, 37, 25, 67, 273, 337, 165, 31, 127, 3, 125, 133, 35, 157, 357
180 | 9 9 87 57, 51, 31, 53, 137, 127, 153, 133, 147, 253, 177, 277, 21, 25, 55, 43, 23, 13, 27, 75
189 | 9 9 92° | 253, 21 31 165, 117, 173, 47, 25, 13, 57, 23, 1, 377, 267, 175, 7, 65, 133, 273, 147, 17
207 | 9 9 | 100° | 31,75, 25 57 23, 47, 1, 65, 125, 3, 155, 137, 51 73, 377, 167, 153, 7, 176, 3, 127, 157, 273
225 9 9 110° | 63, 137, 35, 1, 125, 153, 277, 377, 51, 7, 177, 147, 75 337, 53, 273, 117, 113, 357, 57, 37, 267, 67, 155, 165
45 |10 | 15 | 18° | 175, 1067, 11173
160 | 10 | 10 74 273, 145, 125, 111, 117, 325, 53, 127, 133, 255, 3, 353, 253, 357, 153, 43
170 | 10 | 10 80 11, 157, 135, 225, 77, 115, 43, 573, 55, 253, 527, 53, 567, 165, 233, 111, 107
13211111 60 75, 57, 1257, 457, 243, 557, 23, 337, 533, 775, 133, 255
154 | 11 | 11 70 107, 371, 667, 1737, 553, 271, 455, 45, 1677, 767, 331, 733, 1257, 345
165 | 11 | 11 76 345, 35, 33, 5, 563, 333, 57, 117, 277, 23, 365, 331, 1267, 265, 1777
168 | 11 | 14 77 7775, 331, 1335, 6667, 2375, 1127, 1347, 1031, 1621, 625, 657, 105
91 | 12 | 13 | 40° [ 1255, 1135, 1537, 3273, 3553, 1477, 63
135 | 12 | 15 60 1661, 27757, 123, 4631, 1753, 16557, 3737, 473, 3245
140 | 12 | 14 | 64° | 1048, 3775, 5167, 677, 2155, 2543, 1177, 5, 2133, 1531
176 | 12 | 16 80 14347, 24517, 15623, 3445, 12467, 31673, 24555, 7227, 6267, 32675, 2331
112 1 13 | 14 48 3311, 5157, 2263, 3257, 2531, 4447, 3063, 12577
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Table 2: Weight Distributions of the New QC Codes

Code Weight Distribution
[144,9,68) | 0768%25727°9767°80°3847887 108"
[162,9,77) | 07712678130795480%585%%867287°8889330135!
[171,9,81] | 0'81%3821178354842785998645832792°931297%9827991°101°102°
[180,9,87) | 0'87'%288!%°95%9657103°104°111%135"
[189,9,92] | 0'9237896%31087°
[207,9,100] | 0'1603210454108%'112°11654124°
[225,9,110] | 0'1103%4112%17126%°128%144!
[45,10,18] | 07187520 %%227%54 155261952875 30%
160, 10,74] | 01742207615078190g(!1278280g455355083409(50921094409g101gp?
170, 10,80} | 0'80%1°8838%96115104"%120°
132,11, 60 | 076052 64°256857/372°1°7612580°°88"
154,11, 77) | 0'703527250078473g0396gg176g811094329612 110!
[165,11,76) | 0'7651%80%738442088264921549688 033
[168,11,77) | 017738078238g0204g542056108gg10893196941059g49103281 261
[91,12,40] | 0740°>%748%%""56°7
135, 12' 60 Ol 60835641005688257286076405801508415
140,12, 64) | 06417}5721680gg700
176,12, 80] | 0'801208817589510021041041)2%) 28!
112,13, 48} | 07487 73356379346417331127

and these are denoted by an ° superscript in Table 1. Numerous other
improvements on the bounds in [1] are obtained using, for example, the
inequalities
dy(n, k) > da(n+1,k)—1
and
da(n + 1,k) > da(n, k).

The fact that three of the optimal codes listed are degenerate indicates that
good QC codes need not have full rank, i.e., k =m.
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