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Abstract. Let p be an odd prime number. We introduce simple and useful
decoding algorithm for orthogonal Latin square codes of order p. Let H
be the parity check matrix of orthogonal Latin square code. For any z
€ GF(p)", we call zH* the syndrome of z. This method is based on the
syndrome-distribution decoding for linear codes. In Lp, we need to find the
first and the second coordinates of codeword in order to correct the errored
received vector.

1. Introduction

The organization of this paper is as follows: In Section 1, we will recall
the well-known definitions concerning Latin squares and maximum set of
orthogonal Latin squares. And we will summarize a construction of p — 1
mutually orthogonal Latin squares when p is a prime number [6].

In Section 2, for an odd prime p, we will review a p-ary codes of specified
minimum distance corresponding to p—1 mutually orthogonal Latin squares
[4].

In 1970, D. C. Bossen, R. T. Chien and M. Y. Hsiao [2] have constructed
a class of decodable multiple error-correcting codes which is based on one-
step majority decoding method. In Section 3, we will prove the theorems
which provide a new algorithm for orthogonal Latin square codes in Section
4. Finally, we will give a syndrome-distribution dedcoding algorithm and
examples corresponding to each steps of this algorithm.

Definition. A Latin square of order n is n x n square array of numbers
from an n-symbol alphabet (say 0, 1,...,n — 1) in which each row and
each column contains each symbol exactly once. A pair of Latin squares
of order n is (pairwise-) orthogonal if, when one square is superimposed on
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the other, every ordered pair of elements are distinct. In particular, a set
of Latin squares of order n, any pair of which are orthogonal, is called a set
of mutually (pairwise-) orthogonal Latin squares (MOLS).

Notice that we can permute rows and columns of the array without
destroying the Latin square property. This implies that we can always
permute the rows and columns of the array so that the elements in the first
row and first column are ordered. The orthogonality of two Latin square is
not destroyed by relabeling the symbols in the rows (or columns).

To obtain a code corresponding to a set of mutually orthogonal Latin
squares, it is important to determine the maximum possible number of
mutually orthogonal Latin squares of given order n. Since (3}, it is well
known that n — 1 is an upper bound. In particular if n is a prime number,
there exist exactly n — 1 mutually orthogonal Latin squares.

Theorem 1 ( [3]). For any n, there are at most n—1 mutually orthogonal
Latin squares of order n.

Let p be an odd prime. Then there exists a finite field GF(p) with p
elements. Take an p X p array

Lt:[ut(i’j)]r OSi,jSp—], IStSP—l
and in the cell (4, j) of this array put the integer u; = u.(%, j) given by
ug=t-i+j

where t is a fixed nonzero element of GF(p). We write down the following
Latin square L; of order p, 1 <t <p—1,

0 1 p—1

t t+1 t+p—1

2 2 +1 2t+p—1
(-1t  (p—-1t+1 (p—-1t+p-1

where all expressions are to be taken mod p. In [1] and [6], we have seen
that {Ly,...,Lp—1} is a set of p— 1 orthogonal Latin squares.

As an example, we can write down a set of four orthogonal Latin squares
of order 5,
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L] L2
01 2 3 4 01 2 3 4
12 3 40 23 4 01
2 3 4 01 4 0 1 23
34 0 1 2 1 2 3 40
4 0 1 23 34 0 1 2
L3 L4
01 2 3 4 01 2 3 4
34 0 1 2 4 0 1 2 3
1 2 3 40 34 0 1 2
4 0 1 23 23 4 01
23 4 01 1 2 3 40

In addition, when p is a prime power, we can get a similar result [6]. So
we will not discuss them here.

2. Orthogonal Latin square codes
S. W. Golomb and E. C. Posner [4] established an important connection

between the existence of sets of mutually orthogonal Latin squares and the

existence of p-ary codes.
The following two concepts are equivalent:

(1) A set of p — 1 mutually orthogonal Latin squares of order p,
(2) A linear code with length p + 1, minimum distance p, p? codeword.

The [p+1,2,p] code derived from p— 1 mutually orthogonal Latin squares
of order p is orthogonal Latin square codes of order p. From Section 1 and
the above two concepts, we have the codewords as the form (i, j, i +
Jreens(p—1)-i437),0<4,35<p—-1.

This construction has been generalized to multi-orthogonal higher di-
mensional Latin hypercubes by Silverman [7]. In this terms, an orthogonal
Latin square code is equivalent to a set of d — 1 mutually (n — d + 1)-wise
orthogonal (n — d + 1)-dimensional Latin hypercubes where n, d, is the
length and minimum distance respectively.

A [p+1, 2, p] orthogonal Latin square code is linear code with generator
matrix G

10123 ... (p-1)]_
[0 1111 .. 1 ]‘lI?P]’
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where I is 2 x 2 identity matrix and

[t 23 ... (p-1)
P'[l 11 ... 1 ]

Hence the parity check matrix H of orthogonal Latin square code Lp is :

p—1 p—-1 10 ... 0
p—2 p—1 0 1 0

H=[-P' I,]= . . )
1 p—1 0 0 ... 1

where I,_; is (p— 1) x (p — 1) identity matrix and P! is transpose of P.

3. Main Theorem

In this section, all the arithmetic operations (i.e. addition and multiplica-

tion) are based on GF(p).
For convenience, we first define the following notation:

c=(c1,---,Cp+1) : codeword in Lp.
r = (r1,...,7p41) : received word.
e = (e1,...,€p41) : €rror vector.

ieer=c+e.
H : parity check matrix (see previous Section).
s = (81,...,8p-1) : syndrome vector.
s)=s—-Ll-(p—1,p-2,...,2, 1) = (31, 32,...,8p-1) : dual syndrome
with variable l for 1 <! <p-1.

My(s) = #{i| si = b, 1 <i < p— 1} : distribution

for some syndrome s = (s1,...,8p—1) and some b € GF(p).
My(s(l)) = #{i | 8 = b, 1 <i < p—1}:dual distribution

for some dual syndrome s(!) and some b € GF(p).

But, if codeword c is changed into received word r with error e. Then
s = Hrt = H(c+e)* = Hc' +He' = He'. So the i-th coordinate s; of

syndrome s is s; = —i - €1 — €3 + €;42. Since £, has minimum distance p,
we always assume that the Hamming weight of e is less than or equal to
p—1

2
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Theorem 2 ( [5]). Let r = (r1,...,7p+1) be a received word and s =
(s1,...,8p—1) syndrome of r.
—1
(1) Both ry and r, are correct if and only if My(s) > =

1
for

(2) 71 is correct and ry is not correct if and only if My(s) > p-;—
some b € GF(p) — {0}.

* Proof of (1) : By previous paragraph, s; = —i-e; —ez+e;42, 1 <i< p—1.

(=) If both r| and 7y are correct, e; = ez = 0. So, s; # 0 if and only if

eit2 # 0. But since Hamming weight of e is less than or equal to P ; ! ,
-1

Mo(S) 2> pT

(<=) Suppose that 7, is correct and 3 is not correct (i.e. e; = 0 and e; # 0).

Then s; = 0 if and only if e; = e;12 # 0. But at most P_ elements of

2

-3
€3, €4,...,€p4) are nonzero. ie. Mo(s) < , which contradicts the

T2
hypothesm.

Suppose that 7y is not correct and 7 is correct(i.e. e; # 0 and e; = 0).
Then, fori=1,...,p—1, s; =0if and only if i - ey = e;;2. But at most
p—3

elements of e3, eq,...,epy; are nonzero. i.e. Mp(s) < pT, which

contradicts the hypothesis.
Suppose that both ry and r2 are not correct(i.e. e; = ez # 0). Then,

fori=1,...,p—-1, s,—Oifand only ifi-e; + ey = e;42. But, for i =
- Z—z, ei+2 = 0 and for ¢ # - e_’ ei+2 # 0. But at most - elements of
1 1
. -5 -3 . .
€3,...,€py1 are nonzero. i.e. My(s) <1+ =9 _ p—. This contradicts

] 2 2
the hypothesis.

Proof of (2) : (=) By assumption, e; =0 and e; # 0. But since e3 # 0,

at least Pt elements of e3,...,e,41 are zero. So, for b= —ez, My(s) >
ptl
5

(<=) Suppose that 7, is not correct and 7, is correct (i.e. e; # 0 and
-3

ez = 0). But since e¢; # 0, at most il of e3,...,ep+1 are nonzero.

Hence, for b #0, {i|s;=—i-e1+eip2 =0} C {i| e =0, z———}
3 -

U {i | eit2 # 0}. Thus Mu(s) <1+ —— P 5 = PT This contradicts the

hypothesis.
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Suppose that both r; and 5 are not correct (i.e. 1 # 0, ez # 0). Then

at most P- elements of e3, ..., €p41 are nonzero. So, for b #0, {i|si=
b+ex—eip2 }

—i-ey —eg+e€i4g = b} C {'i | €i42 = 0} U {'i I €i+2 95 O,i = - e

- -3
Hence Mp(s) <1+ % = pT This contradicts the hypothesis.

Theorem 3. Suppose that ry is not correct (i.e. In Theorem 2, the con-

ditions of (1) and (2) are not satisfied ).
(1) 72 is correct if and only if Mpo(s(e1)) = —— p+1
(2) T2 is not correct if and only if for some b # 0, My(s(e1)) > p-;— 3

Proof of (1) : (=) By definition, the i-th coordinate of dual syndrome s(l)

is 8 = —i-(e1 —1) — ez + €i12. Hence by assumption ez = 0 and at least

for 1 <i<p—1 the number of e;{2 which is zero is greater than or equal
1

to 21 So Mo(s(er)) > p-;

(<) Suppose that 73 is not correct. Then for 1 < z < p —1, the number

. So Mo(s(er)) <

of e;42 which is not zero is less than or equal to

p—;—é. This contradicts the hypothesis.

Proof of (2) : (=) By assumption , for 1 < z < p — 1, the number of e; 2
. So b= —ez, My(s(e1)) =

which is zero is greater than or equal to

p+3 3

T2
(<) Suppose that o is correct. Then for 1 < i < p—1, the number
of e;j42 which is not zero is less than or equal to p=3 So b #0,

2
My(s(e1)) < 73 This contradicts the hypothesis.

Note: By Theorem 3, My(s(e1)) > ;l either for b = 0, or for some
b such that b # 0. Therefore, My(s(e1)) = maF:f M,(s(l)) for some [,

1<Ii<p-1.

4. The syndrome-distribution method of £, and examples
Let A (B) be the first (second) coordinate of codeword ¢ which is changed
into r respectively.
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Algorithm

-1
Step 1 : If My(s) > pT’ then by Theorem 2-(1), r is decoded into ¢ =
(r1, 12, 71 + T2, ..., (p—1)ry +12).

Step 2 : If Mp(s) < p; ! and M(s) > p-;— L for b # 0, then by
Theorem 2-(2), r is decoded into ¢ = (r,B,r; + B,...,(p — 1)r1 + B)
where B =75 + b.

Step 3 : In the case that the conditions of Step 1 and Step 2 are not satisfied,
iffor 1 <1< p—1, Mo(s(l)) > 22, then by Theorem 3-(1) codeword
c=(A, re, A+re...,(p—1)A+13), where A=7; — L.

Step 4 : In the case that the conditions of Step 1 and Step 2 are not

satisfied, if for 1 <! < p-1, rzz?%r: My(s(l)) > p-;—S, then c = (A4, B, A+

B,...,(p—1)A+B),where A=r, -1, B=ry+b.

Example 1. Let p=35, r = (2,3,1,3,4,1).

4 41000
H=340100
240010
1 400 01

is the parity check matrix for L5 over GF(5). Then the syndrome s of r

2
4 4100073 1
. [3 401001 |1
Hr'=1o 4 001 of|3|=]o
1 4000 11]4 0
1
5-1

Since My(s) > T = 2, both r; and 72 are correct. By Step 1, ¢ =
(2,3,2+3,4+3,1+3,3+3) =(2,3,0,2,4,1).

Example 2. Let p =5, r = (1,3,3,1,0,1). Then the syndrome s of r is
(4,1,4,4). Since My(s) < % = 2 and My(s) > 541 =3, by Theorem
2-(2) 7, iscorrect. By Step 2, we have B = 34+4 = 2and ¢ = (1, 2,3,4,0,1).

Example 3. Let p = 5, r = (3,2,1,0,2,3). Then the syndrome s of r
is (1,2,1,4). From Moy(s) < 2, for any b # 0 M,(s) < 3 and s(4) =
(0, 0, 3, 0), we get My(s(4)) > 3 and so by Step 3, c = (4, 2, 1, 0, 4, 3).

119



Example 4. Let p = 5, r = (2,1,3,4,0,1). Then the syndrome s of r
is (0,4,3,2). From My(s) < 2, for any b # 0 My(s) < 3, and s(1) =

(1,

(1
(2

(3]
(4]

(5]
(6]
(7l

1, 1, 1), we get M;(s(1)) > 4 and so by Step 4,c=(1, 2, 3, 4, 0, 1).
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