Lower bounds on dominating functions in graphs *

Kang Li-ying!
Department of Basic Course

Shijiazhuang Railway Institute
050043, China

Shan Er-fang

Department of Mathematics
Shijiazhuang Normal College
050043, China

ABSTRACT. We study the signed domination number +,, the
minus domination number 4~ and the majority domination
number Yma;. In this paper, we establish good lower bounds
for vs, v~ and Ymaj, and give sharp lower bounds for «,, v~ for
trees.

1 Introduction

Let G = (V, E) be a simple graph. The order of G is the number of vertices.
The size of G is the number of edges; it is denoted by €(G). For a vertex
v € V, the degree of v is d(v) = |N(v)|. A vertex v is called odd vertex if
d(v) is odd. The minimum degree and mazimum degree of the vertices of G
are repectively denoted by §(G) and A(G), when no ambiguity can occur,
we often simple write ¢, § and A instead of ¢(G), §(G) and A(G). The
open neighborhood of v, denoted by N(v), is defined as the set of vertices
~adjacent to v, i.e., N(v) = {u € V | uv € E}. The closed neighhorhood of
vis N[v] = N(v)U {v}. If g is a real function defined on V and S C V, we
write g(S) = 3_,c5 9(v).

A signed dominating function of G is defined in [3] as g: V — {£1}
satisfying g(Nfv]) > 1 for all v € V. A signed dominating function g
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is minimal if there does not exist a signed dominating function h # g
satisfying h(v) < g(v) for every v € V. The signed domination number of a
graph G is defined as v5(G) = min{g(V') | g is a minimal signed dominating
function of G}.

A minus dominating function of a graph G is defined in [5] as a function
g: V — {0,£1} such that g(N[v]) > 1 for all v € V. Similarly, we can
define a minimal minus dominating function, the minus domination number
7 (G) of G.

A majority dominating function of a graph G is defined in [6] as a function
g: V — {Z£1} such that for at least half the vertices v € V, g(N[v]) > 1.
Similarly, a minimal majority dominating function, the majority domina-
tion number Ym,;(G) of G are defined.

2 Signed domination in graphs

Theorem 1. For any graph G of order n,

2¢ —1 n_2nA—2e—l)
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where [ is the number of odd vertices.

75(G) 2 max(n -

Proof: Let g be a signed dominating function on G satisfying g(V) =
7s(G), and

M = {z,z2,...,Zm}
P= {$m+1azm+2)---1xn}

be the sets of vertices that are assigned the value —1 and 1, respectively.
For z; € M we have

IN(z:) N M| < ld(;')J 1

For z; € P we have
NGz M| < [‘“”"J

So
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Obviously

m&SﬁEﬂm) (2)
i=1
2~ (n—m)A <Y d(z:) 3)

i=1
Combining (1), (2) and (3) we have
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7(G) = n — 2m > max(n —
0
From this theorem, we get the following corollary:

Corollary 1. [2] For every k-regular graph G of order n, then v,(G) >
iy if k is even and ,(G) 2 &y if k is odd.

For tree, there is a sharp lower for ;.
Theorem 2. For any tree T or order n,

n+2+41
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where [ is the number of odd vertices, and this bound is sharp.

Proof: Let g be a signed dominating function on T with g(V') = ,(T),
M and P be defined as in the proof of Theorem 1. Let s be the number of
vertices of degree 1. For z € V(T), if d(z) = 1, then N[z] C P. So
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yielding

i
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In fact, this bound is sharp. If T' is & path on 3k + 2 vertices, it is easy
to check that ,(T) = k + 2 = 224 O

This theorem immediately 1mplxw the following corollary.
Corollary 2. [3] For any tree T of order n, v5(T) > nid

3 Minus domination in graphs
Theorem 3. If G is a graph of order n, then v~ (G) > n — 25 -

Proof: Let g be a minus dominating function on G satisfying g(V) =
~~(G) and

M = {z1,Z2,...,Tm}

Q = {Tm+1,Tm+2,-- -1 Tmq}

P ={Tmiqt1s--+1Zn}
be the sets of vertices that are assigned the value —1, 0 and 1, respectively.

Let ¢; (i=1,2,...,n) denotes the number of vertices of weight 0 in N (z:),
then we have

=)= 1 ifz; € M,

IN(z;) N M| < { Hzadbiol i g € Q,
i(ﬂz-ﬂ otherwise.
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Obviuosly
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Combining (4), (5) and (6) we obtain
2m+ S o ™

using (7) we get
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Using this theorem we deduce the following:
Corollary 3. If G is a k-regular graph, then v~ (G) > 21 B

For arbitrary graphs, lower bounds for minus domination number are
known. For tree, there is a sharp lower bound for y~.

Theorem 4. For every tree T of order n,
n+2-—s
3 1

where s is the number of vertices of degree 1, and this bound is sharp.

7 (T) >

Proof: Let g be a minus dominating function on T with g(V') = v~ (T') and
M, P and Q be defined as in the proof of Theorem 3. Set t; = |[N(z;) N Q)|
(i=1,2,...,n), sy =|{v € Q | d(v) = 1}]. For =z € V(T), if d(z) = 1, then
N[z] € PUQ. So we have
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Obviously

n

E t; 2 Z d(z;) — (s — 1)
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using (8) and (9) we get
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So +2
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In fact, this bound is sharp, it is easy to check that v~ (Kijx) =1 =
ﬂi2—3 . D
4 Majority domination in graphs
Theorem 5. If G is a graph of order n, then

n(2§ — A) — 4e

'Ymaj(G) > 2(6+ 1)

Proof: Let g be a majority dominating function of weight g(V') = yma;(G),
and

P={veV|fo)=1}
M={veV|f@)=-1)

Furthermore

P={veP|fl] 21}
P,={veP|fl] <1}
Mi={ve M| fiv] 21}
My={ve M| flv]) < 1}

we write M = {x1,22,...,Zm}, mi = |M;| and p; = |P;| (¢ = 1,2), then we
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have

Z d(z:) = ) |M N N(z)|

z;€V
<)Y d(g')+ > (d(‘"") —1+ ) dz)+ Y. d(z)
z:€P, zEM, z;€EP) z;EM3
—m+ Z d(z‘)+ Z (d(z')-i-l) (10)
Zi€EP z:€EM3

Since g is a majority dominating function, then

patme <2 (1)
Combining (10) and (11) we have
(P E
So 26 —A)—-4
Ymaj(G) =n —2m > n(z(;“_'_)l)_e
0

Corollary 4. [7] If G is a k-regular graph, k is even, of order n, then
Ymai(G) 2 3 k+1 n.

Similarly we have the following results.
Theorem 6. If G is a graph and for every z € V(G), d(z) is odd, then

n(26 - A+1) —4e
2(6+1)

')’maj(G) 2>
Corollary 5. (7] If G is a k-regular graph, k is odd, of order n, then

(1-k k)
Tmaj 2 S 1) ™
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