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Abstract

Bailey (1989) defined a k x v double Youden rectangle (DYR),
with & < v, as a type of balanced Graeco-Latin design where
each Roman letter occurs exactly once in each of the k rows of
the rectangle, and each Greek letter occurs exactly once in each of
the v columns. A DYR of a particular size £ x v can exist only
if there exists a symmetric 2-design for v treatments in blocks of
size k, but existence of a symmetric 2-design does not guarantee the
existence of a corresponding DYR, nor does it provide a construction
for such a DYR. Vowden (1994) provided constructions of DYRs of
sizes k X (2k+1) where k > 3 is a prime power with k = 3 (modulo 4).
We now provide a general construction for DYRs of sizes k x (2k+1)
where k > 5 is a prime power with £ = 1 (modulo 4). We present

DYRs of sizes 9 x 19 and 13 x 27.
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1 Introduction

Bailey [1] defined a double Youden rectangle (DYR) of size k¥ x v, with
k < v, as a row and column arrangement of the kv distinct ordered pairs
z, y formed when z is drawn from a set X of v elements, and y from a set

Y of k elements, and which is organised so that

e each element of X appears exactly once in each row,
¢ each element of Y appears exactly once in each column,

e each element of X appears at most once in each column, and the
sets of elements of X in the columns are the blocks of a symmetric
balanced incomplete block design (SBIBD, also known as a symmetric
2-design), so that v — 1 divides k(k — 1),

e each element of Y appears n or n + 1 times in each row, where n is
the integral part of v/k, and either v — nk = 1 or, if n occurrences of
each element from Y are removed from each row, the remaining sets

of v — nk elements of Y in the rows are the blocks of an SBIBD.

The last of these conditions requires u = (v — nk)(v —nk — 1)/(k — 1) to

be a non—negative integer.

Preece [5,6] reviewed knowledge of DYRs. Existence of an SBIBD for v
treatments in blocks of size k£ with p integral is necessary but not sufficient
for the existence of a k x v DYR, and, even for smallish values of k, there
remain many pairs of values (k,v) for which the existence of a £ x v DYR
is an open question. For k¥ < v — 1 the only known infinite series of DYRs

are those given by Vowden [8], who constructed DYRs of sizes k x (2k + 1)
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where k£ > 3 is a prime power with kK = 3 (modulo 4). We now provide a
general construction for DYRs of sizes k x (2k + 1) where k > 5 is a prime
power with k = 1 (modulo 4); for these sizes n = 2 and so v — nk = 1.
Some 5 x 11 DYRs were presented by Preece [5]: these were generated by
a method entirely different from that described here and none fits as the
start of our series. The newly constructed DYRs are ‘perfect’ in the sense
of Preece, Vowden and Phillips [7], i.e. within each of two disjoint sets of k

columns, the symbols from Y are disposed in a Latin square.

2 An example of a 9 x 19 double Youden
rectangle

An example of a 9 x 19 double Youden rectangle based on the sets
X = {+,A,B,C,D,E,F,G,H,1,a,b,c,d,e, f,g,h,i} and
Y ={1,2,3,4,5,6,7,8,9} is shown in Table 1.

Table 1: A 9 x 19 double Youden rectangle

Al «1 g8 d6 F9 C4 i2 H5 e3 B7 al G8 D6 ¢3 hd I2 b5 E3 f7
B2 ed 2 h9 g3 D7 A5 C8 I6 fl E4 b2 HY9 G3 a7 i5 d8 6 F1
C3 i7 f5 3 B6 hl E8 d2 49 G4 I7 F5 3 ¢6 Hl 88 D2 ¢9 ad
D4 B8 h6 El1 s4 a2 g9 I3 F7 c5 e8 H6 i1 d4 A2 G9 f3 b7 C5
E5 F2 C9 id h7 +5 b3 a6 G1 D8 g2 f9 I4 H7 e5 B3 46 dl o8
F6 g5 D3 A7 ¢l i8 6 E9 b4 H2 G5 h3 d7 Cl I8 f6 a9 B4 e2
G? C6 Il f8 E2 b9 H4 +7 d5 a3 i6 el F8 h2 B9 cd g7 D5 A3
H8 d9 A4 G2 I5 F3 ¢7 bt +8 e D9 g4 f2 a5 i3 C7 Bl h8 EG6
I9 H3 e7 B5 a8 G6 D1 f4 ¢2 9 d3 E7 h5 A8 66 gl F4 C2 9
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As explained by Preece [5], with each k x v double Youden rectangle we
may associate a v X v square incidence array, and for our present example

this array is displayed in Table 2.

Table 2: The square incidence representation of a 9 x 19 double Youden

rectangle
* 11 22 33 44 55 66 77 88 99
A 11 84 67 25 39 98 42 36 73
B 22]48 95 36 17 79 53 81 64
C 33[7 39 14 28 61 87 92 45
D 4 63 27 91 58 [ 89 16 32 75
E 55 41 72 38 69 24 97 13 86
F 66(52 19 83 47 35 78 94 21
G 77 82 96 51 34165 18 23 49
H 88|93 74 15 62 46 29 57 31
I 99 71 85 43 26 37 54 68 12
« 98 42 56 7311 85 27 69 34
b 79 53 81 64 22 96 38 15 47
c 61 87 92 45 33 19 74 26 58
d 89 16 32 75 93 67 44 28 31
e 24 97 13 86|48 71 33 39 62
f 35 78 9 21 59 82 66 43 17
] G> 18 23 49 52 84 36 9 77
h 46 29 57 31 63 95 72 14 88
i 37 34 68 12 76 41 83 25 99

We obtain Table 2 from Table 1 as follows. Assume the rows of our double
Youden rectangle in Table 1 are indexed by Y, and the columns by X.
Table 2 has both its rows and columns indexed by X. If Table 1 has the

136



pair (z,y) in cell (y',z'), then cell (z,z') of Table 2 contains the pair (3, y).
Essentially we interchange in the display the partitioning induced by the
rows and that induced by the elements of X. This equivalent representation
of a double Youden rectangle will be more convenient for our purpose:

subsequent constructions are patterned on this square incidence form.

3 A construction for kx(2k+1) double Youden
rectangles

Suppose the positive integer k is odd and a prime power. Within the finite
field F having k elements let = denote a primitive element, so that the
powers z”, for r = 0,1,2,...,k — 2, constitute the k¥ — 1 non-zero elements
of F, and zF~! = 1. We work with k x k¥ matrices: when doing so we index
rows and columns by the elements of F and index arithmetic is performed

within F. Suppose M = [m;;] is the k& x k matrix for which

1 if ¢ — j is an even power of z,
mi;; = ¢ -1 ifi— jis an odd power of z,
0 ifi=yj.
If the matrices I and J denote, respectively, the identity matrix and the
matrix of all ones, then MJ = JM = 0 and MM' = M'M = kI - J.
To verify the latter relationship, note that the (z,j)th entry of MM’ is

Zmihmjh = Z mipmjp, and this sum equals £ — 1 when i = j, but

h h#i,j
when i # j
Z MipMjp = Z Mi—h,0Mj—h,0
h#i,j h#i,j
= Y mo=Yome-1=-1,
g#0,1 9#0
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where g = (i — h)/(j — h). The matrix A = ${(J —I)+ M} is the zero—one
matrix whose (%, 7)th entry is one if i — j is an even power of z, but is zero
otherwise. Likewise B = 1{(J — I) — M} is the zero~one matrix whose
(¢,7)th entry is one if ¢ — j is an odd power of z, but is zero otherwise.
Consequently AJ = JA = 3(k—1)J, BJ = JB = }(k—1)J, AB = BA,
I+A+B=Jand AA’' + BB’ = }(k + 1)I + 1(k — 3)J. These relations
imply that the (2k + 1) x (2k + 1) block matrix

0o r 0’
N=11 A B
0 B I+B

where 1 and 0 are column vectors of, respectively, ones and zeros, satisfies
NN'= 2(k+1)I + 3(k — 1)J, and correspondingly that N represents the

incidence matrix of an SBIBD whose parameters are 2k+1, k and 3(k—1).

If £ = 3 (modulo 4) then B = A’ and the matrix A itself is the incidence
matrix of an SBIBD having parameters k, 3(k — 1) and }(k — 3). The
incidence matrix N corresponds to an SBIBD denoted as C3 by Bhat and
Shrikhande[2] and appears amongst the incidence matrices for SBIBDs
previously employed by Vowden [8] for his construction of some infinite
series of DYRs of sizes k x (2k + 1) where k > 3 is a prime power with
k = 3 (modulo 4). Our concern here is with the complementary case k = 1
(modulo 4) and now the matrices A and B are symmetric, so that the

incidence matrix N may be rewritten

o 1 v
N=|11 A B
0 B I+B
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The SBIBD that corresponds to this incidence matrix may also be derived
from a construction for Hadamard matrices due to Paley [4] (see also (3],

Chapter 14).

Employing the square incidence form described in Section 2, we build DYRs
based on the incidence matrix N. Those entries of N which are zero we
discard, but entries which are one we replace by pairs of elements drawn
from the field F. To express this more precisely we refer to NV as a 3 x 3
block matrix with blocks (1,1),(1,2),...,(3,3). Then we revise the entries

which are one in the following way:

1. The k pairs 4,7 where the index i ranges through F, are entered as
a column in the (2,1) block of N, as a row in the (1,2) block, and in
the diagonal of the (3,3) block.

2. The (2,2) block in N is the matrix A, whose (%, j)th entry is one when
i — j is an even power of z. Select for this block distinct integers a;
and a, from the range 1,...,k — 2. When i — j = z?" install, as

replacement entry, the pair of field elements

x2r+a; +j, x2r+a2 +] .

3. The (3,2) block in N is the matrix B, whose (,j)th entry is one
when i — j is an odd power of z. Again, select for this block distinct
integers b; and by from the range 1,...,k — 2. When i — j = z?r*!

the replacement entry is

w2r+1+bn +j, x2r+1+bz +3.

Likewise, within NV the (2,3) block and the non—-diagonal contribution

to the (3,3) block is again B. Entry replacements are made in the
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same fashion after the selection of two further integer pairs ¢;, co and

dl,dz.

For this array to comply with the constraints required of a DYR, the
eight parameters a;,as,b;,bs,c;,c2,d;,ds introduced in its construction
must satisfy certain consistency conditions. Firstly, to ensure that each
column of the array contains all the elements of the field F, separately in
both the first and second components of the array entries, the integers a;
and b; should have the same parity, i.e. either both are even or both are
odd. Likewise, az and by should have the same parity, whereas ¢; and d;
should have opposite parity, as should ¢; and d;. Next, to accommodate the
corresponding consideration for rows, we employ the notation introduced by
Vowden (8] whereby, for any integer m selected from the range 1,...,k -2,
m denotes the integer in the range 0,1,...,k — 2 (but avoiding 3(k — 1))
which satisfies ™ = 2™ — 1. Then we must require that @; and ¢; have the
same parity, and also @y and €, but 5, and d; must have opposite parity,
as must b, and d,. Finally consider the association between the first and
second components of the pairs of elements, from the field F, installed in
our array. Within the (2,2) block 0 as a first component is paired with
second components z?7(z% — z°'); within the (3,2) block the pairing is
with 2?7~ !(zb2 — 2%1), and likewise for the (2,3) block and the off-diagonal
entries of the (3,3) block. The within-rows replication of elements of the
set Y in our original row and column description of a DYR given in Section
1 is thus achieved if we require that exactly two of z(z®* — z%1), zb2 — gb1,

2 — g% and z% — % be even powers of .

When k = 5 the conditions we thus impose on the eight parameters

a1, b, c1,dy,az,b2,co,ds are incompatible, so that our construction process
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does not succeed. However Preece [5], used a quite different approach to

produce some 5 x 11 DYRs.

The next case to consider is ¥ = 9. The finite field F = Fy is of
characterisitic 3 and has a primitive element z which satisfies 22 = 2z+1, so
that the nine field elements are 0,z° =1, z! =z, 22 =2z +1, 2% = 2z + 2,
24 =225 =2z, 2% =242, 27 = 2+ 1. It is easily verified that the
parameter assignment @1 = b =¢1 =1,d; = 2,8 = b = 0 = 2,
ds = 3 meets our requirements and the 9 x 19 DYR of our construction is
that displayed in Table 1 when the elements of the set Y used there are
identified with the elements of Fy via the correspondence 1 < 0, 2 & 1,

3e2,40z,50rc+1,602+2,722,8602c+1,9¢ 2242,

4 An infinite series of double Youden
rectangles

Section 3 showed how to construct a k x (2k + 1) DYR when k is a
prime power congruent to 1 (modulo 4) provided that a choice could be
made for the eight parameters a;,b1,¢1,d1, a2, b2, €2, dp introduced into our
construction, where each of these parameters is drawn from the integer

range 1 to k — 2 and collectively they satisfy the following conditions

ay # a2, b, # bz, c1 # c2,d1 # da,
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a; and b; have the same parity
c1 and d; have opposite parity and as well the corresponding set
@; and ¢; have the same parity of conditions for a3, b, cg,ds,

b, and d; have opposite parity

exactly two of z(z%2 — z%), g% — g%, £ — 2%, g% — 2% are

even powers of z.

As F represents the finite field having & elements, within which z is a
primitive element, elements in F of the form z™-1,form =1,2,...,k-2
exhaust the whole of F with the exception of the two elements 0 and
—1 = z3(*-1)_ Thus the exponent 7% that we introduced via the relation
z™ — 1 = z™ assumes all integer values from 1 to k — 2 inclusive, apart

from the even integer (k — 1). The identity

(z™ - 1)(x(k—l)—m -1)= m(k—l)-—m+%(lc—1) (z™ — 1)2

shows that 7 and (k — 1) — m have the same parity if m is even, but that
if m is odd they have opposite parity. Because k = 1 (modulo 4) we may
write k = 4\ + 1 for some positive integer A\. We see now that when m is
even the values ™ — 1 provide A — 1 even powers of z and A odd powers,
and when m is odd the values z™ — 1 provide both A even powers and A odd
powers. This information is summarised in Table 3 in terms of the parity

combinations of m and m.
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Table 3: Counts of integers satisfying the different parity combinations

m m Number of

possibilities

Even | Even A-1

Even | Odd A
Odd | Even A
0Odd | 0dd A

Table 4: A 13 x 27 double Youden rectangle

(In this representation z,y and z denote 10, 11 and 12 respectively.)

A0 «0 Fy k9 C7 H5m3el jz bxr G8 L6 dd4 I2 a0 gy K9f7 I5 M3El Jz Bre8 i6 D4 h2
Bl J3 %1 Gzlr D816 a4 f2 k0 cy HIN7e5 i3 bl hz Lz 98 m6 A4 F2 K0OCyd9 ;7 E5
C2 f6 K4«2 HOmyE9 J7 b5 ¢3 Il dz Iz A8 F6 Jj4 ¢2 i0 Myh9 a7 B5 G3 Ll Dz ex k8
D3 B9 g7 L5 #3 Il az Fx K8c6 hd m2e0 Jy 9 G7 k5 d3 J1 Az iz b8 C6 H4 M2 EQ fy
E4 Kz Cxh8 M6+4 J2 b0 Gy L9 d7 i5 a3 f1 g2 mz H816 e4 k2 BO Jjy ¢9 D715 A3 F1
F5 g2 L0 Dy i9 A;I *5 K3cl Hz Mze8 j6 b4 G2 h0 ay I9 m7 f5 13 C1 kz dx E8 J6 B4
G6 c5 h3 M1 Ez jz B8+6 L4 d2 I0 Ay f9 k7 C5 H3 i1 bz Jr a8 g6 md4 D210 ey F9 K7
H718 d6 i4 A2 FO ky C9 +7 M5e3 J1 Bz gz L8 DG I4 Jj2 c0 Kyb9 h? o5 E3ml fz Gz
I8 hy m9e7 j5 B3 Gllz Dz+8 A6 f4 K2CO0 HyM9E7 J5 k3 dl Lz cz i8 66 F4 a2 90
J9 D1 iz az f8 k6 C4 H2m0 Ey +9 B7g5 L3 hl Iz Az F8 K6 l4 ¢2 MOdy j9 c7 G563
Kz MA4E230 by g9 17 D513 al Fz sz C8 h6 c4 i2 JO By G9 LT m5 f3 Al ez kz d8 H6
Ly i7 A5 F3 k1 cz hzt m8 E6 J4 b2 GO sy D917 d5 j3 K1Cz Hx M8a6 g4 B2 f0 ly €9
Mz Ez j8 B6 G4 12 dO iy a9 F7 K5 c3 Hlez fx J8 e6 k4 L2 DO Iy A9 b7 hS5 C3 gl mz
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Section 3 exhibited an appropriate choice of values for the parameters a,,

b, ¢, di, a2, b2, ¢z, d2 when &k = 9, which enabled us to construct the

9 x 19 DYR given in Section 2. Now we consider k¥ > 9, where as before the
integer k is a prime power congruent to 1 (modulo 4), and we show for each
k how to make a parameter selection which satisfies the conditions listed
above. Suppose the A distinct values of the exponent m for which m is even
but 77 is odd are ry,...,r), and likewise s1, ..., s, are the A distinct values
of m with m odd and 7 even. There are A? sums r; + s; (modulo k — 1)
and their values are all odd. But the series 1,3,...,4X — 1 of odd integers
has 2\ members. So when A > 2 there exist indices i1 # 72, j1 # j2 that
satisfy 7;, + sj, = ri; + 5j,- Wemayset ay = b = ¢1 =13y, di = 85,
az = by = ¢2 = 1y, d2 = 8}, as is readily verified. For example when
k = 13, X = 3, the finite field F = F;3 corresponds to arithmetic of the
natural numbers modulo 13, a primitive element is z = 2, 7, =4, 72 = 6,
r3=8,81=1,8="7,83=9,r1+8 =5and r3+s3 = 17 = 5 (modulo 12):
Table 4 displays the 13 x 27 DYR arising from the corresponding parameter
choice a; = by =c; = 4,dy =9 ay = by = ¢co = 8, do = 1 (where, for
the display, we have employed X = {,4,B,C,...,M,a,b,c,...,m} and
Y ={0,1,2,...,9,z,y,2}).

Acknowledgement
D.A. Preece was a source of much valuable advice during the preparation of

this paper, and I thank my colleague for his sustained interest in my work.

144



References

[1 ] R.A. Bailey, Designs: mappings between structured sets, in J.
Siemons, ed., Surveys in Combinatorics, 1989, 22-51, (Cambridge
Univ. Press, Cambridge, 1989).

(2 ] V.N. Bhat and S.S. Shrikhande, Non-isomorphic solutions of some
balanced incomplete block designs: I, J.Combin. Theory 9 (1970) 174—
191.

[3 ] M. Hall Jr., Combinatorial Theory, (Wiley, New York, 1967).

[4 ] R.E.A.C. Paley, On orthogonal matrices, J.Math.Phys. 12 (1933)
311-320.

[5 ] D.A. Preece, Double Youden rectangles — an update with examples

of size 5 x 11, Discrete Mathematics 125 (1994) 309-317.

(6 ] D.A. Preece, Youden squares, in C.J. Colbourn and J.H. Dirinitz,
eds., The CRC Handbook of Combinatorial Designs, 511-514, (CRC
Press, Boca Raton, 1996).

[7 ] D.A. Preece, B.J. Vowden and N.C.K. Phillips, Double Youden
rectangles of sizes px (2p+1) and (p+1) x (2p+1), Ars Combinatoria

(to appear).

[8 ] B.J. Vowden, Infinite series of double Youden rectangles, Discrete

Mathematics 125 (1994) 385-391.

145



