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ABSTRACT. Place a checker in some square of an n x n checkerboard. The checker is
allowed to step either to the east or to the north, and is allowed to step off the edge
of the board in a manner suggested by the usual identification of the edges of the
square to form a projective plane. We give an explicit description of all the routes
that can be taken by the checker to visit each square exactly once.

1. Introduction

Place a checker in some square of an n x n checkerboard. The checker is allowed to
step (a distance of one square) either to the east or to the north — in particular,
it does not move diagonally. We ask whether it is possible to move the checker in
this manner through a route that visits each square exactly once. We feel free to
adopt graph-theoretic terminology whenever it is convenient, so we refer to such a
route as a hamiltonian path.

It is traditional to allow the checker to step off the edge of the board (otherwise,
it is clear that no hamiltonian path exists). Namely, when the checker steps off the
east edge of the board, it moves to the westernmost square of the same row; when
the checker steps off the north edge of the board, it moves to the southernmost
square of the same column. This can be described succinctly by saying that the
checkerboard has been made into a torus, by gluing each of its edges to the opposite
edge. For these toroidal checkerboards, it is not difficult to see that every square
is the starting point of some hamiltonian path, and several authors have studied
more delicate properties of paths and cycles in toroidal checkerboards [1], (2], [4],
(5}, (6], [7]-

In this paper, we do not study toroidal checkerboards. Instead, the checker is
allowed to step off the edge of the board in a somewhat different manner, corre-
sponding to the usual procedure for creating a projective plane by applying a twist
when gluing each edge of a square to the opposite edge.

1.1. Definition. The squares of the n xn checkerboard can be naturally identified
with the set B, of ordered pairs (p,q) of integers with 0 < p,q < n — 1. Define
E:B,, = B, and N:B,, - B, by

(p+1,q) ifp<n-—1
D E =
(p.) {(O,n—l—q) ifp=n-1
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FIGURE 1. Locations of the initial (®) and terminal (m) squares of
hamiltonian paths on the 9 x 9 projective checkerboard.

(p,g+1) ifg<n-1

(p’q)N={(n-—l—p.O) ifg=n-1

The n x n projective checkerboard By, is the digraph whose vertex set is By, with a
directed edge from a to aF and from « to alN, for each a € B,.. We usually refer
to the vertices of B, as squares.

For these projective checkerboards, we show that only certain squares can be the
initial square of a hamiltonian path, and only certain squares can be the terminal
square. The form of the answer depends on the parity of n; illustrative examples
appear in Figures 1 and 2.

1.2. Notation. For convenience, we let # = |n/2] and g~ = [(n — 1)/2]. Thus,
if n is odd, we have f = #~ = (n — 1)/2, whereas, if n is even, we have # = n/2
and - =¢ -1

1.3. Theorem. A square (p,q) of B, (with 0 < p,q < n — 1) is the initial square
of a hamiltonian path if and only if either
(1) g=0andp> 4, or
(2) g=¢" andp < o or
(3) g=d andp > 4~; or
(4) p=0andq> ¢, or
(5) p=9¢" endq < #; or
(6) p= and g2 #~.
It is the terminal square of a hamiltonian path if and only if either
(1) g=n—-1andp < #; or
(2) g=dandp 24, or
(3) g=¢" andp < o or
(4) p=n-1andqg < #; or
(5) p=d andq 29", or
(6) p=9~ andq < i
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FIGURE 2. Locations of the initial (®) and terminal (m) squares of
hamiltonian paths on the 10 x 10 projective checkerboard.

Furthermore, we give an explicit description of all the hamiltonian paths in B;.
This more detailed result is stated in Section 2, after the necessary terminology has
been introduced. The proof is in Section 3.

2. Direction-forcing diagonals

2.1. Definition. Define a symmetric, reflexive relation ~ on the set of squares by
a~fif
{aE,aN}n {BE,BN} # 0.

The equivalence classes of the transitive closure of ~ are direction-forcing diagonals.
For short, we refer to them simply as diagonals. Thus, the diagonal containing a is

{a, aNE™ ' a(NE~')2,...,aEN"'}.

2.2. Notation. For o € B, we let a; and a, be the components of «, that is,
a = (az,ay).

2.3. Notation. For0<i<2n-2,let S; = {a € B, | a; + a, = i}.

2.4. Proposition. For eachi with0 <i<2n -3, the set D; = S;USsn_3_; isa
diagonal. The only other diagonal Do,_» consists of the single square (n — 1,n —
1). O

Notice that D; = Dy,,_3_; if 0 < i < 2n - 3.

2.5. Notation. Let D be a diagonal, other than D.,_,. Then, from Proposi-

tion 2.4, we may write D = S, US, witha < b. Welet D_ =S, and D, = Sp,.

To find the hamiltonian paths in By, it is helpful to focus attention on the
following class of subgraphs of B,, which contains all the hamiltonian paths.
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2.6. Definition. A spanning quasi-path is a spanning subdigraph M of B,, such
that exactly one component of # is a (directed) path, and each of the other com-
ponents of H is a (directed) cycle. We usually use ¢ to denote the initial square of
the path, and 7 to denote the terminal square.

Thus, a spanning quasi-path has two distinguished vertices ¢ and 7, such that
every square except ¢ has indegree 1, and every square except 7 has outdegree 1.
The square ¢ has indegree 0, and the square 7 has outdegree 0.

2.7. Definition. If A is a spanning quasi-path, then the diagonal containing the
terminal square T is called the terminal diagonal of . All other diagonals are
non-terminal diagonals.

The following fundamental propositions, which are used throughout the paper,
justify the name direction-forcing diagonal, and reveal the special status of the
terminal diagonal. The results are adapted from ideas of Housman (3].

2.8. Definition. Let A be a spanning quasi-path in B,. A square a travels east
(in H) if the edge from « to aF is in M. Similarly, a travels north (in H) if the
edge from a to alN is in H.

2.9. Proposition (cf. [1, Lemma 6.4c]). IfH is a spenning quasi-path in By, then,
for each non-terminal diagonal D, either every square in D travels north, or every
square in D travels east. For short, we say that either D travels north or D travels
east. O

2.10. Proposition (cf. [1, Lemma 6.4b)). Let T be the terminal diagonal of a
spanning quasi-path H in B,, with initial vertex + and terminal vertez 7, and let
a€eT.

(1) if TN # ¢, then TNE™! travels east;

(2) if TE # ¢, then TEN ! travels north;

(3) if a travels east and aN # ¢, then aNE~! travels east;

(4) if o travels east, then cEN~! does not travel north;

(5) if a travels north and aE # ¢, then c EN ™! travels north; and
(6) if a travels north, then aNE~" does not travel east. O

2.11. Corollary (cf. [1, Lemma 6.4a]). If H is a spanning quasi-path in B,, then
the diagonal that contains tE~' and «N~' is the terminal diagonal. 0O

The following corollary follows from Proposition 2.10 by induction.

2.12. Corollary. Let T be the terminal diagonal of a spanning quasi-path H
in By, with initial verter + and terminal vertez 7, and let |T| denote the cardi-
nality of T. For each o € T, there is a unique integer u(a) € {1,2,...,|T|} with
a = r(NE-1)*9); the square a travels east if and only if u(c) < u(tE~'). (Sim-
ilarly, there is a unique integer v(a) € {1,2,...,|T|} with a = LE~Y(EN~)¥(a);
the square o travels east if and only if v(a) < v(r).) O

From Corollary 2.12, we see that the location of the initial square and terminal
square determine which vertices in the terminal diagonal travel east, and which of
them travel north, so we have the following corollary.
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FIGURE 3. Some hamiltonian paths in B,, when n is odd (where # =
(n —1)/2). All non-terminal diagonals travel east.

2.13. Corollary. A hamiltonian path (or, more generally, o spanning quasi-path)
is uniquely determined by specifying

(1) its initial vertex;

(2) its terminal vertez; and

(3) which of its non-terminal diagonals travel east. O

Our main results determine precisely which choices of (1), (2), and (3) lead to a
hamiltonian path, rather than some other spanning quasi-path.

The following theorem shows that, to find the possible initial squares and ter-
minal squares of hamiltonian paths, one need only consider hamiltonian paths of
two special types: those in which all non-terminal diagonals travel east, and those
in which all non-terminal diagonals travel north.

3.6'. Theorem. If there is a hamiltonian path from ¢ to 7, then there is a hamil-
tonian path from ¢ to 7, such that either ell non-terminal diagonals travel east, or
all non-terminal diagonals travel north.

Figures 3 and 4 list several hamiltonian paths. We now define some simple
transformations that can be applied to create additional hamiltonian paths from
these.

2.14. Definition. For a = (az,ay) € By, leta=(n—1-a,,n—1- ay,) be the
inverse of @, and let a* = (ay, ;) be the transpose of a.

2.15. Proposition. Let{ao,..., am] be the sequence of squares visited by a hamil-
tonian path H in B, from . = ag to T = an,. Then the following are also hamil-
tonian paths in B, :

the inverse of H from 7 to i: [@m,Gm—1,- .., a&);
the transpose of H from ¢* to r*: lags .. an;
the inverse-transpose of H from 7* to i*: G, apn_y,....&). O

Our main theorem can be stated as follows.
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FIGURE 4. Some hamiltonian paths in B,, when n is even (where g =
n/2). All non-terminal diagonals travel east.

3.12'. Main Theorem. If H is any hemiltonian path in B,, such that all non-
terminal diagonals travel east, then either H is one of the hamiltonian paths listed
in Figures 3 and 4, or H is the inverse of one of these hamiltonian paths.

By considering the transposes of these paths, we obtain the following corollary.

2.16. Corollary. If H is any hamiltonian path in B,, such that all non-terminal
diagonals travel north, then H is either the transpose or the inverse-transpose of
one of the hamiltonian paths listed in Figures 3 and 4. O

The Main Theorem and its corollary, combined with Theorem 3.6, suffice to de-
termine all the initial and terminal squares of hamiltonian paths. These conclusions
are detailed in Theorem 1.3.

By combining the Main Theorem with Proposition 3.3 and Theorem 3.5 below,
we obtain the following precise description of the hamiltonian paths in B,,, not just
those in which all non-terminal diagonals travel the same direction. The point is
that all hamiltonian paths can be derived by applying certain simple transforma-
tions to the basic paths listed in Figures 3 and 4.

2.17. Corollary. The following construction always results in a hamiltonian path
in B,, and every hamiltonian path can be constructed in this manner.
(1) Start with a basic hamiltonian path H, from Figure 3 or 4.
(2) Write the terminal diegonal of H, in the form S, U S, (with a < b), and let
N be any subset of {D; |0 < j <a}.
(3) Let H, be the spanning quasi-path of B, in which the non-terminal diagonals
in N travel north, all the other non-terminal diagonals travel east, and each
square in the terminal diagonal travels exactly the same way as it does in M, .
(4) Let H be Ha, or the inverse, or transpose, or inverse-transpose of Hs.
Then H is a hamiltonian path in B,,. 0O
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3. The Main Theorem
In this section, we prove Main Theorem 3.12.

3.1. Notation. We use [a](X;X>...Xp), where X; € {E, N}, to denote the path
(or cycle) in B, that visits the squares

«, aXl, 0X1X2, ey C!.\'|X2.../‘\’m‘

Note that a 2 x 2 projective checkerboard has hamiltonian cycles, namely, the
cycles (NNNN) and (EEEE). However, the following theorem shows that this is
the only such board; for n > 2, there is no hamiltonian cycle in B,,.

3.2. Theorem. On an n x n projective checkerboard with n > 3, there are no
hamiltonian paths with initial square ¢ = (0,0). Therefore, D, _, is not the termi-
nal diagonal of any hamiltonian path in B,,.

Proof. Suppose H is a hamiltonian path in By, with initial square . = (0,0). From
Corollary 2.11, we see that the terminal square 7 must be (n — 1,n - 1).

Let [ap, 1, ..., an] be the sequence of squares visited by H. By induction on i,
we show that am_; = &; (the inverse of ;) for 0 < i < m. Assume inductively
that a,,_; = @&;. Suppose, without loss of generality, that a; travels east in H.
From Proposition 2.4, it is not difficult to see, for all @ € B,, that the squares
a and &E~! are in the same diagonal. Therefore, &; E~' must travel east, as o;
does. Then, since (&;E~')E = &; = am—i, we conclude that &GE™ = apmeioy.
Therefore, ~

Om-i-1 = &GE™' = oiF = &4,

as desired.

It is clear that N steps off the edge of the board somewhere, for, otherwise, it
could not visit more than 2n — 1 squares. Let (p,q) be the square from which A
steps off the edge of the board (the first time). We may assume, without loss of
generality, that p = n — 1, and that H steps east, from Cn_14q = (R = 1,9) to
@ntq = (0,7 — 1 — g). Then, from the conclusion of the preceding paragraph, we
have

Am—(n—14q) = dn—l+q = (n -1,9)~ = 0,n-1- q) = Qg

Therefore, m —(n—1+g) =n+gq. Since (p,q) # 1 = (n-l,n=1)andp=n-1,
we must have ¢ < n — 2, so this implies that 7n = 2n — 1 + 2q < 4n — 3. Because
n > 3, we have 4n — 5 < n? — 1, so this contradicts the fact that the length of a
hamiltonian path must be n2 — 1. O

Henceforth, we may (and do) always assume that the terminal diagonal T of a
hamiltonian path H is not Dj,_s. Therefore, Proposition 2.4 implies that we may
write T in the form T = §, U S, with a < b.

3.3. Proposition. Suppose the terminal diagonal of a hamiltonian path H is S, U
Sy, with a < b. Then all Dj, where a < j < b, travel in the same direction.

Proof by induction. Given k with @ < k < n - 2, suppose that all D;, where

k < j < n—2, travel in the same direction, but D;. travels in the other direction.
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Assume without loss of generality that Dy travels north and all D; with j > k
travel east. Then, letting a = (k + 1,0) € Sr.+1, we see that H contains the cycle
(@](E*»—®)-3N). This contradicts the fact that # is a path. O

The preceding proposition shows that the “middle” diagonals (that is, those D;
with @ < j < b) must all travel in the same direction. Theorem 3.5 shows that the
other non-terminal diagonals have no effect on whether a spanning quasi-path is a
hamiltonian path or not. First, we prove a lemma.

3.4, Lemma. Let H be a spanning quasi-path, with terminal diagonal S, U S,
(where a < b). Let (p,q) € Sp+1, and let P be the unique path in ‘H that staris al
(p,q) and ends in S,, without passing through S,. Then the terminal vertez of P
is (n — 1 —p,n — 1 —q), which is the inverse of (p,q).

Proof. Let us begin by showing that P steps off the edge of the board exactly once.
Since steps that do not go off the edge of the board move from S; to Sk41, and
a < b+ 1, it is clear that P steps off the edge of the board at least once. Let a be
the square from which P steps off the edge of the board (the first time). If a € Sk,
then the square immediately immediately after a on P belongs to S2,,—2—. Since
k>b+1=2n-2-a, we have 2n — 2 — k < a. Therefore, because a <n — 1, we
know that P reaches S, before it reaches S,—1, which is the first subdiagonal from
which it is possible to step off the edge of the board.

Let [ag, a1, - ,am] be the sequence of squares visited by P. We now show
that m is odd, that P steps off the edge of the board from a(m_))/2, and that, for
0 < i < m — 1, the squares @; and a,,—;—; lie on the same diagonal. If P steps off
the edge of the board from oy, then ai € Sey1+k, SO @rg1 € San—2—(p414k)- On
the other hand, because o, € S, (and P does not step off the edge of the board
between a4 and ap,), we must have axy1 € Sg—(m-k-1)- Therefore,

Mm—-2-(b+1+k)=a—-(m—-k-1).

We know, from Proposition 2.4, that @ + b = 2n — 3, so this implies m = 2k + 1,
which means that m is odd, and that P steps off the edge of the board from
Q(m—1)/2- Furthermore, for i < k, we have a; € Spq14: and @pm—1—i € Sa—1-i-
Since a + b =2n — 3, we have (b+ 1 + i) + (a — 1 — i) = 2n — 3, which means that
a; and @;pm—-1-; lie on the same diagonal, as desired.

We are now ready to prove that the terminal squareof Pis (n—1-p,n—-1-¢q).
Assume, without loss of generality, that a(,_1)/2 travels east. From the preceding
paragraph, we know that P steps off the edge of the board from a(m_1)/2, so
(m—1)72 must be of the form ¢(,,_1);» = (n — 1,y). Thus, exactly n -1 -p
of the squares ag, ay,...,(m-3)/2 travel cast. Since a; and a;,—1-; are on the
same diagonal, then exactly n — 1 — p of the squares a(;m11)/2: ®(m43)/2s - - + s Xm—1
travel east. Similarly, exactly y — ¢ of the squares a(m41)/2,- - - »@m—1 travel north.
Because o(;,—1)/2 travels east, off the cdge of the board, we have q(my1)2 =
(0,n — 1 —y). Then n — 1 — p steps east and y — ¢ steps north result in the square
(n-1-p,n—1-gq),as desired. O

3.5. Theorem. Let H be a hamiltonian path in B,,, with terminal diagonal S,US,
(where a < b), and let H' be any spanning quasi-path in B,, with the same initial
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and terminal squares as H and such that each non-terminal diagonal D;, with
a < j < b, travels exactly the same way in H' as it does in H. Then H' is also a
hamiltonian path.

Proof. From Proposition 2.10, we see that each square in the terminal diagonal
travels exactly the same way in H' as it does in H. To show that #’ is a hamiltonian
path, it suffices to show that A’ has no cycles.

Suppose that there is a cycle C' in H'. This cycle cannot be contained in H, so
it is not difficult to see that it must contain at least one square in Sy,;. We may
write C' as the concatenation C' = Py + Q] + -+ + P, + Q. of paths, such that
each P; is contained in #NH', and each Q) starts in Sp41 and ends in S,, without
passing through S,. Lemma 3.4 shows that, for each j, there is a path QjinH
that starts in S;4 and ends in S,, without passing through S,, and has the same
endpoints as Q’;. Then the concatenation C =P, +Q, +---+ P, +Q, isa cycle
in #H. This is a contradiction. O

3.6. Corollary. If there is a hamiltonian path H from an initial square ¢ to a
terminal square 7, then there is a hamiltonian path ' from . to T, such that all
non-terminal diagonals travel in the same direction.

Proof. We may write the terminal diagonal of H in the form T = S, U S, with
a < b. We know from Proposition 3.3 that all D; where a < j < b travel in the
same direction. Assume without loss of generality that they travel east. Let H’ be
the spanning quasi-path of B, in which every non-terminal diagonal travels east,
and each square in the terminal diagonal travels exactly the same way as it does
in .- Theorem 3.5 shows that #' is a hamiltonian path from ¢ to 7. O

We now embark on the proof of Main Theorem 3.12. Thus, our goal is to
describe precisely which squares can be joined by a hamiltonian path (in which
all non-terminal diagonals travel east). To streamline the required case-by-case
analysis, we start with a few lemmas. These preliminary results provide helpful
information on the locations of initial and terminal squares of hamiltonian paths.

3.7. Lemma. Let T be the terminal diagonal of a hamiltonian path from ¢ to T,
let a be the square on Ty with @y = n — 1, and let B be the square on T_ with
By =0.
(1) Suppose 7 € Ty and 7y < n — 1. If some square A € T_ travels east, then
both a and B travel east.
(2) Suppose tLN~! € T_. If some square in T, travels east, then both o and B
travel east.
(3) Suppose r € T_. If some square in Ty travels north, then a travels north.
(4) Suppose LE~' € T,. If some square in T_ travels north, then a travels
north.

Proof. We prove only (1), because the other cases are similar. In the notation of
Corollary 2.12, it is not difficult to see that

ua) =n—1-7 =u(B) - 1 <u(B) =u(A) - A, <u(A).

Since A travels east, we know from Corollary 2.12 that u(\) < u(:E-"), so this
implies u(a),u(8) < u(¢E~'), so both & and 4 travel east. D
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3.8. Lemma. Let M be a hamiltonian path in B, from ¢ to T, such that every non-
terminal diagonal travels east. Assume n is odd. Let T be the terminal diegonal
of H, and let o be the square on Ty with ay, = n — 1. Then either:

(1) 7y =#; or

(2) ¢y =i or

(3) a travels north, and there is a square A on T with Ay = i, such that
7=AEN~Y; or

(4) a travels north, and there is a square p on Ty with py = #, such that
t=pN.

Proof. Let p be the square on Ty with p, = #, if such a square exists; otherwise,
let p = (n —1,%). Let X be the square on T_ with X, = #, if such a square
exists; otherwise, let A = (0, ). We may assume 7, # # and ¢, # #; in particular,
{t,7Y0{p, A, pE,AE} = 0.

Case 1. ) travels east. Because p # 7, the square p must travel north, for, other-
wise, H contains the cycle [A\](E™). (Note that, because all non-terminal diagonals
travel east, this implies p € T;.) Since ¢ # pE, we see from Proposition 2.10 that
pEN-! must also travel north. Therefore p # (n — 1, #), for, otherwise, #{ contains
the cycle [p](NENE™"!). Therefore n — p, — 2 > 0, so (n — pz — 2, ) is a square
of B,. Then Proposition 2.4 implies (n — p, — 2,#) € T—, so we have A € T_.. We
must have AEN~! = r, for, otherwise, Proposition 2.10 implies that AEN ! trav-
els east, which would mean that H contains the cycle [p](NE"*'NE*~!). Hence
Lemma 3.7(3) implies conclusion (3) holds.

Case 2. ) travels north. (Note that A € T, so Proposition 2.4 implies (n — Az —
2,#) € T4, which means p € Ty.) Since ¢ # AE, we see from Proposition 2.10 that
AEN™! travels north, as A does. Then, since p # 7, we see that p must travel east,
for, otherwise, H contains the cycle

[,\E](Ep,—x,-lNEln~p,+A,+l N)
However, pN E~! does not travel east, for, otherwise, H contains the cycle
A(WVEMINE"Y).

Therefore, Proposition 2.10 implies pN = ¢. Hence Lemma 3.7(4) implies conclu-
sion (4) holds. O

3.9. Lemma. Let H be a hamiltonian path in B,, such that every non-terminal
diagonal travels east. Assume n is even. Let T be the terminal diagonal of H, let
a be the square on T with ay, = n —1, and let 3 be the square on T_ with B, = 0.
Then either:

(1) ¢y=Hande; > -1, 0r
(2) (y=9—1ande, <H; or
(3) y="Hondr, >4 -1, or
(4) y="—1and 7. < ; or
(8) T # Dn-1, and both a and 3 travel cast.
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Proof. Let p be the square on T’ with p,.= #, if such a square exists; otherwise, let
p = (n—1,4#). Let A be the square on T_ with A, = # — 1, if such a square exists;
otherwise, let A = (0,% — 1). We may assume {A, p} N {¢,7} = 0, for, otherwise,
one of conclusions (1)-(4) holds.

Case 1. ) travels north. Note that we must have A € T_, because all non-
terminal diagonals travel east. Then we conclude from Proposition 2.4 that (n -
2- M, f)€Ty,s0p€Ty and p, <n—1.

The square p must travel north, for, otherwise,  contains the cycle [A](NE™).
We may assume that AEN~! travels north, as A does, for, otherwise, we see from
Proposition 2.10 that . = AE, which implies that conclusion (2) holds. Similarly,
we may assume that pEN ~! travels north, as p does, for, otherwise, we must have
¢ = pE, which implies that conclusion (1) holds. Hence, H contains the cycle

[AJ(NEP+ =2« NEn=pe+Aet1 N Bz =s N En=patha=1).

Case 2. X travels east. Let p' be the square on T with Py =#—1,if such a
square exists; otherwise, let p' = (n — 1,# — 1).

Suppose p' = 7. (Note that Proposition 2.4 then implies (n-1-p,,%#—1) € T,
so A € T_.) We may assume T # D,_,, for, otherwise, this implies that r = (#, #—-
1), so conclusion (4) holds. Furthermore, we may assume that o' NE~! travels east,
for, otherwise, Proposition 2.10 implies ¢ = p'N, in which case conclusion ( 1) holds.
Therefore, Lemma 3.7(1) implies that a and 8 also travel east, so conclusion (5)
holds.

We may now assume p' # 7. Then p' must travel east, for, otherwise,  contains
the cycle [p'](NE™).

Suppose ANE~! does not travel east. Then A € T_, and, because A travels
east, we must have ¢ = AN. Therefore, we may assume T # D, _,, for, otherwise,
we have ¢ = (# — 1,#), so conclusion (1) holds. Since A € T_, Proposition 2.4
implies (n — 1~ A;,# - 1) € Ty, so p' € Ty. Therefore, Lemma 3.7(2) implies that
conclusion (5) holds.

We may now assume ANE~! travels east. Furthermore, we may assume that
p'NE™1 travels cast, as p' does, for, otherwise, we see from Proposition 2.10 that
p'N =, which implies that conclusion (1) holds. Also, we may assume that p'N
travels north, for, otherwise, either conclusion (3) holds (if p'N = 7) or H contains
the cycle [A](E?") (if p'N travels east). Because all non-terminal diagonals travel
cast, this implies p'N € T, so p'N = p. Then it is clear that p' ¢ T, so we must
have p' = (n — 1, — 1), which means p = (n — 1, ). Therefore, pE = X\ # ¢, so
Proposition 2.10 implies that AN ! = pEN! travels north, as p does. Therefore,
H contains the cycle [A}(E**~'NEN). DO

3.10. Lemma. Let H be a hamiltonian path in which all non-terminal diagonals
travel east, and 7 = (n - 1,0).

o Ifn is odd, then v € {(#, ), (#, ¥ + 1)}.

o Ifn is even, then i € {(f — 1,4), (%, #)}.

Proof. We consider two cases.
Case 1. n is odd. Let A = () — 1,#) and p = (%, ). We have Ty
and 7 # AEN~!, so we sec from Lemma 3.8 that cither ty = fore

(=]
2%
=

o
)
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(#, # +1). Thus, we may assume ¢, = #, and we wish to show ¢ = (#, ). Because
T € D,_1, we see from Corollary 2.11 that tN~' € Dyp—1 = Sn-2U Sn-1. Thus,
v€ {(#,#), (#+1,7)}. If ¢ = (£ +1, #), then H contains the cycle [tE7')(NE"N).

Case 2. n is even. If n = 2, the desired conclusion may be verified directly, so we
may assume n > 2. Since 7y =0# ff,and , =n—-1>¢,and T = D,_,, we see
that either (1) or (2) of Lemma 3.9 holds. Then, since we must have t+N~! € D1,
we conclude that ¢ € {(#, #), (# — 1, #), (#, #— 1)}. However, if « = (¢, — 1), then
H contains the cycle [ E~'|(NE"). O

By considering the inverses of these hamiltonian paths, we obtain the following
corollary.

3.11. Corollary. Let M be a hamiltonian path in which all non-terminal diagonals
travel east, and ¢ = (0,n — 1).

e Ifn is odd, then T € {(#, #), (#, % — 1)}

o Ifnis even, thenT € {(#— 1,4 -1),(##-1)}. O

3.12. Main Theorem. Let: and T be two squares on the n x n projective checker-
board B,,, with n > 3. There is a hamiltonian path from ¢ to T in which all non-
terminal diagonals travel east if and only if T is in the diagonal containing (N -1
and either:

(1) n is odd and:
(a) ty=00andi; > ¢ and 7y = ¢; or
(b) ¢=(0,n—1) and 7 € {(#, %), (#, ¥ — 1)}, or
(¢) y=n—1and7, < ¢ and ey =4 or
(d) 7=(n—-1,0) and ¢ € {(#,#), (o, % + 1)}, or
(2) n is even and:
(a) ¢y =0 and ¢; > g — 1 and either:
(i) y=#—-1land7: <f—1;0r
(i) w=gdandz > ¢ —1; 0r
(b) c=(0,n—1) and 7 € (o — 1,/ - 1), (s, = D)}, or
(¢) 7y =n—1 and 7, < ¢ and either:
(i) y=% and 1z > #; or
(ii) ey=H ~1ande; < H; or

(d) 7=(n-1,0) and ¢ € {(## - L, #), (#,5)}.

Furthermore, such a hamiltonian path is unique, if it exists.

Proof. If + and 7 are as specified, then the desired hamiltonian path from ¢ to 7
either appears explicitly in Figure 3 or Figure 4 (in cases la, 1b, 2a, and 2b), or
is the inverse of a hamiltonian path in Figure 3 or Figure 4 (in cases lc, 1d, 2c,
and 2d). The uniqueness follows from Corollary 2.13.

Now suppose there is a hamiltonian path H from ¢ to 7, such that all non-
terminal diagonals travel east. Let T be the terminal diagonal of H, let a be the
square on Ty with ay = n—1, and let v = (n—1,0). From Corollary 2.11, we know
that :N~! € T. From Lemmas 3.8 and 3.9, we sec that it is not possible to have
both & = 7 and ¢, = 0, so we may assume a # 7. (If « = 7, replace H with its
inverse . Note that if M satisfies condition la or 2a, then H satisfies condition lc
or 2c, respectively.)
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Case 1. T # Dyp_1. The square « must travel east, for, otherwise, H contains
the cycle [a](NE?*<*'). Let 8 be the square on T_ with 8, = 0. We see that
B does not travel east, for, otherwise, X contains the cycle [@](E?"). Then, since
BEN™! = a travels east, but 8 does not, we conclude from Proposition 2.10 that
¢ = BE. (In particular, ¢, = 0.)

Suppose n is odd. Then, because a does not travel north, we see from Lemma 3.8
that 7, = #. Therefore,since0 < 7; <n—1,wehaver, +1, > fand 2n—3— (1, +
7y) 2 #—1. Then, since 8 € T, and B, = 0, Proposition 2.4 implies 8, > # — 1, so
tz > #. Hence, conclusion 1a holds.

Now suppose n is even. Note that

Tg{(ﬂrﬂ—l)a(ﬂ_laﬂ),(ﬂ_l:'f‘_l)})

because T’ # D,_1. Then, because ¢, =0 ¢ {#,# — 1} and B3 does not travel east,
we see from Lemma 3.9 that either

(1) y=¢# and 7, > #; or

2) y=f#-landr, <o -2
Therefore, 7, + 7, > f— 1 and 2n — 3 — (7; + 7)) >  — 2. Then, since LE-' € T
(and ¢, = 0), Proposition 2.4 implies ¢, —1 > #—2. Therefore, conclusion 2a holds.

Case 2. T = Dy_, and o travels north. Note that & = (0,7 — 1). We know that
7 does not travel east, for otherwise # contains the cycle [@](NE). If v = 7, then
Lemma 3.10 implies that conclusion 1d or 2d holds.

We may now assume v travels north. We see immediately that aN~! does not
travel north, for, otherwise, # contains the cycle [¢](NNEN). Thus, aE~! = v
travels north, but aN~! does not, so Proposition 2.10 implies ¢ = a. Hence,
Corollary 3.11 implies that conclusion 1b or 2b holds.

Case 3. T = D,_, and o travels east. We may assume v # 7, for, otherwise,
Lemma 3.10 implies that conclusion 1d or 2d holds. Therefore, v travels either
north or east.

Suppose v = ¢. If n is odd, then Lemma 3.8 implies that conclusion 1a holds,
whereas, if n is even, then Lemma 3.9 implies either that conclusion 2a holds, or
that 7 = (#,# — 1). (If n is even, note that 7 # (#, #), because (#, #) ¢ D,_,.)
However, in the latter case, # would contain the cycle [rE-1}(NE™). Thus, we
henceforth assume v # «.

Suppose 7 travels east. Let 8 = yE~!. Since the square BEN-! = a travels
east, and BE = v # :, we see from Proposition 2.10 that that 3 also travels east.
Thus, #H contains the cycle [a](E2").

We may now assume v travels north. Furthermore, we may assume « # ¢, for,
otherwise, Corollary 3.11 implies that conclusion 1b or 2b holds. Then, since v
travels north, and vE = a # ¢, Proposition 2.10 implies that YEN ! also travels
north. Similarly, since « travels east, and aN = v # ¢, it must be the case that
aNE™! also travels east. Thus, H contains the cycle [a](E**~'NEN). O
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