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Abstract

The maximum cardinality of a partition of the vertex set of a
graph G into dominating sets is the domatic number of G, denoted
d(G). We consider Nordhaus-Gaddum type results involving the do-
matic number of a graph, where a Nordhaus-Gaddum type result is
a (tight) lower or upper bound on the sum or product of a parameter
of a graph and its complement. Thereafter we investigate the up-
per bounds on the sum and product of the domatic numbers d{G,),
d(G2) and d(Gs) where G, ® G2 ®G3 = K. We show that the upper
bound on the sum is n + 2, while the maximum value of the product
is [n/3}2 for n > 57.

1 Introduction

In a graph G = (V, E) the open neighborhood of a vertex v € V is N(v) =
{z € V|vz € E}, the set of vertices adjacent to v. The closed neighborhood
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is Njv] = N(v)U {v}. A set S CV is a dominating set if every vertex in
V is either in S or is adjacent to a vertex in $, that is, V = Us;esN|s].
The domination number (G) is the minimum cardinality of a dominating
set. A domatic partition is a partition of V into dominating sets and the
domatic number d(G) is the largest number of sets in a domatic partition
[3]. The domatic number of a graph has been extensively studied, see for
example [1, 3, 12, 13]. It follows from the definition that v(G) - d(G) < n,
and hence d(G) < n/y(G). We shall use this fact and the following results,
the first of which is based on a result of Ore [9] while the second result is
due to Cockayne and Hedetniemi [3].

Theorem 1 [9] For every graph G, d(G) = 1 if and only if G has an
isolated vertex.

Theorem 2 [3] For every graph G, d(G) < 6(G) + 1.

If G1,Gy,...,G, are graphs on the same vertex set V with disjoint edge
sets, then G =G ® G2 ®...® G, denotes the graph with vertex set V' and
edge set E(G) = E(G1)UE(G2)...UE(G) and the graphs Gy,Ga,...,Gt
are called a t-factoring of G.

The special case of a 2-factoring of the complete graph K, is simply a
factoring of K, into a graph G and its complement G. A Nordhaus-Gaddum
type result is a (tight) lower or upper bound on the sum or product of a
parameter of a graph and its complement. In 1956 the original paper [8]
by Nordhaus and Gaddum appeared. In it they gave sharp bounds on the
sum and product of the chromatic numbers of a graph and its complement.
Since then such results have been given for several parameters (see [4]).
They include results on the domination number (see {7, 11], for example)

and the domatic number (see [3, 5]). In particular, it is shown in [5] that
d(G) - d(G) < n?/4.

In this paper we consider the domatic number and two variations of
Nordhaus-Gaddum type inequalities. First, we extend the concept of a
Nordhaus-Gaddum type result by considering G @ G2 = K s rather than
G, ® G = K,,. We establish sharp lower and upper bounds on the sums
and products of d(G1) and d(G2). We show that the upper bound on the
sum is s + 2, while the maximum product is |s/2)? for s > 10.

Second, we look at the complete graph factored into three edge-disjoint
graphs. We investigate upper bounds on the sum and product of the do-
matic numbers d(G,), d(Gz2) and d(Gs) where G; ® G2 ® Gz = K, and
n > 3. We show that the upper bound on the sum is n + 2, while the
maximum value of the product is [n/3)3 for n > 57.
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2 Domatic number and relative complement

In [2] the idea of a relative complement of a graph was suggested. If G
is a subgraph of H, then the graph H — E(G) is the complement of G
relative to H. In [6) it is shown that the complete bipartite graph K, is a
suitable graph to consider for results on relative complements. In particular,
K. s is shown to be an obvious replacement for the complete graph K in
Nordhaus-Gaddum results.

The independence number of a graph is the cardinality of a maximum
independent set and the independent domination number is the minimum
cardinality of a maximal independent set. In [6] the sums and products
of 9(G1) and ¥(G2) are examined where Gy ® G2 = K, 4, and ¢ is the
independence, domination, or independent domination number, inter alia.

Theorem 3 [6] Let s > 3 be an integer and let Gy ® G2 = K, s. Then
the following table represents some sharp bounds on the sum and product
of ¥(G,) and ¥(G3) for certain parameters .

SUM PRODUCT
v | Lower | Upper | Lower Upper

¥ 5 25+ 2 6 L(s/2 +2)?)

i 5 3s 6 2s2

Bl 2s 3s s? 19s2/4]

Here we consider Gy ® G2 = K, s, where s > 2, and lower and upper
bounds on the sums and products of d(G1) and d(G2). In what follows in
this section, we simplify the notation by letting d; = d(G;), vi = Y(Gi),
8; = 6(G;), and A; = A(G;) for i =1,2. Observe that y; > 2 for i =1,2.

Since d(G) > 1 for all graphs G, d1 +dz > 2 and didz > 1. That these
lower bounds are sharp, may be seen by taking Gy & K; U Ks_1,s. Then
dy =1 and dy = d(K;,, UXK,_1) = 1 since each of G; and G2 contains an
isolated vertex.
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The upper bounds are more interesting. We show first that the upper
bound on the sum is s + 2. We shall assume that K, , has partite sets £
and R (representing "left” and "right”). For the remainder of this section,
we may also assume that 75 > ;. Observe that v; > 2 always.

Theorem 4 Let s > 2 be an integer and let Gy ® G2 = K, ;. Then
d] + d2 S s+ 2.

Furthermore, dy + dy = s + 2 if and only if either Gy or G2 is isomorphic
to sKs.

Proof. Let v be any vertex of G;. Then, by Theorem 2, d; < §(G1)+1<
dege, v+1 and dp < degg, v+ 1. Thus, d; +dp < degg, v+ degg,v+2=
s + 2. This establishes the upper bound.

Assume G 2 sK;. Then Gs, the complement of G relative to K s,
may be obtained from K, s by removing the edges of a 1-factor. Thus,
dy =2 and dy = s, so dy + dy = s + 2. Hence the sufficiency is clear.

To prove the necessity, assume dy + dp = s + 2. If G) or Gy, say Go,
has an isolated vertex, then d; < s and d2 =1, whence dy +dy <s+1,a
contradiction. Hence §; > 1and 8, > 1. Thus A; <s—1and Ay <s—1.
In particular, if s = 2, then G1 2 G2 = 2K5. So we may assume that s > 3,
for otherwise the result follows. Recall that v2 > 13 2 2. If 711 > 4, then
dj < |V(Gj)l/v; < s/2 for j = 1,2, and thus d; +d; < s, a contradiction.
Hence vy =2 or 73 = 3.

If 41 = 3, then d; < |V(G1)]/m = 2s/3. Furthermore, since y1 = 3, it is
evident that there is a vertex in £ or R of degree at least s — 2 in G4, and
therefore of degree at most 2 in G3. Thus Theorem 2 gives that dz < 3.
Hence d; +d < 2s/3+3. If s > 4, orif s = 3 and d; +d2 < 25/3+ 3, then
dy +dy < s+ 2, a contradiction. Hence s = 3, dy = 2s/3 =2 and dy = 3.
Since dy = 3 < 63 + 1, we have & > 2. Furthermore, §; > 1, so G2 must
be 2-regular, i.e., G2 = Cs, G1 = 3K, and the thcorem holds.

Assume, then, that 73 = 2. Then d; < |V(G1)|/m1 = s. Furthermore,
since ; = 2, there are vertices in each partite set £ and R of degree s — 1
in G1, and therefore of degree 1 in Gy. Thus ds < 2, whence dy +dz < s+2
with equality if and only if d; = s and do = 2. If d; = s, then we may
partition the vertex set of G into s dominating sets each of cardinality 2.
Since s > 3, each such dominating set consists of a vertex u (say) from £
and a vertex v (say) from R. Thus, © dominates R — {v} and v dominates
L —{u}. Since A; < s—1, uv cannot be an edge. Consequently, G; may be
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obtained from K, s by removing the-edges of a 1-factor. Thus, G2 = sK».
O

We consider next the maximum product dyds. Three lemmas are given
to establish the upper bound.

Lemma 5 Let s > 2 be an integer and let G1 ® G2 = K, 5. If 1 =2, then
dl . d2 S 2s.

Furthermore, dids = 2s if and only if either Gy or Gy is isomorphic to
SKQ.

Proof. If G has an isolated vertex, then di < s and d2 = 1, whence
didy < s < 2s. Hence we may assume that 6; > 1 and é2 > 1. Thus
A, < s—1and Ay < s— 1. In particular, if s = 2, then G; = 2K, and
G2 & 2K, and d; = dy = 2. So we may assume that s > 3. Since 11 = 2,
it follows, as in the proof of Theorem 4, that d; < s and dz < 2, whence
dids < 2s with equality if and only if dy = s and dy = 2 if and only if
Gy =2sK,. O

Lemma 6 Let s > 3 be an integer and let Gy ® Gy = K, 5. If 1 =3, then
dy - dp < 2s,

and this bound is sharp.

Proof. Since vy, = 3, we have, as in the proof of Theorem 4, that d; < 2s/3
and dy < 3, whence d1dy < 2s. This establishes the upper bound. To see
that this bound can be realised, let s be a multiple of 3. If s = 3, then
we may take G; = sK,. For s > 6, let K, have partite sets £ and R,
say, and partition £ (R) into three sets £y, £, and L3 (respectively, R;,
Rz and R3) each of cardinality s/3. We construct the edge set of G as
follows. Add all edges between £1 and R, and add all edges between Lg
and R;. We then join each vertex of L3 to one vertex of R, and to one
vertex of Rg in such a way that every vertex of R; U Rz is adjacent to
exactly one vertex of L3 (so in Gy the subgraph induced by Ry UR,UL3 is
isomorphic to s/3Kj 2). Similarly, we join each vertex of R3 to one vertex
of £; and to one vertex of L5 in such a way that every vertex of £; U L3 is
adjacent to exactly one vertex of R3. Then £; UR; is a dominating set of
G, for i = 1,2,3. Thus dz > 3. However, since G2 has minimum degree 2,
ds < 3. Consequently, do = 3. For each vertex v € L3 URg3, let N, = N[v]
in Ga. Then the sets {N, |v € L3 UR3} form a domatic partition in G, of
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cardinality 2s/3. Hence d; > 2s/3. Since no two vertices dominate G; and
each N, dominates G,, it follows that 43 = 3. Therefore, d; < 2s/3, and
consequently, d = 2s/3. Thus, d1dz =2s. O

Lemma 7 Let s > 4 be an integer and let G1® G2 = K, 5. If 71 > 4, then
dl . d2 _<_ '_3/2]2,
and this bound is sharp.

Proof. Since v; > 4, we know that d; < 2s/v; = s/2 for j = 1,2. Hence
dj < |s/2] for j = 1,2, and thus d; - d2 < |3/2]2.

That the bound of s2/4 can be realized for s > 4 with s even, may be seen
as follows. Let K s have partite sets £ and R, say. Partition £ (R) into
two sets £; and £, (respectively, R; and R3) each of cardinality s/2. Let
the edges of G (say) be given by all edges between £, and R; and between
Ly and Ry. If s = 4, then Gy & G2 = 2Ky 5, whence dy =dy =2 =s/2. If
s > 6, then any minimum dominating set of G; contains a vertex from each
of £1, L2, Ry, and Ry. Thus, LUR can be partitioned into s/2 dominating
sets each of cardinality 4. Hence, dy = $/2. Similarly, ds = s/2. Thus,
d1 . d2 = 82 / 4.

That the bound of (s — 1)2/4 can be realized for s > 5 with s odd, may
be seen as follows. Let K s have partite sets £ and R, say. Partition £ (R)
into two sets £; and L (respectively, R; and R2) of sizes (s + 1)/2 and
(s — 1)/2. Then with G; and G, defined as in the preceeding paragraph,
we have d; = dy = (s — 1)/2. Thus, d; -dy = (s —1)%/4. O

An immediate consequence of Lemmas 5, 6 and 7 now follows.

Theorem 8 Let s > 2 be an integer and let Gy @ Gy = K, 5. Then
2s fors<9

d(G1)-d(G2) £ {
|s/2)2 fors>10

and these bounds are sharp.

3 'Triple factors of the complete graph

In this section, we consider another generalization of Nordhaus-Gaddum-
type results, i.e., we look at the complete graph factored into three edge-
disjoint graphs. This direction was pursued by Plesnik [10] who extended
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Nordhaus and Gaddum’s results on the chromatic number to the case where
the complete graph is factored into more than two factors.

Upper bounds on the sum and product of the domination numbers y(G} ),
7(G2) and ¥(G3), where Gy ® G2 ® G3 = K, are presented in [6). It is
proven in [6] that ¥(G1) + 7(G2) + 7(G3) < 2n + 1, while the maximum
value of the triple product 7(G1) - 7(G2) - ¥(G3) is n3/27 + O(n2). We
investigate upper bounds on the sum and product of the domatic numbers
d(G1), d(G2), and d(G3) where G1 ® G2 ®G3 = K,, and n > 3.

3.1 The Triple Sum

We consider first the sum of the domatic numbers d(G,), d(G2) and d(G3).
We show that the upper bound on the sum is n + 2. To do this, we prove
the following stronger result.

Theorem 9 Let n > 3 be an integer and let G1 ® G @ --- © G = K, be
a t-factoring of K,,. Then

t
t<> d(Gi)<n+t-1.

i=1

Proof. The proof of the lower bound is trivial, since d(G) > 1 for all
graphs G. That this lower bound is sharp for ¢ > 3, may be seen by
taking G; 2 K1 U K,_1, G2 = K> Uf,,_g, Gs 2 K,U Ki 2, and, if
t >4, G; @ K, fori = 4,...,t. Then G; contains an isolated vertex
for i =1,2,...,t, so d(G;) = 1. Hence, E:=1 d(G;) = t. To prove the
upper bound, we note that for each factor G;, d(G;) < 8(G;) + 1. Since
Gi1®G® -G =K,

D dG) <Y (B(G)+1)<n—1+t.
i=1

i=1

That the upper bound is sharp may be seen by taking G; = K, (so
Gi2K,fori=23,...,t). 0O

In particular, if £ = 2, then we have the following result of Cockayne and
Hedetniemi [3).

Corollary 10 For any graph G, d(G) + d(G) < n + 1.

167



Furthermore, Theorem 9 yields the following bounds on the triple sum.

Corollary 11 Let n > 3 be an integer and let Gy ® G2 ® G3 = K,,. Then
3 < d(G)) +d(G2) +d(Gs3) <n+2,

and these bounds are sharp.

It is shown in [3] that equality for the bound of Corollary 10 holds if and
only if G & K, or G 2 K,. As we saw in the proof to Theorem 9, the
upper bound of n — 1+ for ¢t > 3 factors is achieved by a generalization of
K, and fn, i.e, for G; = K, and G; = K, for 2 < i < t. However, these
graphs are not the only factors achieving the upper bound for the triple
product. Although the characterization of these extremal graphs remains
an open problem, we conclude this subsection with another factorization
that achieves the upper bound. Let n > 2 be even. Let Gy = 2K,/
and G2 & n/2K,. Thus G3 is obtainable from a complete bipartite graph
Krj2,n/2 by removing the edges of a 1-factor. Then d(G1) = d(G3) = n/2,
while d(G2) = 2. Thus, d(G;) + d(G2) + d(G3) =n+ 2.

3.2 The Triple Product

As before, we simplify the notation by letting d; = d(G;), v = ¥(G;),
6; = 6(Gi), and A; = A(G;) for each i =1,2,3.

We now turn our attention to the product of the domatic numbers d;,
dy and d3. Since d(G) > 1 for all graphs G, didads > 1 and this lower
bound is readily seen to be sharp. To establish a sharp upper bound on the
product is, however, less trivial.

Lemma 12 Ifv; =1 for some i, then dydads < n.
Proof. We may assume that «y; = 1. Then each of G2 and G3 contains an
isolated vertex, so do =ds = 1. Hence d; -dy-ds <n. O

We now consider the maximum valuc for the triple product for large n.
We shall prove:

Theorem 13 Let n > 27 be an odd integer with n & {29,35,37,53} or let
n > 42 be an even integer with n & {44,50,52,56}. If G1 ® G2 ® Gs = K,
then

dydads < |n/3)°,
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and this bound is sharp.

We may assume that v; > 2 for i = 1,2, 3, for otherwise the result follows

from Lemma 12. Further, we may assume that y; < 72 < 3. To prove
Theorem 13 we shall prove a series of lemmas.

Lemma 14 Ifv; > 3 for alli = 1,2,3, then

d1d2d3 S [n/3j3.

Proof. For each i, we know that di < n/y; < n/3, whence dydadz <
[n/3]%. O
In view of Lemma 14, we may assume in what follows that v, = 2, for

otherwise dydads < |n/3)3.

Lemma 15 If n is even, then

2
didads < n lP:—4J .

()

Proof. Since 7, = 2, d; < n/y = n/2. Furthermore, v; = 2 implies that
Ay > n/2 - 1. Let z be a vertex of degree A; in G;. Then degg, z +
degg, z < n—1— A; < n/2. Letting a = degg, =, we observe therefore
that d <a+1and d; <degg,z+1< n/2 - a+ 1. Thus,

dods < %(a + 1)(n —2a + 2).

The second derivative of the function (a+1)(n—2a+2)/2 is always negative,
and the function is maximized when a* = n/4. Hence

2
dyds < {"—}fJ .

Thus,

nlin+4 2
< =]1— . (]
dldzda_zl 1 J
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Lemma 16 Ifn is odd, then

n—1|n+3|2
didods < 2—= | 221 |
PPRESLES]

Proof. Since 1 = 2, di £ |n/m1] = (n — 1)/2. Furthermore, v, = 2
implies that A; > [n/2—1] = (n—1)/2. Let z be a vertex of degree A, in
G1. Then degg, z+degg, z < n—1—A; < (n—1)/2. Letting a = degg, =,
we observe therefore that dy < a+1 and

d3 < degg,r+1< (n-1)/2—a+1. Thus,
dads < %(a + 1)(n —2a+ 1).

The second derivative of the function (a+1)(n—2a+1)/2 is always negative,
and the function is maximized when a* = (n — 1)/4. Hence

2
dyds < l"T”J .

Thus,

-1
didads < i--

2
ln_+3J o
2

4

Theorem 13 now follows from Lemmas 14, and 15 and 16. That the
bound of |n/3]® can be realized may be seen as follows. Partition the
vertex set of K, into three sets A, B and C as follows. If n is a multiple
of 3, then each of A, B and C has cardinality n/3. If n = 1(mod 3), then
A has cardinality [n/3] + 1 and each of B and C has cardinality |n/3].
If n = 2(mod3), then each of A and B has cardinality |n/3] + 1 and C
has cardinality |n/3]. Let the edges of Gy be given by all edges between A
and B and all of the edges of the (complete) graph induced by C. Let the
edges of G5 be given by all edges between B and C and all of the edges of
the (complete) graph induced by A. Thus the edges of G3 are given by all
edges between A and C and all of the edges of the (complete) graph induced
by B. Then for j = 1,2,3, any minimum dominating set of G; contains a
vertex from each of A, B and C. Thus, AU B U C can be partitioned into
[n/3] dominating sets of G, so d; = |n/3). Hence d; - da - d3 = |n/3)3.

We have also investigated the problem for small values of n. The following
table summarizes our findings.

170



n | Maximum | Realization
product | Gy, G2, G3

1 1 K, K1, Ky

2 2 KZ» KZ: 32

3 3 K3) K 3 K 3

4 8 2K, 2K3, 2K3

5 8 Kz3UK,, PsUKs, P3UK, or
Ps, PsUK>y, P3UK,

6 18 2K3, Cs, 3K2
See discussion (a)

7 18 See discussion (b)

8 32 See discussion (a)

9 36 See discussion (c)

10 50 See discussion (a)

11 50 See discussion (b)

12 75 See discussion (d)

Table 1. Optimal values of the triple product for small n.

In some cases these realizations may be obtained via general constructions
which we now describe.

(a) For n > 4 with n even, partition the vertices of K, into two sets A (B)
each of cardinality n/2. Let the edges of Gy be given by all the edges of the
(complete) graph induced by A and all the edges of the (complete) graph
induced by B. Let the edges of G3 consist of those edges between A and B
that induce a perfect matching. Hence, the edges of G are given by those
edges between A and B that do not belong to G3. Then d; = d2 = n/2
and d3 = 2, whence d;dads < n?/2.

(b) For n > 5 with n odd, partition the vertices of K, into two sets A (B)
with A having cardinality (n+1)/2 and B having cardinality (n—1)/2. Let
the edges of G; be given by all the edges of the (complete) graph induced
by A and all the edges of the (complete) graph induced by B. Let the
edges of G3 consist of those edges between A and B that induce the graph
(n—3)/2K,U P3. Hence, the edges of G2 are given by those edges between
A and B that do not belong to G3. Then d; =dp = (n—1)/2 and d3 = 2,
whence didads < (n — 1)2/2.

(c) For n. = 9, let G; be the circulant Co(1,2) with jump sequence {1,2};
that is, if we label the vertices of Gy by vo,v1,...,vs, then v;v; € E(G1) if
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and only if i — j = 1(mod9) or i — j = 2(mod9). Let G be the circulant
Co(3) (so viv; € E(G2) if and only if i — j = 3 (mod9)). Thus G, 2 3K3.
Finally, let G3 be the circulant Cg{(4). Thus G3 = Cy. Then each of G,
and G3 has domatic number 3, while G; has domatic number (n — 1)/2
(for example, {vo,v4}, {v1,v5}, {v2, v}, {v3,v7,vs} is a domatic partition
of G of cardinality 4). Hence didadz =4-3-3 =36 = (n — 1)(n — 3)?/8.

(d) For n = 12, partition the vertex sct of K)o into four sets A =
{01,02,0,3}, B = {bl)b2’b3}s C = {61,62,(}3} and D = {dlad2>d3}' Let
the edges of Gy be given by the edges of the complete graph on A, the
edges of the complete graph on C, the edges {b;d;|i = 1,2,3}, all edges
between B and {c1,c2,as}, and all edges between D and {a;,as,c3}. Let
the edges of G2 be given by the edges of the complete graph on B, the edges
of the complete graph on D, the edges {a;c; |i = 1,2, 3}, all edges betwcen
D and {c1,c2,a3}, and all edges between C and {ay,a2,c3}. Finally, G3
consists of the two 6-cycles by, ds, b3, dy, bs, ds, by and ai, ¢z, a3, 1, az,c3,b;.
Then d3 = 3. Furthermore, dy =dy =n/2 — 1 =5 (for example, {a;,¢;},
{a2,c2}, {as,c3}, {b1,b2,ds}, {d1,d2,b3} is a domatic partition of G; of
cardinality 5). Hence d1dads =5-5-3=75=3-(n —2)%/4.

It is a simple exercise to characterize the extremal factors for 1 < n < 6.
We note that the upper bounds for 1 < n < 6 are achieved if and only if
we have the realisation given in Table 1.

We close with the following.

Conjecture 1 Let n > 15 be an integer with n ¢ {16,17,20}, and let
Gi®Gy®G3 =K,. Then

didads < |n/3)°.
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