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Abstract

The concept of a strong a-valuation was introduced by Mabheo,
who showed that if a graph G has a strong a-valuation, then so does
G x Ka. We show that for various graphs G, G x @n has a strong
a-valuation and G x P, has an a-valuation, where Qn is the n-cube
and P, the path with n edges, including G = Km, for any m. Yet
we show that Km n X K> does not have a strong a-valuation if m and
n are distinct odd integers.

1 Imntroduction

Only graphs without loops and multiple edges will be considered in this
paper. If m and n are integers we denote {m,m +1,..., n} by [m,n]. Let
N denote the set of nonnegative integers. The cartesian product of two
graphs G1 = (Vi, E1) and Gz = (V&, E3) is the graph Gy x G2 = (V,E)
where V = Vi x V2 and E = {{(u1,u2), (v1,v2)} : v1 = v1 and {u2,v2} € E
or uy = vy and {u;,us} € E1}.

For any graph G we call an injective function v : V(G) = N a valuation
of G. Rosa [11] called such a function y on a graph G with g edges a
B-valuation if v is an injection from V(G) into [0, g] such that

{Iv(u) — 7(@)| : {v,v} € E(G)} = [1,4).

The number |y(u) — v(v)| is called the label of the edge {u,v}. A p-
valuation is now more commonly called a graceful valuation. An a-valuation
is a graceful valuation having the additional property that there exists
an integer A such that if {u,v} € E(G), then {u,v} = {a,b}, where
v(a) < A < 4(b). The number A, which is unique, is called the critical
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value of the a-valuation. Note that if G admits an a-valuation then G is
bipartite with parts A and B, where A = {u € V(G) : y(u) < A}, and
B = {u € V(G) : v(u) > A}. We denote the set A by S(y) (the “small”
vertices). Valuations of graphs are particularly interesting because of their
applications to graph decompositions (see Rosa [11]).

A graph G admitting an a-valuation was defined by Maheo [10] to be
“strongly graceful” if in addition to all of the above there exists an auto-
morphism 7 of G taking A onto B and the following conditions are satisfied.

(1) JA] = |B|=s and |E| = 2l + s for some integers > 0 and s > 0.
(2) Wehave A e[l —s,l+s—1].

(3) If a € A, then {a,w(a)} is an edge with label in [l +1,!+ s].

(4) The map = is its own inverse.

Note that since |A| = s, condition (3) implies that the labels on the edges
{a,m(a)} for a € A are exactly the integers of [l + 1, + s]. The left side of
Figure 1 shows a strong a-valuation of K3 3 x K3 (note that K33 has s =5
vertices and | = 6 edges).

In fact condition (2) is redundant. For any graceful graph has an edge
with label 1, so there exist vertices a € A and b € B such that y(a) = X and
v(6) = A+ 1. Then the label on the edge {a,w(a)} is y(7(a)) — A, which is
in [ A+ 1,21+ s] — A =[1,2l + s — A]. By (3) this label is in [l + 1,{ + s].
Thus 2/ +s— X > 141, which implies that A < !+s— 1. Likewise the label
on the edge {b,771(d)} isin A +1—[0,A] = [1, A + 1]. By (3) this label is
inl+1,l+s]. ThusA+1>1+1andsoA>{>1—-s.

We prefer to call the v in a strongly graceful graph a strong a-valuation
since this draws attention to the fact that G admits an a-valuation rather
than merely a graceful (or 8-) valuation.

In [10], Maheo proved the following powerful and in our opinion under-
appreciated result.

Theorem 1 If G has a strong a-valuation, then so does G x K.

Moreover, Maheo showed that the n-cube @, (the Cartesian product of
n copies of K3), the ladder L, (the graph P, x Ka, where P, is the path
with n edges), and the book B, (the graph K 2, x K2) all have strong
a-valuations.

Numerous researchers have investigated valuations of graphs (see Gal-
lian [5] and [6] for general surveys). Several have investigated valuations
of products of graphs (see [1]-[10],(12],(13],{14] for some examples). Un-
fortunately, many authors did not distinguish between § and a-valuations
and few appear to be aware of Maheo’s result. Thus rather than showing
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Figure 1: K 3 is prestrong

that a certain graph G has a strong a-valuation and applying Theorem 1,
they would show directly that G x @, admits an a-valuation or is simply
graceful.

There are some graphs G such that G x K> has a strong a-valuation
enjoying certain additional properties. Let G be a bipartite graph with
vertex partition X,Y. Suppose that G has s vertices and ! edges, and
set t = s+l Let X; = {(z,4) : z € X} and V; = {(y,1) : y € Y},
t = 0,1. We can consider G x K> to be the bipartite graph with vertex
partition A = XoJY1, B = YolUX, and edges {(z,7),(y,9)}, i = 0,1,
where {z, y} runs through the edges of G, along with all edges {(v,0), (v, 1)}
for v € V(G). We say the graph G is prestrong if G x K3 has a strong o-
valuation y with S(v) = A such that the map 7 in the definition of a strong
a-valuation interchanges (v, 0) and (v, 1) for all v € V(G), and such that if
we define v* on XoJYp to be ¥ on Xp and v — ¢ on Yy, then ¥* is an a-
valuation on the subgraph of G x K3 induced by X, Y, with S(v*) = Xp.
(This implies that G has an a-valuation.)

Note that if t = 13 is subtracted from the values 19, 18, 15, and 17 of the
vertices in the graph G x K5 in Figure 2, this does not give an a-valuation
on the left-hand copy of G, since two vertices get the value 2. In fact the
particular graph G shown is not prestrong, since it is known that G has no
a-valuation. On the other hand the left side of Figure 1 shows that Ky is
prestrong. Here subtracting ¢ = 11 from the values 13, 15, and 17 gives an
a-valuation of the left-hand copy of K3 3.

We will show that if G is any graph with one more vertex than edges,
and if G has an a-valuation such that the cardinalities of the sets of the
corresponding bipartition of the vertices differ by at most 1, then G is
prestrong (and so by Maheo’s result G x Q4 has a strong a-valuation for
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Figure 2: G does not have an a-valuation

any d > 1). We also show that if G is prestrong, then G x P, has an a-
valuation for all positive integers n. We give applications of these results.
We also show that K3 4 is prestrong, as is K, 2 for any positive integer m.
On the other hand, we show that if m and n are distinct odd integers, then
Kmn x Kz does not have a strong a-valuation.

Before we proceed we note that K3, P, and K sn are all prestrong (see
Maheo’s [10] strong a-valuation of @2, L, and San, respectively). Moreover,
the a-labeling of Cyx x K3 given by Snevily [13] shows that Cy is prestrong
and Cy4; x K2 has a strong a-valuation.

2 New Results

Lemma 1 Let the graph G be prestrong, with notation as above, and let
the valuation ¥* have the critical value A*. Then v(Xo) C [0, *], 4(Yo) C
D +14t1+18), Y1) CA*+1,t—=1]) and y(X1) C L+ 1,2 +1¢).

Proof.  The first two containments follow from the fact that 4* is an
a-valuation with critical value A*. Now let y; € Y;. Since v is a strong
a-valuation we have y(yo) — v(y1) € [l + 1,1 + s], where yo = 7(31) € Yo.
This means that y(yo) —! — s < ¥(¥1) < ¥(yo) — ! — 1. But since ¥(Yp) C
[A*+1+4¢,141), we have \*+1 = A*+1+t—l—s < y(y) < I+t-1-1=1t-1.

In the same way if z; € X, then we have y(z1) — y(zo) € [ + 1,1+ 5],
where zo = m(z1) € Xo. Then y(zo) +{+1 < ¥(21) < ¥(2o0) +! + 5. But
Y(Xo) C[0,A),s0l+1<(z1) S A +1+s=A"+1.

Theorem 2 Suppose the graph G is prestrong. Then G x P, has an a-
valuation for all positive integers n.

Proof. We take the vertices of G x P, to be of the form (v, k), where v €
V(G) and 0 < k < n. The edges of Gx P, are all edges {(z, k), (v, k) }, where
{z,y} is an edge of G and 0 < k < n, along with the edges {(v, k), (v, k+1)},
where v € V(G) and 0 < k < n—1. We extend the notation of the definition
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of a prestrong graph, so that X; = {(«,4) :z € X} and ¥; = {(y,7) : y € Y},
0 <2< n. Define A; to be X; if 7 is even and Y; if 7 is odd. Likewise define
B; to be Y; if 7 is even and X; if i is odd. Then G x P, is bipartite with
vertex bipartition A, B, where A = {J{_, A; and B = |}, B;.

Let v be the valuation on the subgraph of G x P, induced by
XoUYoUX:UY: given in the definition of a prestrong graph. We define
a valuation é on G x P, as follows. For 0 < k < n write k¥ = 2¢ + r, where
g and r are integers and 0 < r < 2. If (a, k) € A let 6(a, k) = v(a,r) + ¢,
while if (b, k) € B let §(b, k) = v(b,7) + (n — ¢ — 1)t. We claim that § is an
a-valuation.

We start by showing that 4 is one-to-one. First assume that k is even,
so that r = 0. Then §(Ax) = v(Xo) + gt C [0, A*] + ¢t by the lemma. But
(Ar41) = v(Y1)+ ¢t C [A* +1,t—1]+4¢t, and the elements of this interval
are all larger than those of the first. Likewise §(Bx) = v(Yo)+(rn—g¢—1)t C
A+ 1+t1+1t]+ (n—q— 1), while §(Bey1) = y(X1)+(n—g—-1)t C
[[4+1,A* 4]+ (n—g— 1)t, and the elements of this interval are all smaller
than those of the first.

Now suppose k is odd, so 7 = 1. Then §(Ax) = y(Y1)+ gt C[A\*+1,¢ —
1] + qt, while §(Ar41) = ¥(Xo) + (¢ + 1)t C [0,2*] + (¢ + 1)¢. Since the
largest value in the first set is less that the smallest in the second, the sets
are disjoint. Also §(By) = y(X1)+(n—g—1)t C [I+1, " +]+(n—gq—1)t,
while §(Bg41) = v(Yo)+(n—g¢—2)t C[A\* +1+4¢,1+¢]+ (n—g—2)¢, and
the largest element of this interval is less than the smallest of the first.

Since we have seen that as a function of k, §(Ax) increases while §(B)
decreases, it only remains to show that every element of §(A,) is less than
every element of §(B,). Again we need cases. Let n = 2Q + R,0< R < 2.
If n is even we have §(A,) = v(Xo) +Qt C [0, '] +Qt = [Qt, A" +Q¢], and
5(Ba) = 7(Yo)+H(n—@—1)t C [\*+1-, I+4]-+(@-1)t = \*+Qe-+1, 141,
so in this case we see that our new valuation § has critical value A* + Q.
If n is odd the argument is somewhat different. In this case n = 2Q + 1, so
(n—@Q —1)t = Qt. Thus the values of § on A, |J B, are just Q¢ more than
the values of ¥ on Y3 |J X;. By the assumptions on v the y-edge labels on
X1 UY: are exactly [1,I]. We see the critical value for & is Q¢ more than
the critical value of the a-valuation 7.

Now we look at edge labels. Note that from the definition of a prestrong
graph, the edges between X, and Yy have +y-labels [t + 1,¢ + [], the edges
between X; and Y; have y-labels [1,1], and the edges {(v,0),(v,1)} have
v-labels [l +1,1¢].

Now we compute the edge labels with respect to 4. First assume k = 2¢
is even. Then the §-labels on the edges of Ai | J Bx are the y-labels on the
edges of Xo |JYo plus (n —q— 1)t —gqt, that is, [t +1,t +{]+(n—2¢— 1)t =
(1,0} 4+ (n — k)t. But if k = 2¢ + 1 is odd, then the d-labels of the edges
of Ax |J By are the vy-labels on the edges of X; (JY; plus (n — ¢ — 1)t — qt,
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that is, [1,0]+ (n — 2¢ — 1)t = [1,{] 4+ (n — k)t also.

Now we compute the é-labels on edges between X} and X4 and be-
tween Y and Yiy1. If & = 2¢ these are the +y-labels on Xo|J Xy plus
(n — g — 1)t — gt, along with the y-labels on Y [JY) plus (n —q— 1)t —qt.
Together, these give [[+1,t]+(n—2¢—1)t = [I+1,]4+(n—k—1)¢. Likewise
if k = 2¢ + 1 these are the y-labels on Xo|J X1 plus (n — (¢ +1) — 1)t — ¢t,
along with the y-labels on Yy |JY; plus (n — ¢ — 1)t — (¢ + 1)t. Together
these give [[ + 1,8] + (n —2¢ —2)t = [l + 1,t] + (n — k — 1)t also.

Now if 0 < k < n the d-labels on edges from Xi to Xy41 and from Y
to Yi41 together with those on edges from Xi to Y are ([{ 4+ 1,¢] 4+ (n —
E-DOU(LD+(n=Fk)t)=[(n—k-1)t+14+1,(n = k)JUl(n - k)t +
L(n=kt+l)=[(n—k—-1)t+1+1,(n— k)t +1]. The union of these sets
(working backwards from k= n — 1) is

[+ 10+ gUJu+t+1 020 - JU+ (=1t +1, 04 nt] = (141, 14n1).

Since the d-labels of the edges from X, to Yy, are [1,], d is an a-valuation
on G x P,.

Lemma 2 Let Gy and G be verter disjoint graphs, each with n edges
and n + 1 vertices. Suppose G; has an a-valuation v; with critical value
A= |(n—-1)/2], i=0,1. Then the graph G* formed by adding the edges
{7%1G), 77 ()}, 0 < j < n to GolJG1 has an a-valuation, and this is
strong if v175 1'is an isomorphism.

Proof. Let V(Go) = {y0,¥1,---,yn} and V(G1) = {z0,21,...,2n}. As-
sume Yo(y;) = 1(z) = 4, 0 < j < n. We define a valuation § on G~
by

yi) = 2n+14+4,A<i<n,
0(z) = 2m—4,0<i<n

Note that {d() : 0 < i < A} =[0,A], {6(z:) : 0 < i < n} = [n,2n], and
{8(ri) : A< i< n}=[2n+A+2,3n+1]. Thus J is one-to-one on V(G*)
and has critical value A* = 2n— A =1 = §(zx41), since §(2x) —d(2r41) = 1.

Now |8(2:) — 8(2;)] = |i — 5| = |71(5) = 71 (§)|, and so the edges {z;, z;}
of G* get the values 1,2,...,n. Likewise if i < A < j, then [6(3:) —d(y;)| =
[2n+ 14 j —i] = 2n + 1 + |70(¢) — 70(4)|, and so the edges {yi,y;} of G
get the values 2n+2,2n+43,...,3n+ 1.

Finally for 0 < i < X the set of values of |6(y;) — 8(zi)| = 2(n — i) is

S={2n-X),2(n=A)+2,...,2n},
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while for A < 7 < n the set of values of |6(y;) — 8(z;)| = 2i+ 1 is
T={2A+1)+1,2(A+1)+3,...,2n+1}.

Recall that A = [(n — 1)/2]. If n is odd, then the smallest numbers in S
and T are n + 1 and n + 2, respectively, while if n is even this is reversed.
In either case the values of |6(y;) — ()| are [n+ 1,2n + 1], and so § is an
a-valuation.

Now with respect to § we have A = {yo, 1, .. YN IAE1 EA42s -0y n )
and B = {20,21,...,2x, Yr+1, Yr+2, - - - » Yn }. The graph G* has 2n+n+1 =
3n + 1 edges. Thus if we set s =n+1 and ! = n, then [4| = [B| = s and
|E(G*)| = 2l+5. We define m to be 11795 ' on V(Go) and 707 ! on G;. Then
7 is a self-inverse map interchanging A and B, and the labels on the edges
{vi, m(%:)} = {ui, z:} are exactly the elements of [n+1, 2n+1] = [[+1,1+35].
Thus if vy Uis an isomorphism, then 7 is an automorphism and § is a
strong a-valuation. I

We call a bipartite graph equitable if in any partition of its vertices into
two sets with no edges between the sets, the cardinalities of the two sets
differ by at most one.

Theorem 3 Let G be an equitable graph with n edges and n + 1 vertices
having an a-valuation. Then G is prestrong.

Proof.  Let G have the a-valuation v with critical value A. Since v maps
V(G) onto {0,1,...,n}, it induces a bipartition of the vertices into sets
with A+ 1 and n — A vertices. Now n — v is an a-valuation interchanging
A and B, so G has an a-valuation with A+ 1< n— X, or A < (n—1)/2.
Thus if the cardinalities of the sets in the bipartition differ by at most 1,
then we can assume A = [(n —1)/2].

Now we can think of G x K as the union of vertex-disjoint copies Gy
and G of G, along with all edges {y, m(y)}, where 7 is an isomorphism
of Go onto Gy preserving the a-valuation. Then Lemma 1 gives a strong
a-valuation § of G x K. Notice that if we define 6* to be & on {yp,..., ¥}
and 6 ~ (274 1) on {yr41,..-,yn}, then 6* is an a-valuation on Go, and
so G is prestrong.

It is proved in [4] that if T is an equitable tree that has an a-valuation,
then T x P, has an a-valuation for all n. By using Theorems 1, 2 and 3
we get a generalization of this result.

Corollary 4 If G is an equitable graph with one more verter than edges
and if G has an a-valuation, then G x Q, has a strong a-valuation and
G x P, has an a-valuation for each positive integer n.
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3 Applications

If G is a graph, let G~ denote the graph formed by removing from G all
vertices of degree 1, along with the edges incident with these vertices. In
[11] Rosa calls any graph such that G~ is a path a caterpillar, and proves
that each caterpillar has an a-valuation. Each caterpillar is a tree, and so
is bipartite and has one more vertex than edges. Thus Corollary 4 applies
to caterpillars.

It is possible for G x K, to have a strong a-valuation, even though G
itself does not even have an a-valuation. An example is shown in Figure 2.

Now we will consider graphs that are the vertex-disjoint unions of even
cycles and equitable caterpillars. Let P(vo,...,vn) denote the path with
edges {vo, n1}, {v1,v2},. -, {¥n-1,n}. An examination of Rosa’s construc-
tion [11] of an a-valuation for caterpillars shows that the following state-
ment holds.

Theorem 5 Let G be a caterpillar with G~ = P(vo,...,vn). Then G has
an a-valuation v such that 4(ve) = 0 and the edge with label 1 joins v, and
a vertex with degree 1.

In [11], Rosa also shows that the cycle C,, has an a-valuation if and only
if n = 4k for some integer k. Since C,, has the same number of vertices as
edges, in any graceful valuation v exactly one integer in [0, n] corresponds
to no vertex. In the proof Rosa gives for Cy this is 3k; using the valuation
4k — ~ instead would make it k. We denote the vertex-disjoint union of
graphs G and H by GUH.

Theorem 6 Let G be a caterpillar with G~ = P(vo, ..., v,), where n > 0.
Let k 4+ 1 be the number of vertices of G an even distance from v,. Then
Cu4 UG has an o-valuation.

Proof. By the previous theorem G has an a-valuation v with critical value
X such that y(vo) = 0 and the edge with label 1 joins v, and a vertex u of
degree 1. Let ¢ be the number of vertices of G.

First we treat the case when n is even. Then v(v,) = A = k and
v(u) = k + 1. We know that Csx has an a-valuation é such that for no
vertex v is (v) = 3k. The critical value for this valuation is 2k — 1.

Now we define a valuation 8 on Cyq, UG as follows.

condition on v S(v) range

o(v) <2k -1 d(v) [0,2k — 1]

(v) <k v(v) + 2k (2k, 3k]

v=u 3k+q-1 {3k+q¢-1}

y(v) > k+1 y(v) +2k—1 [Bk+1,2k+q¢—2]

3(v) > 2k S(v)+qg-1 [2k+q—-1,4k+q—1\{3k+q¢—-1}
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Notice that § is one-to-one on V(C4x U G). The edge labels with respect
to B are given in the following table.

edges range

E(Cux) [1,4k]+ g~ 1=[q,dk+¢—1]
E(G\{{vn,u}} [2,¢-1]-1=[1,9-72]

{vn, u} 3k+qg-1—(k+2k)=qg-1

Since C4x has 4k + g — 1 edges, we see that 8 is an a-valuation for this
graph, with critical value 8(v,) = 3k.

Now suppose n is odd. Then y(u) = A, y(vn) = A+1,and k+ 1 =
g—(A+1). Let p be an a-valuation for Cy such that for no vertex v is
p(v) = k. The critical value for this valuation is 2k.

We define a valuation 7 on Cy U G as follows.

conditionon v 7(v) range

p(v) <2k p(v) [0, 2k]\{}

y(v) < A y(v) +2k+1 [2k+1,)+ 2k]

v=u k {k}

¥(v) > A ¥(v) + 2k A+1+42k,qg—1+ 2k
p(v) > 2k p(v)+qg—1 [2k+gq,4k+q—1]

Notice that 7 is one-to-one on V(Cyx UG). The edge labels with respect to
T are given in the following table.

edges range

E(Car) 4K+ q—1=1g, 2k ¥ 7=1]
E(G)\{{vnau}} [21(]_ 1] -1= [llq_ 2]

{vn, u} A+14+2k—k=A+14+k=q¢q-1

Since Cyx has 4k + g — 1 edges, we see that T is an a-valuation for this
graph, with critical value A + 2k = 7(v,) — 1.

Note that if n is odd, then reversing the way we number the path
P(vo,...,v,) may change k, thus producing two different cycles whose
vertex-disjoint union with G has an a-valuation. An example is shown
in Figure 3.

Applying Theorems 1, 2, and 3 to the last result yields the following.

Theorem 7 Let G be an equitable caterpillar so that |V (G~)| > 1, and let
k be defined as in the previous theorem. Then (CarUG) X Qu has a strong
a-valuation and (C4x UG) x P, has an a-valuation for all positive integers
m.

The following shows that Theorem 6 does not exhaust the ways of get-
ting graphs of the form Cyx U G with strong a-valuations, where G is an
equitable caterpiller.
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Figure 3: a-valuations of C4| |G and Cs| |G

Theorem 8 Let k be a positive integer. Then there exist infinitely-many
equitable caterpillars G such that C4 UG has an «a-valuation.

Proof. We know that Cyx has an a-valuation § with critical value 2k such
that §(v) = k for no vertex v.

Let r be any integer such that 2r > k+ 1. Let G be the caterpillar with
vertices u, U, ..., uqr and edges {usr—1,u;} for 2r+1 < j < 4r, edges
{ugr,uj} for 1 < j <20 =2, and the edge {u2r, uor41}. Note that G has
4r — 1 edges.

Now we define a valuation 4 on Ca [JG as follows. On Cyi we define
~ to be & on vertices v with 8(v) < 2k, and to be § + 4r —1 on the other
vertices of Cax. Notice that the set of values of v on the vertices of Cyx is
[0,k — 1)ULk + 1, 2k] U[2k + 4r, 4k + 47 — 1].

We define v on G according to the following table.

condition on j ¥(u;) range
T<j<or—1 W+ 2k+L2k+2r—1]
j=2r k {k}

r+1<j<4r—k k+6r—j [2k+2rk+4r—1]
dr—k+1<j<4r 2k—1+j [k+4r2k+4r—1]

Notice that v is one-to-one on V (Cax UG). The edge labels with respect to
~ are given in the following table.

edges label range

E(Cax) [r, 4k + 4r — 1]
{uj,uar}, 1< <27 =2 4ar—j-1 [2r +1,4r — 2]
{uor—1,ui},2r+1<j<dr—k 4r—k+1—-j [1,2r—Fk]
{ugr—1,uj},dr—k+1<j<4r j—2r 2r—k +1,2r]
{uzr, vor41} 4r —1 {4r - 1}

From the table we see that the set of edge labels is [1,4k + 47 — 1]. |
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Figure 4: K34 x K is prestrong

4 Strong a-valuations of K,,, x K,

In [2] induction proofs are given that K33 x @, and K44 x Q, have a-
valuations for all positive integers n. By using Maheo’s Theorem 1 it would
also suffice to show that K33 x K and K4 4 x K5 have strong a-valuations,
which is the case. We show that K34 is prestrong in Figure 4; it follows
that K34 x @n has a strong a-valuation and K3 4 x P, has an a-valuation
for all positive integers n.

Theorem 9 Let m be a positive integer. Then K, is prestrong, and so
Km,2 X Qn has a strong a-valuation and K, » x P, has an a-valuation for
all positive integers n.

Proof. Let G = K 2 x K2 have vertices yo, y1, - -+, Ym+1, 20, 21, - - -5 Zm+1,
with edges {y;, y;} and {z;,z;} fori =1,m+1,and 1 < j < m, and {vi, zi}
for 0 < i < m+1. Our bipartition will be into A = {yo, 21, 29, .. vy Zmy Ym+1 }
and B = {z0,%1,¥2,...,Ym, 2m+1}. We define 7 on V(G) by =(y;) = z; and
m(z) = y; for 0 < i < m+ 1. (See Figure 1)

We define a valuation 4 on V(G) as in the following table.

vertex v ~(v) range
Ym+1 0 {0}

Yo m {m}
zi,1<i<m 3m—-2i+2 [m+2,3m]
EN Im+1 {3m+ 1}
Zm41 3m+2 {3m+2}

¥yi,1<i<m 5m+3—-i [dm+3,5m+2]

It is clear from the table that + is one-to-one and that » € A if and only
if 7(v) < 3m. Notice that G has 2(2m) + m + 2 = 5m + 2 edges.
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Now we compute the edge labels.

edge label range
{z0,2:},1<i<m 2 —1 {1,3,...,2m -1}
{zm+1,2i},1<i<m 2 {2,4,...,2m}
{vo, 20} 2m+1 {2m + 1}
{vi,z},1<i<m 2m+i+1 [2m+2,3m+1]
{Ym+1, Zm41} 3m +2 {3m+2}

{vo,v:},1<i<m  4m+3—i [3m+3,4m+2]
{¥m+1,%},1<i<m 5m+3—i [dm+3,5m+2]

From this table we can see that vy is an a-valuation. We take s = m+2
and [ = 2m in the definition of a strong a-valuation. Then |A| = [B| = s
and |E(G)| = 5m + 2 = 2l + 5. From the table we see that the labels of
the edges {a,n(a)} for a € A are indeed the elements of [[ 4+ 1,I + 5] =
[2m + 1,3m + 2]. Furthermore if we define ¥* to be ¥ on {yo,ym} and
y—t=9-Bm+2)on {y1,y2,...,Ym}, We easily check that v* is an
a-valuation on the graph induced by {yo,v1,--.,¥m+1}-

Theorem 10 Let G be a connected bipartite graph with vertex partition
X1, Xo such that the vertices of X; all have the same degree, i = 1,2, and
| X1| and | X2| are distinct odd integers. Then G x K> does not have a strong
a-valuation.

Proof. Let X) = {21,22,...,Zm} and X2 = {Zm41,Zm42:- - Tmin}-
Let deg(z;) = a, 1 < i < m, and deg(x;) = b, m < i < m+n. We will take
G* = G x K3 to have vertices y1,¥2, .- -, YUm+n, 21, 22, . - ., Zm4n and edges

{vi,y;} and {z,z2;} whenever {z;,z;} is an edge of G, along with edges
{,z},1<i<m+n

Suppose that G* has a strong a-valuation ¥ with automorphism = and
critical value ). Since G* is connected the sets in the corresponding bipar-
tition are uniquely determined as A = {y1,...,¥m, Zm+1,--)Zm4n} and
B ={z1,.. s %Zm,Ym+1;- - -, Ym+n }. Without loss of generality we assume
that A contains the vertices v with v(v) < A. Notice that G* has 2(m + n)
vertices and 2ma + m + n edges. If v is a strong a-valuation we must have
s = m+n and | = ma. Notice that the degree of each vertex of G* is 1
more than the degree of the corresponding vertex of G.

Now if we sum the labels of all the edges of G* and use the fact that we
have a graceful valuation we get

m m+n m m+n
(@+1) Y (=) +0+1) Y vw)—(e+1) Y vm)—(+1) Y (=)=
i=1 i=m+41 i=1 i=m+1
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2ma+m+n
Z i=(02ma+m+n)2ma+m+n+1)/2.
i=1
On the other hand if we sum the labels of the edges {v,7(v)} for v € A
and use the fact that we have a strong a-valuation we get

m+n m+n
Z =)+ > v y.)—Zvy.)— Y =)=
i= i=m+1 i=1 i=m-+1
ma+m+n
Y j=(m+n)@2ma+m+n+1)/2.
j=ma+1

Subtracting a + 1 times this equation from the previous one yields

m+n m+n
®—a) > Yw)-(—-a) > (=)= (2ma+m+n+1)(ma—na)/2.
t=m+1 i=m+1

Now by counting edges in G we see that ma = nb. Since m # n, also
a # b. Then ma—na = nb—na = n(b—a). Thus dividing the last displayed
equation by b — a gives

m+4n m+n
3 9w~ Y. ¥(m) = (2ma+m+n+n/2.
t=m+1 i=m+1

This is a contradiction because the right side is not an integer when m and
n are odd.

Corollary 11 If m and n are distinct odd integers, then Ky x Ky does
not have a strong a-valuation.

In [11] it is proved that if each vertex of a graph with a graceful valuation
has even degree, then the number of edges of the graph must be congruent
to 0 or 3 modulo 4. Thus if m and n are odd, the graph K x K2 cannot
have a graceful valuation unless 2mn+m+n =0 (mod 4), thatis,m=n
(mod 4). The Corollary rules out strong a-valuations even in the latter
case. The graph G x K3 in Theorem 9 need not have all even degrees. For
example, X; might have 9 vertices of degree 10 in G, and X, 15 vertices of
degree 6 in G.
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