On Graphs with Strong α -valuations

Saad El-Zanati and Charles Vanden Eynden *
4520 Mathematics Department
Illinois State University
Normal, Illinois 61790-4520

Abstract

The concept of a strong α -valuation was introduced by Maheo, who showed that if a graph G has a strong α -valuation, then so does $G \times K_2$. We show that for various graphs G, $G \times Q_n$ has a strong α -valuation and $G \times P_n$ has an α -valuation, where Q_n is the n-cube and P_n the path with n edges, including $G = K_{m,2}$ for any m. Yet we show that $K_{m,n} \times K_2$ does not have a strong α -valuation if m and n are distinct odd integers.

1 Introduction

Only graphs without loops and multiple edges will be considered in this paper. If m and n are integers we denote $\{m, m+1, \ldots, n\}$ by [m, n]. Let N denote the set of nonnegative integers. The cartesian product of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph $G_1 \times G_2 = (V, E)$ where $V = V_1 \times V_2$ and $E = \{\{(u_1, u_2), (v_1, v_2)\} : u_1 = v_1 \text{ and } \{u_2, v_2\} \in E_2$ or $u_2 = v_2$ and $\{u_1, u_2\} \in E_1\}$.

For any graph G we call an injective function $\gamma:V(G)\to N$ a valuation of G. Rosa [11] called such a function γ on a graph G with q edges a β -valuation if γ is an injection from V(G) into [0,q] such that

$$\{|\gamma(u) - \gamma(v)| : \{u, v\} \in E(G)\} = [1, q].$$

The number $|\gamma(u) - \gamma(v)|$ is called the *label* of the edge $\{u, v\}$. A β -valuation is now more commonly called a *graceful valuation*. An α -valuation is a graceful valuation having the additional property that there exists an integer λ such that if $\{u, v\} \in E(G)$, then $\{u, v\} = \{a, b\}$, where $\gamma(a) \leq \lambda < \gamma(b)$. The number λ , which is unique, is called the *critical*

^{*}Research of both authors supported by Illinois State University Research Office

value of the α -valuation. Note that if G admits an α -valuation then G is bipartite with parts A and B, where $A = \{u \in V(G) : \gamma(u) \leq \lambda\}$, and $B = \{u \in V(G) : \gamma(u) > \lambda\}$. We denote the set A by $S(\gamma)$ (the "small" vertices). Valuations of graphs are particularly interesting because of their applications to graph decompositions (see Rosa [11]).

A graph G admitting an α -valuation was defined by Maheo [10] to be "strongly graceful" if in addition to all of the above there exists an automorphism π of G taking A onto B and the following conditions are satisfied.

- (1) |A| = |B| = s and |E| = 2l + s for some integers $l \ge 0$ and $s \ge 0$.
- (2) We have $\lambda \in [l-s, l+s-1]$.
- (3) If $a \in A$, then $\{a, \pi(a)\}$ is an edge with label in [l+1, l+s].
- (4) The map π is its own inverse.

Note that since |A| = s, condition (3) implies that the labels on the edges $\{a, \pi(a)\}$ for $a \in A$ are exactly the integers of [l+1, l+s]. The left side of Figure 1 shows a strong α -valuation of $K_{2,3} \times K_2$ (note that $K_{2,3}$ has s=5 vertices and l=6 edges).

In fact condition (2) is redundant. For any graceful graph has an edge with label 1, so there exist vertices $a \in A$ and $b \in B$ such that $\gamma(a) = \lambda$ and $\gamma(b) = \lambda + 1$. Then the label on the edge $\{a, \pi(a)\}$ is $\gamma(\pi(a)) - \lambda$, which is in $[\lambda + 1, 2l + s] - \lambda = [1, 2l + s - \lambda]$. By (3) this label is in [l + 1, l + s]. Thus $2l + s - \lambda \ge l + 1$, which implies that $\lambda \le l + s - 1$. Likewise the label on the edge $\{b, \pi^{-1}(b)\}$ is in $\lambda + 1 - [0, \lambda] = [1, \lambda + 1]$. By (3) this label is in [l + 1, l + s]. Thus $\lambda + 1 \ge l + 1$ and so $\lambda \ge l \ge l - s$.

We prefer to call the γ in a strongly graceful graph a strong α -valuation since this draws attention to the fact that G admits an α -valuation rather than merely a graceful (or β -) valuation.

In [10], Maheo proved the following powerful and in our opinion underappreciated result.

Theorem 1 If G has a strong α -valuation, then so does $G \times K_2$.

Moreover, Maheo showed that the *n*-cube Q_n (the Cartesian product of n copies of K_2), the ladder L_n (the graph $P_n \times K_2$, where P_n is the path with n edges), and the book B_{2n} (the graph $K_{1,2n} \times K_2$) all have strong α -valuations.

Numerous researchers have investigated valuations of graphs (see Gallian [5] and [6] for general surveys). Several have investigated valuations of products of graphs (see [1]-[10],[12],[13],[14] for some examples). Unfortunately, many authors did not distinguish between β and α -valuations and few appear to be aware of Maheo's result. Thus rather than showing

Figure 1: $K_{2,3}$ is prestrong

that a certain graph G has a strong α -valuation and applying Theorem 1, they would show directly that $G \times Q_n$ admits an α -valuation or is simply graceful.

There are some graphs G such that $G \times K_2$ has a strong α -valuation enjoying certain additional properties. Let G be a bipartite graph with vertex partition X,Y. Suppose that G has s vertices and l edges, and set t=s+l. Let $X_i=\{(x,i):x\in X\}$ and $Y_i=\{(y,i):y\in Y\}$, i=0,1. We can consider $G\times K_2$ to be the bipartite graph with vertex partition $A=X_0\bigcup Y_1,\ B=Y_0\bigcup X_1$ and edges $\{(x,i),(y,i)\},\ i=0,1$, where $\{x,y\}$ runs through the edges of G, along with all edges $\{(v,0),(v,1)\}$ for $v\in V(G)$. We say the graph G is prestrong if $G\times K_2$ has a strong α -valuation γ with $S(\gamma)=A$ such that the map π in the definition of a strong α -valuation interchanges (v,0) and (v,1) for all $v\in V(G)$, and such that if we define γ^* on $X_0\bigcup Y_0$ to be γ on X_0 and $\gamma-t$ on Y_0 , then γ^* is an α -valuation on the subgraph of $G\times K_2$ induced by $X_0\bigcup Y_0$ with $S(\gamma^*)=X_0$. (This implies that G has an α -valuation.)

Note that if t=13 is subtracted from the values 19, 18, 15, and 17 of the vertices in the graph $G\times K_2$ in Figure 2, this does *not* give an α -valuation on the left-hand copy of G, since two vertices get the value 2. In fact the particular graph G shown is not prestrong, since it is known that G has no α -valuation. On the other hand the left side of Figure 1 shows that $K_{2,3}$ is prestrong. Here subtracting t=11 from the values 13, 15, and 17 gives an α -valuation of the left-hand copy of $K_{2,3}$.

We will show that if G is any graph with one more vertex than edges, and if G has an α -valuation such that the cardinalities of the sets of the corresponding bipartition of the vertices differ by at most 1, then G is prestrong (and so by Maheo's result $G \times Q_d$ has a strong α -valuation for

Figure 2: G does not have an α -valuation

any $d \geq 1$). We also show that if G is prestrong, then $G \times P_n$ has an α -valuation for all positive integers n. We give applications of these results. We also show that $K_{3,4}$ is prestrong, as is $K_{m,2}$ for any positive integer m. On the other hand, we show that if m and n are distinct odd integers, then $K_{m,n} \times K_2$ does not have a strong α -valuation.

Before we proceed we note that K_2 , P_n and $K_{1,2n}$ are all prestrong (see Maheo's [10] strong α -valuation of Q_2 , L_n and S_{2n} , respectively). Moreover, the α -labeling of $C_{4k} \times K_2$ given by Snevily [13] shows that C_{4k} is prestrong and $C_{4k} \times K_2$ has a strong α -valuation.

2 New Results

Lemma 1 Let the graph G be prestrong, with notation as above, and let the valuation γ^* have the critical value λ^* . Then $\gamma(X_0) \subseteq [0, \lambda^*]$, $\gamma(Y_0) \subseteq [\lambda^* + 1 + t, l + t]$, $\gamma(Y_1) \subseteq [\lambda^* + 1, t - 1]$ and $\gamma(X_1) \subseteq [l + 1, \lambda^* + t]$.

Proof. The first two containments follow from the fact that γ^* is an α -valuation with critical value λ^* . Now let $y_1 \in Y_1$. Since γ is a strong α -valuation we have $\gamma(y_0) - \gamma(y_1) \in [l+1, l+s]$, where $y_0 = \pi(y_1) \in Y_0$. This means that $\gamma(y_0) - l - s \leq \gamma(y_1) \leq \gamma(y_0) - l - 1$. But since $\gamma(Y_0) \subseteq [\lambda^* + 1 + t, l + t]$, we have $\lambda^* + 1 = \lambda^* + 1 + t - l - s \leq \gamma(y_1) \leq l + t - l - 1 = t - 1$. In the same way if $x_1 \in X_1$, then we have $\gamma(x_1) - \gamma(x_0) \in [l+1, l+s]$,

where $x_0 = \pi(x_1) \in X_0$. Then $\gamma(x_0) + l + 1 \le \gamma(x_1) \le \gamma(x_0) + l + s$. But $\gamma(X_0) \subseteq [0, \lambda^*]$, so $l + 1 \le \gamma(x_1) \le \lambda^* + l + s = \lambda^* + t$.

Theorem 2 Suppose the graph G is prestrong. Then $G \times P_n$ has an α -valuation for all positive integers n.

Proof. We take the vertices of $G \times P_n$ to be of the form (v, k), where $v \in V(G)$ and $0 \le k \le n$. The edges of $G \times P_n$ are all edges $\{(x, k), (y, k)\}$, where $\{x, y\}$ is an edge of G and $0 \le k \le n$, along with the edges $\{(v, k), (v, k+1)\}$, where $v \in V(G)$ and $0 \le k \le n-1$. We extend the notation of the definition

of a prestrong graph, so that $X_i = \{(x, i) : x \in X\}$ and $Y_i = \{(y, i) : y \in Y\}$, $0 \le i \le n$. Define A_i to be X_i if i is even and Y_i if i is odd. Likewise define B_i to be Y_i if i is even and X_i if i is odd. Then $G \times P_n$ is bipartite with vertex bipartition A, B, where $A = \bigcup_{i=0}^n A_i$ and $B = \bigcup_{i=0}^n B_i$.

Let γ be the valuation on the subgraph of $G \times P_n$ induced by $X_0 \bigcup Y_0 \bigcup X_1 \bigcup Y_1$ given in the definition of a prestrong graph. We define a valuation δ on $G \times P_n$ as follows. For $0 \le k \le n$ write k = 2q + r, where q and r are integers and $0 \le r < 2$. If $(a,k) \in A$ let $\delta(a,k) = \gamma(a,r) + qt$, while if $(b,k) \in B$ let $\delta(b,k) = \gamma(b,r) + (n-q-1)t$. We claim that δ is an α -valuation.

We start by showing that δ is one-to-one. First assume that k is even, so that r=0. Then $\delta(A_k)=\gamma(X_0)+qt\subseteq [0,\lambda^*]+qt$ by the lemma. But $\delta(A_{k+1})=\gamma(Y_1)+qt\subseteq [\lambda^*+1,t-1]+qt$, and the elements of this interval are all larger than those of the first. Likewise $\delta(B_k)=\gamma(Y_0)+(n-q-1)t\subseteq [\lambda^*+1+t,l+t]+(n-q-1)t$, while $\delta(B_{k+1})=\gamma(X_1)+(n-q-1)t\subseteq [l+1,\lambda^*+t]+(n-q-1)t$, and the elements of this interval are all smaller than those of the first.

Now suppose k is odd, so r=1. Then $\delta(A_k)=\gamma(Y_1)+qt\subseteq [\lambda^*+1,t-1]+qt$, while $\delta(A_{k+1})=\gamma(X_0)+(q+1)t\subseteq [0,\lambda^*]+(q+1)t$. Since the largest value in the first set is less that the smallest in the second, the sets are disjoint. Also $\delta(B_k)=\gamma(X_1)+(n-q-1)t\subseteq [l+1,\lambda^*+t]+(n-q-1)t$, while $\delta(B_{k+1})=\gamma(Y_0)+(n-q-2)t\subseteq [\lambda^*+1+t,l+t]+(n-q-2)t$, and the largest element of this interval is less than the smallest of the first.

Since we have seen that as a function of k, $\delta(A_k)$ increases while $\delta(B_k)$ decreases, it only remains to show that every element of $\delta(A_n)$ is less than every element of $\delta(B_n)$. Again we need cases. Let $n=2Q+R, 0 \leq R < 2$. If n is even we have $\delta(A_n) = \gamma(X_0) + Qt \subseteq [0, \lambda^*] + Qt = [Qt, \lambda^* + Qt]$, and $\delta(B_n) = \gamma(Y_0) + (n-Q-1)t \subseteq [\lambda^*+1+t, l+t] + (Q-1)t = [\lambda^*+Qt+1, l+Qt]$, so in this case we see that our new valuation δ has critical value $\lambda^* + Qt$. If n is odd the argument is somewhat different. In this case n = 2Q+1, so (n-Q-1)t = Qt. Thus the values of δ on $A_n \bigcup B_n$ are just Qt more than the values of γ on $Y_1 \bigcup X_1$. By the assumptions on γ the γ -edge labels on $X_1 \bigcup Y_1$ are exactly [1,l]. We see the critical value for δ is Qt more than the critical value of the α -valuation γ .

Now we look at edge labels. Note that from the definition of a prestrong graph, the edges between X_0 and Y_0 have γ -labels [t+1,t+l], the edges between X_1 and Y_1 have γ -labels [1,l], and the edges $\{(v,0),(v,1)\}$ have γ -labels [l+1,t].

Now we compute the edge labels with respect to δ . First assume k=2q is even. Then the δ -labels on the edges of $A_k \bigcup B_k$ are the γ -labels on the edges of $X_0 \bigcup Y_0$ plus (n-q-1)t-qt, that is, [t+1,t+l]+(n-2q-1)t=[1,l]+(n-k)t. But if k=2q+1 is odd, then the δ -labels of the edges of $A_k \bigcup B_k$ are the γ -labels on the edges of $X_1 \bigcup Y_1$ plus (n-q-1)t-qt,

that is, [1, l] + (n - 2q - 1)t = [1, l] + (n - k)t also.

Now we compute the δ -labels on edges between X_k and X_{k+1} and between Y_k and Y_{k+1} . If k=2q these are the γ -labels on $X_0 \bigcup X_1$ plus (n-q-1)t-qt, along with the γ -labels on $Y_0 \bigcup Y_1$ plus (n-q-1)t-qt. Together, these give [l+1,t]+(n-2q-1)t=[l+1,t]+(n-k-1)t. Likewise if k=2q+1 these are the γ -labels on $X_0 \bigcup X_1$ plus (n-(q+1)-1)t-qt, along with the γ -labels on $Y_0 \bigcup Y_1$ plus (n-q-1)t-(q+1)t. Together these give [l+1,t]+(n-2q-2)t=[l+1,t]+(n-k-1)t also.

Now if $0 \le k < n$ the δ -labels on edges from X_k to X_{k+1} and from Y_k to Y_{k+1} together with those on edges from X_k to Y_k are $([l+1,t]+(n-k-1)t) \cup ([1,l]+(n-k)t) = [(n-k-1)t+l+1,(n-k)t] \cup [(n-k)t+1,(n-k)t+l] = [(n-k-1)t+l+1,(n-k)t+l]$. The union of these sets (working backwards from k=n-1) is

$$[l+1, l+t] \bigcup [l+t+1, l+2t] \bigcup \ldots \bigcup [l+(n-1)t+1, l+nt] = [l+1, l+nt].$$

Since the δ -labels of the edges from X_n to Y_n are [1, l], δ is an α -valuation on $G \times P_n$.

Lemma 2 Let G_0 and G_1 be vertex disjoint graphs, each with n edges and n+1 vertices. Suppose G_i has an α -valuation γ_i with critical value $\lambda = \lfloor (n-1)/2 \rfloor$, i=0,1. Then the graph G^* formed by adding the edges $\{\gamma_0^{-1}(j), \gamma_1^{-1}(j)\}, 0 \leq j \leq n$ to $G_0 \cup G_1$ has an α -valuation, and this is strong if $\gamma_1 \gamma_0^{-1}$ is an isomorphism.

Proof. Let $V(G_0)=\{y_0,y_1,\ldots,y_n\}$ and $V(G_1)=\{z_0,z_1,\ldots,z_n\}$. Assume $\gamma_0(y_j)=\gamma_1(z_j)=j,\ 0\leq j\leq n$. We define a valuation δ on G^* by

$$\delta(y_i) = i, 0 \le i \le \lambda,
\delta(y_i) = 2n + 1 + i, \lambda < i \le n,
\delta(z_i) = 2n - i, 0 < i < n.$$

Note that $\{\delta(y_i): 0 \leq i \leq \lambda\} = [0, \lambda], \{\delta(z_i): 0 \leq i \leq n\} = [n, 2n], \text{ and } \{\delta(y_i): \lambda < i \leq n\} = [2n + \lambda + 2, 3n + 1].$ Thus δ is one-to-one on $V(G^*)$ and has critical value $\lambda^* = 2n - \lambda - 1 = \delta(z_{\lambda+1})$, since $\delta(z_{\lambda}) - \delta(z_{\lambda+1}) = 1$.

Now $|\delta(z_i) - \delta(z_j)| = |i - j| = |\gamma_1(i) - \gamma_1(j)|$, and so the edges $\{z_i, z_j\}$ of G^* get the values 1, 2, ..., n. Likewise if $i \le \lambda < j$, then $|\delta(y_i) - \delta(y_j)| = |2n + 1 + j - i| = 2n + 1 + |\gamma_0(i) - \gamma_0(j)|$, and so the edges $\{y_i, y_j\}$ of G^* get the values 2n + 2, 2n + 3, ..., 3n + 1.

Finally for $0 \le i \le \lambda$ the set of values of $|\delta(y_i) - \delta(z_i)| = 2(n-i)$ is

$$S = \{2(n-\lambda), 2(n-\lambda) + 2, \ldots, 2n\},\$$

while for $\lambda < i \le n$ the set of values of $|\delta(y_i) - \delta(z_i)| = 2i + 1$ is

$$T = \{2(\lambda + 1) + 1, 2(\lambda + 1) + 3, \dots, 2n + 1\}.$$

Recall that $\lambda = \lfloor (n-1)/2 \rfloor$. If n is odd, then the smallest numbers in S and T are n+1 and n+2, respectively, while if n is even this is reversed. In either case the values of $|\delta(y_i) - \delta(z_i)|$ are [n+1, 2n+1], and so δ is an α -valuation.

Now with respect to δ we have $A = \{y_0, y_1, \dots, y_{\lambda}, z_{\lambda+1}, z_{\lambda+2}, \dots, z_n\}$ and $B = \{z_0, z_1, \dots, z_{\lambda}, y_{\lambda+1}, y_{\lambda+2}, \dots, y_n\}$. The graph G^* has 2n+n+1=3n+1 edges. Thus if we set s=n+1 and l=n, then |A|=|B|=s and $|E(G^*)|=2l+s$. We define π to be $\gamma_1\gamma_0^{-1}$ on $V(G_0)$ and $\gamma_0\gamma_1^{-1}$ on G_1 . Then π is a self-inverse map interchanging A and B, and the labels on the edges $\{y_i, \pi(y_i)\} = \{y_i, z_i\}$ are exactly the elements of [n+1, 2n+1] = [l+1, l+s]. Thus if $\gamma_1\gamma_0^{-1}$ is an isomorphism, then π is an automorphism and δ is a strong α -valuation.

We call a bipartite graph equitable if in any partition of its vertices into two sets with no edges between the sets, the cardinalities of the two sets differ by at most one.

Theorem 3 Let G be an equitable graph with n edges and n + 1 vertices having an α -valuation. Then G is prestrong.

Proof. Let G have the α -valuation γ with critical value λ . Since γ maps V(G) onto $\{0,1,\ldots,n\}$, it induces a bipartition of the vertices into sets with $\lambda+1$ and $n-\lambda$ vertices. Now $n-\gamma$ is an α -valuation interchanging A and B, so G has an α -valuation with $\lambda+1\leq n-\lambda$, or $\lambda\leq (n-1)/2$. Thus if the cardinalities of the sets in the bipartition differ by at most 1, then we can assume $\lambda=\lfloor (n-1)/2\rfloor$.

Now we can think of $G \times K_2$ as the union of vertex-disjoint copies G_0 and G_1 of G, along with all edges $\{y, \pi(y)\}$, where π is an isomorphism of G_0 onto G_1 preserving the α -valuation. Then Lemma 1 gives a strong α -valuation δ of $G \times K_2$. Notice that if we define δ^* to be δ on $\{y_0, \ldots, y_{\lambda}\}$ and $\delta - (2n+1)$ on $\{y_{\lambda+1}, \ldots, y_n\}$, then δ^* is an α -valuation on G_0 , and so G is prestrong.

It is proved in [4] that if T is an equitable tree that has an α -valuation, then $T \times P_n$ has an α -valuation for all n. By using Theorems 1, 2 and 3 we get a generalization of this result.

Corollary 4 If G is an equitable graph with one more vertex than edges and if G has an α -valuation, then $G \times Q_n$ has a strong α -valuation and $G \times P_n$ has an α -valuation for each positive integer n.

3 Applications

If G is a graph, let G^- denote the graph formed by removing from G all vertices of degree 1, along with the edges incident with these vertices. In [11] Rosa calls any graph such that G^- is a path a caterpillar, and proves that each caterpillar has an α -valuation. Each caterpillar is a tree, and so is bipartite and has one more vertex than edges. Thus Corollary 4 applies to caterpillars.

It is possible for $G \times K_2$ to have a strong α -valuation, even though G itself does not even have an α -valuation. An example is shown in Figure 2.

Now we will consider graphs that are the vertex-disjoint unions of even cycles and equitable caterpillars. Let $P(v_0, \ldots, v_n)$ denote the path with edges $\{v_0, v_1\}, \{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}$. An examination of Rosa's construction [11] of an α -valuation for caterpillars shows that the following statement holds.

Theorem 5 Let G be a caterpillar with $G^- = P(v_0, ..., v_n)$. Then G has an α -valuation γ such that $\gamma(v_0) = 0$ and the edge with label 1 joins v_n and a vertex with degree 1.

In [11], Rosa also shows that the cycle C_n has an α -valuation if and only if n=4k for some integer k. Since C_n has the same number of vertices as edges, in any graceful valuation γ exactly one integer in [0,n] corresponds to no vertex. In the proof Rosa gives for C_{4k} this is 3k; using the valuation $4k-\gamma$ instead would make it k. We denote the vertex-disjoint union of graphs G and H by $G \sqcup H$.

Theorem 6 Let G be a caterpillar with $G^- = P(v_0, ..., v_n)$, where n > 0. Let k + 1 be the number of vertices of G an even distance from v_n . Then $C_{4k} \sqcup G$ has an α -valuation.

Proof. By the previous theorem G has an α -valuation γ with critical value λ such that $\gamma(v_0) = 0$ and the edge with label 1 joins v_n and a vertex u of degree 1. Let q be the number of vertices of G.

First we treat the case when n is even. Then $\gamma(v_n) = \lambda = k$ and $\gamma(u) = k + 1$. We know that C_{4k} has an α -valuation δ such that for no vertex v is $\delta(v) = 3k$. The critical value for this valuation is 2k - 1.

Now we define a valuation β on $C_{4k} \sqcup G$ as follows.

condition on v	eta(v)	range
$\delta(v) \leq 2k - 1$	$\delta(v)$	[0,2k-1]
$\gamma(v) \leq k$	$\gamma(v) + 2k$	[2k,3k]
v = u	3k + q - 1	$\{3k+q-1\}$
$\gamma(v) > k+1$	$\gamma(v) + 2k - 1$	[3k+1, 2k+q-2]
$\delta(v) \geq 2k$	$\delta(v) + q - 1$	$[2k+q-1,4k+q-1]\setminus \{3k+q-1\}$

Notice that β is one-to-one on $V(C_{4k} \sqcup G)$. The edge labels with respect to β are given in the following table.

$$\begin{array}{ll} {\rm edges} & {\rm range} \\ \hline E(C_{4k}) & [1,4k]+q-1=[q,4k+q-1] \\ E(G)\backslash \{\{v_n,u\}\} & [2,q-1]-1=[1,q-2] \\ \{v_n,u\} & 3k+q-1-(k+2k)=q-1 \end{array}$$

Since C_{4k} has 4k + q - 1 edges, we see that β is an α -valuation for this graph, with critical value $\beta(v_n) = 3k$.

Now suppose n is odd. Then $\gamma(u) = \lambda$, $\gamma(v_n) = \lambda + 1$, and $k + 1 = q - (\lambda + 1)$. Let ρ be an α -valuation for C_{4k} such that for no vertex v is $\rho(v) = k$. The critical value for this valuation is 2k.

We define a valuation τ on $C_{4k} \sqcup G$ as follows.

$\underline{ \text{condition on } v}$	au(v)	range
$ \rho(v) \leq 2k $	$\rho(v)$	$[0,2k]\setminus\{k\}$
$\gamma(v) < \lambda$	$\gamma(v) + 2k + 1$	$[2k+1,\lambda+2k]$
v = u	\boldsymbol{k}	$\{k\}$
$\gamma(v) > \lambda$	$\gamma(v) + 2k$	$[\lambda+1+2k,q-1+2k]$
ho(v) > 2k	$\rho(v) + q - 1$	[2k+q,4k+q-1]

Notice that τ is one-to-one on $V(C_{4k} \sqcup G)$. The edge labels with respect to τ are given in the following table.

edges	range
$E(C_{4k})$	[1,4k]+q-1=[q,4k+q-1]
$E(G)\setminus\{\{v_n,u\}\}$	[2, q-1]-1=[1, q-2]
$\{v_n,u\}$	$\lambda + 1 + 2k - k = \lambda + 1 + k = q - 1$

Since C_{4k} has 4k + q - 1 edges, we see that τ is an α -valuation for this graph, with critical value $\lambda + 2k = \tau(v_n) - 1$.

Note that if n is odd, then reversing the way we number the path $P(v_0, \ldots, v_n)$ may change k, thus producing two different cycles whose vertex-disjoint union with G has an α -valuation. An example is shown in Figure 3.

Applying Theorems 1, 2, and 3 to the last result yields the following.

Theorem 7 Let G be an equitable caterpillar so that $|V(G^-)| > 1$, and let k be defined as in the previous theorem. Then $(C_{4k} \sqcup G) \times Q_m$ has a strong α -valuation and $(C_{4k} \sqcup G) \times P_m$ has an α -valuation for all positive integers m.

The following shows that Theorem 6 does not exhaust the ways of getting graphs of the form $C_{4k} \sqcup G$ with strong α -valuations, where G is an equitable caterpiller.

Figure 3: α -valuations of $C_4 \coprod G$ and $C_8 \coprod G$

Theorem 8 Let k be a positive integer. Then there exist infinitely-many equitable caterpillars G such that $C_{4k} \sqcup G$ has an α -valuation.

Proof. We know that C_{4k} has an α -valuation δ with critical value 2k such that $\delta(v) = k$ for no vertex v.

Let r be any integer such that $2r \ge k+1$. Let G be the caterpillar with vertices u_1, u_2, \ldots, u_{4r} and edges $\{u_{2r-1}, u_j\}$ for $2r+1 \le j \le 4r$, edges $\{u_{4r}, u_j\}$ for $1 \le j \le 2r-2$, and the edge $\{u_{2r}, u_{2r+1}\}$. Note that G has 4r-1 edges.

Now we define a valuation γ on $C_{4k} \cup G$ as follows. On C_{4k} we define γ to be δ on vertices v with $\delta(v) \leq 2k$, and to be $\delta + 4r - 1$ on the other vertices of C_{4k} . Notice that the set of values of γ on the vertices of C_{4k} is $[0, k-1] \cup [k+1, 2k] \cup [2k+4r, 4k+4r-1]$.

We define γ on G according to the following table.

$ {\bf condition} \ {\bf on} \ j $	$\gamma(u_j)$	range
$1 \le j \le 2r - 1$	2k+j	[2k+1, 2k+2r-1]
j=2r	\boldsymbol{k}	$\{k\}$
$2r+1 \le j \le 4r-k$	k + 6r - j	[2k+2r, k+4r-1]
	2k - 1 + j	[k+4r, 2k+4r-1]

Notice that γ is one-to-one on $V(C_{4k} \sqcup G)$. The edge labels with respect to γ are given in the following table.

edges	label	range
$E(C_{4k})$		[4r,4k+4r-1]
$\{u_j, u_{4r}\}, 1 \le j \le 2r - 2$	4r-j-1	[2r+1,4r-2]
$\{u_{2r-1}, u_j\}, 2r+1 \le j \le 4r-k$		[1,2r-k]
$\{u_{2r-1}, u_j\}, 4r-k+1 \le j \le 4r$	j-2r	[2r-k+1,2r]
$\{u_{2r}, u_{2r+1}\}$	4r - 1	$\{4r-1\}$

From the table we see that the set of edge labels is [1, 4k + 4r - 1].

Figure 4: $K_{3,4} \times K_2$ is prestrong

4 Strong α -valuations of $K_{m,n} \times K_2$

In [2] induction proofs are given that $K_{3,3} \times Q_n$ and $K_{4,4} \times Q_n$ have α -valuations for all positive integers n. By using Maheo's Theorem 1 it would also suffice to show that $K_{3,3} \times K_2$ and $K_{4,4} \times K_2$ have strong α -valuations, which is the case. We show that $K_{3,4}$ is prestrong in Figure 4; it follows that $K_{3,4} \times Q_n$ has a strong α -valuation and $K_{3,4} \times P_n$ has an α -valuation for all positive integers n.

Theorem 9 Let m be a positive integer. Then $K_{m,2}$ is prestrong, and so $K_{m,2} \times Q_n$ has a strong α -valuation and $K_{m,2} \times P_n$ has an α -valuation for all positive integers n.

Proof. Let $G = K_{m,2} \times K_2$ have vertices $y_0, y_1, \ldots, y_{m+1}, z_0, z_1, \ldots, z_{m+1}$, with edges $\{y_i, y_j\}$ and $\{z_i, z_j\}$ for i = 1, m+1, and $1 \le j \le m$, and $\{y_i, z_i\}$ for $0 \le i \le m+1$. Our bipartition will be into $A = \{y_0, z_1, z_2, \ldots, z_m, y_{m+1}\}$ and $B = \{z_0, y_1, y_2, \ldots, y_m, z_{m+1}\}$. We define π on V(G) by $\pi(y_i) = z_i$ and $\pi(z_i) = y_i$ for $0 \le i \le m+1$. (See Figure 1)

We define a valuation γ on V(G) as in the following table.

$\mathbf{vertex}\ v$	$\gamma(v)$	range
y_{m+1}	0	{0}
y_0	m	$\{m\}$
$z_i, 1 \leq i \leq m$	3m - 2i + 2	[m+2, 3m]
z_0	3m + 1	$\{3m+1\}$
z_{m+1}	3m + 2	$\{3m+2\}$
$y_i, 1 \leq i \leq m$	5m + 3 - i	[4m+3,5m+2]

It is clear from the table that γ is one-to-one and that $v \in A$ if and only if $\gamma(v) \leq 3m$. Notice that G has 2(2m) + m + 2 = 5m + 2 edges.

Now we compute the edge labels.

edge	label	range
$\{z_0, z_i\}, 1 \le i \le m$	2i - 1	$\{1,3,\ldots,2m-1\}$
$\{z_{m+1},z_i\}, 1 \leq i \leq m$	2i	$\{2,4,\ldots,2m\}$
$\{y_0,z_0\}$	2m + 1	$\{2m+1\}$
$\{y_i, z_i\}, 1 \leq i \leq m$	2m + i + 1	[2m+2, 3m+1]
$\{y_{m+1}, z_{m+1}\}$	3m + 2	$\{3m+2\}$
$\{y_0, y_i\}, 1 \le i \le m$	4m + 3 - i	[3m+3,4m+2]
$\{y_{m+1},y_i\}, 1 \le i \le m$	5m + 3 - i	[4m+3,5m+2]

From this table we can see that γ is an α -valuation. We take s=m+2 and l=2m in the definition of a strong α -valuation. Then |A|=|B|=s and |E(G)|=5m+2=2l+s. From the table we see that the labels of the edges $\{a,\pi(a)\}$ for $a\in A$ are indeed the elements of [l+1,l+s]=[2m+1,3m+2]. Furthermore if we define γ^* to be γ on $\{y_0,y_m\}$ and $\gamma-t=\gamma-(3m+2)$ on $\{y_1,y_2,\ldots,y_m\}$, we easily check that γ^* is an α -valuation on the graph induced by $\{y_0,y_1,\ldots,y_{m+1}\}$.

Theorem 10 Let G be a connected bipartite graph with vertex partition X_1, X_2 such that the vertices of X_i all have the same degree, i = 1, 2, and $|X_1|$ and $|X_2|$ are distinct odd integers. Then $G \times K_2$ does not have a strong α -valuation.

Proof. Let $X_1 = \{x_1, x_2, \dots, x_m\}$ and $X_2 = \{x_{m+1}, x_{m+2}, \dots, x_{m+n}\}$. Let $\deg(x_i) = a, 1 \le i \le m$, and $\deg(x_i) = b, m < i \le m+n$. We will take $G^* = G \times K_2$ to have vertices $y_1, y_2, \dots, y_{m+n}, z_1, z_2, \dots, z_{m+n}$ and edges $\{y_i, y_j\}$ and $\{z_i, z_j\}$ whenever $\{x_i, x_j\}$ is an edge of G, along with edges $\{y_i, z_i\}$, $1 \le i \le m+n$.

Suppose that G^* has a strong α -valuation γ with automorphism π and critical value λ . Since G^* is connected the sets in the corresponding bipartition are uniquely determined as $A = \{y_1, \ldots, y_m, z_{m+1}, \ldots, z_{m+n}\}$ and $B = \{z_1, \ldots, z_m, y_{m+1}, \ldots, y_{m+n}\}$. Without loss of generality we assume that A contains the vertices v with $\gamma(v) \leq \lambda$. Notice that G^* has 2(m+n) vertices and 2ma+m+n edges. If γ is a strong α -valuation we must have s = m+n and l = ma. Notice that the degree of each vertex of G^* is 1 more than the degree of the corresponding vertex of G.

Now if we sum the labels of all the edges of G^* and use the fact that we have a graceful valuation we get

$$(a+1)\sum_{i=1}^{m}\gamma(z_i)+(b+1)\sum_{i=m+1}^{m+n}\gamma(y_i)-(a+1)\sum_{i=1}^{m}\gamma(y_i)-(b+1)\sum_{i=m+1}^{m+n}\gamma(z_i)=$$

$$\sum_{j=1}^{2ma+m+n} j = (2ma+m+n)(2ma+m+n+1)/2.$$

On the other hand if we sum the labels of the edges $\{v, \pi(v)\}$ for $v \in A$ and use the fact that we have a strong α -valuation we get

$$\sum_{i=1}^{m} \gamma(z_i) + \sum_{i=m+1}^{m+n} \gamma(y_i) - \sum_{i=1}^{m} \gamma(y_i) - \sum_{i=m+1}^{m+n} \gamma(z_i) = \sum_{j=m+1}^{m+m+n} j = (m+n)(2ma+m+n+1)/2.$$

Subtracting a + 1 times this equation from the previous one yields

$$(b-a)\sum_{i=m+1}^{m+n}\gamma(y_i)-(b-a)\sum_{i=m+1}^{m+n}\gamma(z_i)=(2ma+m+n+1)(ma-na)/2.$$

Now by counting edges in G we see that ma = nb. Since $m \neq n$, also $a \neq b$. Then ma - na = nb - na = n(b-a). Thus dividing the last displayed equation by b - a gives

$$\sum_{i=m+1}^{m+n} \gamma(y_i) - \sum_{i=m+1}^{m+n} \gamma(z_i) = (2ma + m + n + 1)n/2.$$

This is a contradiction because the right side is not an integer when m and n are odd.

Corollary 11 If m and n are distinct odd integers, then $K_{m,n} \times K_2$ does not have a strong α -valuation.

In [11] it is proved that if each vertex of a graph with a graceful valuation has even degree, then the number of edges of the graph must be congruent to 0 or 3 modulo 4. Thus if m and n are odd, the graph $K_{m,n} \times K_2$ cannot have a graceful valuation unless $2mn+m+n\equiv 0 \pmod 4$, that is, $m\equiv n\pmod 4$. The Corollary rules out strong α -valuations even in the latter case. The graph $G\times K_2$ in Theorem 9 need not have all even degrees. For example, K_1 might have 9 vertices of degree 10 in K_2 and K_3 15 vertices of degree 6 in K_4 .

Acknowledgments

The strong α -valuation for the graph on the right in Figure 2 was obtained using a computer program written by Michael Kenig. The authors thank Mr. Kenig for this contribution.

References

- [1] B. D. Acharya and M. K. Gill, On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs, *Indian J. Math.* 23 (1981) 81-94.
- [2] R. Balakrishnan and R. Sampath Kumar, Decompositions of complete graphs into isomorphic bipartite subgraphs, *Graphs Combin.* 10 (1994) 19-25.
- [3] R. Frucht and J. A. Gallian, Labeling prisms, Ars Combin. 26 (1988) 69-82.
- [4] H. L. Fu and S. L. Wu, New results on graceful graphs, J. Comb. Info. Syst. Sci. 15 (1990) 170-177.
- [5] J. A. Gallian, A survey: recent results, conjectures, and open problems in labeling graphs, J. Graph Theory 13 (1989) 491-504.
- [6] J. A. Gallian, A dynamic survey of graph labeling, *Electronic Journal of Combinatorics*, Dynamic Survey DS6, http://www.combinatorics.org.
- [7] J. A. Gallian and D. S. Jungreis, Labeling books, *Scientia.* 1 (1988) 53-57.
- [8] D. Jungreis and M. Reid, Labeling grids, Ars Combin. 34 (1992) 167– 182.
- [9] A. Kotzig, Decompositions of complete graphs into isomorphic cubes,
 J. Comb. Theory, Series B 31 (1981) 292-296.
- [10] M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980) 39-46.
- [11] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967) 349-355.
- [12] G. S. Singh, A note on graceful prisms, Nat. Acad. Sci. Lett. 15 (1992) 193-194.
- [13] H. S. Snevily, New families of graphs that have α -labelings, *Discrete Math.* 170 (1997) 185-194.
- [14] Y. C. Yang and X. G. Wang, On the gracefulness of product graph $C_{4n+2} \times P_{4m+3}$, Combinatorics, Graph Theory, Algorithms and Applications (Bejing, 1993), World Sci. Publishing, River Edge, NJ, 1994.