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Absteact. In [S5]. Guelzow gave an example of semiboolean SQS-skeins of nilpotent class 2. all its
derived sloops are Boolean “or of nilpotence class 17, In this paper. we give an example of nilpotent
$0S-skein of class 2 whose derived sloops are all of nilpotence class 2.Guelzow [6] has also given a
construction of° semiboolean SQS-skeins of nilpotence class n whose derived sloops are all of class
1. As an extension result. we prove in the present paper the existence of nilpotent SQS-skeins of
class n all of whose derived sloops are nilpotent of the same class n; for any posilive integer n.

1. Introduction
An SQS-skein is an algebra (7' ¢) with a teary operation g satisfying the
following identitics:

gy 2)=qr.x.z)=qzx V) . g x, )=y, qx ¥ qx . z)) =z.

A Steiner quadruple system or simply a quadruple system is a pair (P, 3)
where B is a collcction of +-subscts of /7’ calied hlocks such that any 3-subsct off
P is contained in exactly one block of /3. The number |/’ = is the cardinality
of the Steiner quadruple system (2. 73). which is denoted by SQS(n). An SQS(n)
exists il n 2 or 4 (mod 6) {3]. There is one to one correspondence
between Steiner quadruple systems and SQS-skeins 7).

A semiboolean SQS-skein is an SQS-skein satisfying the identity :
qlx. o, gl v, 2)) = g(v. 1, g(u, X, z))

In |5]. Guelzow gave an example of an SQS-skein to prove that the class of all
sciniboolean SQS-skeins is dilferent from the class of all Boolean SQS-skeins .
That example is a nilpotent  SQS-skein of class 2 and of cardinality 16 whose
derived sloops are all Boolean ol nilpotent class 17, A sloop is an algebra
(L: . . 1) with a binary opcration . and an identity element | satisfies the
identities:

x.v=yv.x . oy oy oand x.(w.y)=y.
Quackenbush has extensively studicd the algebraic propertics of sloops in {8].
The algebraic concept of nilpotency for Mal“cev variety or for modular varicty *

can be found in [4] and [Y]. The cxislences  of nilpotent SQS-skeins and of
nilpotent sloops of any class n are proved in | 1] and |2].
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2. A nilpotent SQS-skein all of whose derived sloops are nilpotent

We will give in this section an example of nilpotent class 2 whose derived
sloops are all of nilpotence class 2. In fact. the following representation theoremn
of finite nilpotent SQS-skeins given by Guelzow [6] directed me to build this
example on the vector space over (7F(2).

Theorem 1 [6]. Let &= (N, q) be a finite SON-skein of nilpotence class #> 0

and log, |S| = m . Then there exists an m-dimensional vector space V' over
GF(2) and a family of polynomials p; over GGF(2); 1 <i < m such that B=
(V; 0) is isomorphic to <" where 1x. y, 2)i =x;+yi+zitpi(x, y.2).

This representation is given in+nore details in [6].

To consider our example. let 7 be a 4-dimensional vector space over (iF(2)
and let ¢ be a temary operation on P defined by:

xe\(yny | z x ty tz

X2 >z | 22 X2+t z X1y 2
ql | xs| vs|.]| zs| |=|Xxs+Vvstzs X2 V2 22‘

Xgf|vaf | 24 Xet vtz H (st vzt zztxaystxszztysz) |1 1]

It can be easily verified (hat q satisfies the commutative and the general
idempotent identities. To satisfy the Steiner identity, we have :

qA, B, qA. B.X))i=x; : i=1 2 3and
[¢]] h, X
([(."l. B, (](,'l. B.X)y=xs+(as+h;+x;+azh;+azx;+ h3X3) a- h> xa| +
111

a by a;+b;+x;
(a3+l)3+x3+¢13173+¢13.\'3+b3x3) as bg ﬂg+b2+x2 = X4
11 )

Then D = (I’ < q)isan SQS-skein. The projection 7 of P on to the first three
components is an epimorphism. And one easily checks that 9 is not Boolean.
then the center () =kern. L.e. &2 is nilpotent of class 2.

From the following theorcin . we can say directly that all derived sloops of @
are nilpotent of class at most 2 .
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Theorem 2 [2]. Any derived sloop of nilpotent SQS-skein of class n is a
nilpotent sloop of class at most n .

To show that all derived sloops of 2 are nilpotent of class 2. it is enough to
prove that all derived sloops are not Boolean. Then we have to show for any
vector A4 in P, there are three vectors X, Y. Z € P satisfying

g4, X qd. Y. 2) 2 qA. Y. 4. X, 2)).

It is not easy to prove this inequality directly, for this reason we prove this
inequality for each vector A separately in the following eight cases:

(0) (0 1) 0)

0 0 0 1

() ForA=[0] 1 i= 01 . takeX = 1|.Y= 0}.Z5 0
\i/ \ 0. W 0/

(1) (0) (0) (0)

0 0 0 1

2) ForA=|0| :i=0]1 .takeX =| 1] .Y =/ 0]|.Z =|0
\i/ \Y W/ \ 0/

(0) (1) (0) (0)

1 0 0 0
(B)ForA=|0]| :i=0,]1 .takeX ={ 1] .Y =] 0],Z =] ]
\i) \V W L0/

(0) (0) (1) (0)

0 . 1 0 0
4)ForA=|1| :i= 01 .takeX =| 1] .Y =[0].2={0
\iJ W ) )

(1) (1) (0) (0)

1 1 0 1

(5) ForA=[0] 1 i= 01 .takeX = 1] .Y ={0],2Z =| |
\i/ \ \ O/ U/

(1 (1 () (O)

0 1 0 1

6) ForA=|1] :i=0.1 .takeX =| 1] .Y =|0],Z =} 1
\J \(y \0) \0)




(0 (1) (0 (O)

| 0 0 1

() ForA=|1] :i= 01 (takeX =} 1| .Y =}0|,Z =|0
1/ U Y U/

(1) (1) (0) (0)

1 0 0 |

@) ForA=|1| :i=01 [take X =[ 1| .Y =] 0| .Z =} 1
i) (V) W

For all these cascs the two sides of the first three components are cqual.
le. gL N gl Y 2= gl Yogd. XN D)) fi=1,2.3
But, the two sides of the lorth componcent arc not equal, where

LHS. =g, \ g4 }. 7)),

=ExgtystoHartvitzitazvstaszstvszz) |a v oz

11

a v le

+(aztxztyvatostazvitazzztxsvatxszy)|ar xa valz

11 0

a x; v Z:I

R.H.S. =g, }. g Xl 2)),

=xgtwtayHaztxstztrazxstazzz+txszy)|a x2 2z

111

a; x; 21|

a V: X2tz
1 1 0

ap Vi Xy vz
t(aztxs+vitzitazxstazzatxgvstyvizs)
By calculating the (wo sides in cach case we can find in all cight cascs that:
L.H.S.£RH.S.

This means that there arc four vectors A L X . Y & Z € P satisfying

g4, X, g, Y. 72N =ql Yogid. X 7)) . Consequently. we have the SQS-skein
D = (P q)is nilpolent of class 2 and all its derived sloops are also nilpotent of
class 2.
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3. Nilpotent SQS-skeins all whosce derived sloops of nilpotence class n

In |2}: the author gave a construction of an SQS-skein with a derived sloop.
both are nilpotent of the same class n: for any positive integer n. In [6].Guelzow
gave a construction of nilpotent SQS-skeins of class n. whose derived sloops are
all Boolean “of nilpotence class 17. such class of SQS-skeins is known by
semiboolecan SQS-skeins. Our aim in this paper is to construct a nilpotcnt SQS-
skein of class n. all of whose derived sloops are nilpotent of the same class n. In
other words. we will gencralize (he example given in section 2.

The author has given in | 1] a construction of nilpotent SQS-skeins of class n.
This construction ~is generalized and reformulated by Guelzow {6] in the
following thecorem to a construction that is known by Generalized Doubling
Construction.

Theorem 3 [6]. Let v, = (T, q. ) be an SQS-skein and R be a set of  4-clement
subalgebras of t.. Suppose T = T, x GF(2) and xg is the characteristic

Jimetion of R, then t - (T 0 g ) is an SOS-skein, where

GUx i) (v i)z ) =g X v 2 i i R xg +<x, p, 2>, )

If T_is nilpotent of class n, then tis nilpotent of classnorn+ 1 .

The author has given in |2] a construction of nilpotent sloops of class n .and
this construction is relormulatcd in |2] by using the same sense of the above
theorem to the generalized doubling construction of nilpotent sloops as in the
following theorem.

Theorem 4 [2). Let Y :=(1.: x.1)beasloop and R, be a set Q/‘3-element‘

subalgebras of [ I = (L x GIN2)y ;o (r e ))and xy, isthe

characteristic function of R . then .2 is a sloop, where the binary operation o is

given by . ‘

(x.igde(v. L) = (s iy Hictxg, <x,1>0).

Moreover, if L} is nilpotent of class n, then .8 is nilpotent of class n orn 4 1
The next theorem gives us the characteristic of the center of subdirectly

irreducible SQS-skeins and of subdircctly irreducible sloops.

Theorem S [1}{2]. Let © he a subdirectly irreducible SQS-skein or sloop. Then

the unique atom of the congruence lattice of t is the center &) iff’

| Ixlg(n]=2.
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Now. we are able to prove our main step of mathematical induction in the
following theorem.

Theorem 6. If T is asubdirectly irreducible SQS-skein of nilpotence class n
whose derived sloops are all subdirectly irreducible and also of nilpotence class
n, then there is an irreducible SQS-skein of nilpotence class n + 1 and all its
derived sloops are subdirectly irreducible and of nilpotence classn + 1.

Proof. < is irreducible and of nilpotence class n, then we may assume that 7=
(T ;q ) whereT ={x9, X;. .. Xpm_,} and the congruence lattice of 7 has a

unique atom 6 = £ ( 7’ ). By theorem 5, 6 can be assumed without losing the

. ez .

truth of the generality by ¢ =,.H=.. 1X;. x;+1}>.Also each derived sloop £ i=
(T"; o;, x;) is subdircctly irreducible and of nilpotence class n. where o; is
defined by yo; 2 := ¢ (x;, . 2). then ng,’: )=6;i=01, .., 1.

By choosing the set R := {ix; . Xixs . Xis2, Xis3} 21 =0, 4,8, .. ,2m—4} and
applying theorem 3. we get 7 :=(T x GF(2) ; q) is an SQS-skein, where q is
defined as in theorem 3. lLe.

Gx, iV, i (2. i) = (G V. 2), ixF iyt i+ X <X, Y, 2> 0%).

According to thcorem 3. is nilpotent of class norn + | and the kernel of the
projection 7 : T x GF(2)— T is a central congruence of 7. To prove that T is

subdirectly irreducible and of nilpotence class n + 1, it is enough; to prove that
ker 7z is the unique atom of the congruence lattice of 7 according to thereom 5.

The congruence ) is extended in T to the congruence
M.z
0= U 4xi, 0.0 Dxisr. O (xing . D}

eveni=0
By considering any block h-of the setR.say b ={x;, Xjss, Xi+2, Xi+3} and by
assuming that the congruence lattice of 7 has another atom &. then 6 would
cover each of ker 7and J:1t means that the class |(x;, 0)]6 has two cases:
(l) [(x,~, 0)16= :(X,-., ()),(X,';' . ()): or
Q) [(xi, O)F= {(xi. O (xiey . 1)]. .
And by choosing two distinct pairs (x;, X+) and (X, Xg+) of @ such that
le{i,i+],i+2,i+3}and g (x;. Xja2, X)) = X,
We will use the same tactic used in the proof of the construction of nilpotent
SQS-skcins of class n in |1] to get the contradiction with the number of
elements of [(x;, 0)]0. For the first case (1). one can show that the pairs
(i) 0), (%41, O)) L ((x7, 0),(xp1p . O)) . ((Xin2, 0).(xse3, 1)) are elements of &,
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and then ((xx. 0).(xx, 1)) or ((x¢. 0).(xx+1, 1)) € 3 that gives the contradiction
"(xk' 0)] ‘SI >2.

For the second case (2). one can show that the pairs
(i, 1).(Xis1 2 0)) . (Kivz. O (Xi23. 0)), ((x1, 0).(x1+;, 0)) are elements of &, and
then  ((xx. 1).(xx, 0)) or ((xx, 7).(xx+1, 0)) € & that gives also the contradiction
(e, O)] 61> 2.
Therefore, the atom ker x is the unique atom of C(7). Le. zis subdirectly
irreducible and nilpotent of class n + 1.
Itis easy to see that ker mis a central congruence of any derived sloop
=T xGF(2); .. (xi. 0)) of 7, where
W, i)z, i) =q(x, 0. (v. i), (2, 72) This means that
W. i)z, i) =(qx;, v, 2), iy + it Xg<Xi, ¥, 2> %)

=(v ° z, ’.y+i:+xR,. <v, Z>j.' .

where R; is the set {{v. z. w}:ix;.v.z.w} € R} ie. R,;isthe singleton sct
Xy Xis2 s Xinz) ).
Then according to theorem 4 or specially to the construction 1 in (2], the derived
sloop . is a subdirectly irreducible and nilpotent of class n + 1;

foranyi=20, 1,.., 2"~ 1. This completes the proof.

Theorem 7. For any positive imeger n, there is nilpotent SQS-skein of class n,
in which every derived sloop is also of nilpotence class n.

Proof. From the given example in section 2. we have a subdirectly irreducible
SQS-skein of cardinality 2°, in which every derived sloop is also irreducible and
nilpotent of class 2. According to theorem 6 and by the principal of
mathematical induction. we get directly the structure of the required SQS-skein.

 Covollary 8. There is a nilpotent SQOS-skeins t of class n which its derived
sloops are all of nilpotence class n, in which T and all it derived sloops have the
same center and the same cemtral series.

Proof. The given example in section 2. .2 is an SQS-skcin of nilpotence class 2
satisfying (he required propertics of the corollary. And by theorem 6, we can
construct an example of nilpotent SQS-skein of class 3 and any of its derived
sloops is also of class 3.

Namely, (he SQS-skein 7:=(/’x (il(2) ; q). where q is defined as in thcorem 6.
The center &(7) = ker 7 is the same center of any derived sloop £}

ie. &1y = &) = ker x. where ris the projection of Px (iF(2) onto I. We
have the center & vker x) = &) = the center of any derived sloop of 2 if the
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center & wher a) denoted by & (1)-ker . then the central series of 7 and of any

ofitsderived sloop .2, (i - 0. 1. ...2 )is
A=0¢C cfl(r):= £(1) =<§(..i.:)§ §J(r) c =V
By repeating the same process, we get our required structure.
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