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Abstract: For a graph G, let a(G) and 7(G) denote the independence
number of G and the matching number of G, respectively. Further, let
G x H denote the direct product (also known as Kronecker product, cardi-
nal product, tensor product, categorical product and graph conjunction) of
graphs G and H. It is known that a(G x H) > max{a(G)- |H|,«(H) |G|}
=: a(G x H) and that 7(G x H) > 2-7(G) - 7(H) =: (G x H). It is
shown that an equality/inequality between a and a is independent of an
equality/inequality between 7 and 7. Further, several results are presented
on the existence of a complete matching in each of the two connected com-
ponents of the direct product of two bipartite graphs. Additional results
include an upper bound on a(G x H) that is achievable in certain cases.
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1 Introduction and Preliminaries

For a graph G, let a(G) and 7(G) denote the independence number of G
and the matching number of G, respectively. Further, let G x H denote the
direct product (defined below) of graphs G and H. This paper continues
an earlier study [6] on a(G x H) and 7(G x H), and presents several new
results.
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Independence number and matching number are prominent graph in-
variants having applications in areas such as information theory, extremal
graph theory, optimization problems, VLSI layout, processor scheduling
and network flows. Also, graph parameters such as rank, vertex covering
number, edge covering number, chromatic number and chromatic index are
related to them. While determination of a(G) is, in general, NP-hard [1],
that of 7(G) is possible in polynomial time [2, 12]. For a product graph,
it is economical to obtain these invariants via factor graphs, since problem
size is much smaller in the factors than in the product. This observation is
particularly interesting in view of a recent efficient algorithm for factoring
a graph with respect to the direct product [4].

By a graph is meant a finite, simple and undirected graph. Unless indi-
cated otherwise, graphs are also connected and have at least two vertices.
Let G stand also for V(G). For X C V(G), (X) denotes the subgraph
induced by X. Let P, (resp. Cp,) denote a path (resp. a cycle) on m
vertices.

Let G be a graph. The independence number a(G) of G is defined to be
the largest number of mutually nonadjacent vertices in G. By a matching
in G is meant a set of edges, no two of which share a common vertex.
The matching number 7(G) is defined to be the size of a largest matching.
G is said to have a perfect matching if 7(G) = }|G|. For any undefined
terms, see the recent monograph [5] that contains a wealth of information
on product graphs.

A complete matching in a bipartite graph is a matching that includes
every vertex of the smaller partite set. Not every bipartite graph has a
complete matching.

Definition 1 Let G = (V UW, E) be a bipartite graph with |V| < |[W|. A
set of r vertices in V is collectively incident on, say, q vertices of W. The
mazimum value of the number r — q taken over all values of r = 1,2,---
and all subsets of V is called the deficiency §(G) of G. D

Note that §(Ky, n) = m—n, where m < n. The following statements are
equivalent with respect to a bipartite graph G = (VUW, E) with |V| < [W[:
(i) G has a complete matching, (ii) §(G) < 0, (iii) 7(G) = |V|, and (iv)
a(G) = |W|, cf. Hall’s marriage theorem.

The direct product G x H of graphs G and H is a graph with V(G x H) =
V(G) x V(H) and E(G x H) = {{(v,z),(v,9)} : {u,v} € E(G) and
{z,y} € E(H)}. This product is commutative and associative in a natural
way, and is distributive with respect to edge-disjoint union of graphs. It
is variously known as Kronecker product, cardinal product, tensor product,
categorical product and graph conjunction, and is the most natural graph
product with applications in areas such as automata theory [3] and multi-
processor systems [9]. It is not difficult to see that certain computational
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Table 1: avs. ¢and 7 vs. T

| GxH a=a? | 7=17 | Reference
Py; x P,[/Cs; x Ky /K2 x Cyj Yes Yes Jha et al [6
Ky, % Kl,n/c2i+1 X 02]'+1 Yes No Jha et al [6

m,n>2andi,j>1

(Km+Kp+e) x (Kn+ Ky, +e) No Yes Remark

m and n of the same parity following
m,n>3andm#n Lemma 2.3

(K1,m +v) X (K1, +7) No No Remark

m,n >3 following
Theorem 3.1

arrays [10] and diagonal networks [11] are representable by means of this
product.

It is known that (i) G x H is bipartite if and only if G or H is bipartite,
(if) G x H is connected if and only if G or H is nonbipartite, (iii) If G =
(VUW,E) and H = (X UY, F) are both bipartite, then G x H consists
of two connected components having vertex sets (V x X)U (W x Y) and
(VxY)U(W x X), respectively, and (iv) If G and H are bipartite graphs,
one of which admits an automorphism that swaps the two colors, then the
two components of G x H are isomorphic to each other [7].

It is easy to derive the following lower bounds:

1. o(G x H) > max{a(G) - |H|,a(H) - |G|} =: &(G x H).
2. (Gx H)>2 -7(G)-7(H) =: (G x H).

Table 1 shows that an equality/inequality between o and ¢ is indepen-
dent of an equality/inequality between 7 and 7. Certain additional remarks
appear below.

e a = g holds for each of Py, X P, Crn X Py, Cpo X Cp, [6], and Ky X K
[8]. However, for every graph G and every natural number ¢, there
exists a graph H; such that a(G x H;) > a(G x H;) + i [6].

e 7 = 7 necessarily holds if each of G and H contains a perfect match-
ing. However, graphs exist for which there is an arbitrarily large
gap between 7 and 7. In particular, 7(K;,, X K;,,) = n + 1 while
I(Kl,n X Kl,n) =2.

The following statements are equivalent with respect to a bipartite graph

G having an independent set I and a matching M: (i) I is a largest inde-
pendent set and M is a largest matching, and (ii) |I| + |[M]| = |G].
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Section 2 deals with bounds on a{G x H). An upper bound @ is pre-
sented that is shown to be achievable in many cases. That the lower bound
a may not be correct even for the product of certain trees is proved next.

Section 3 studies complete matching in the two components of the prod-
uct of bipartite graphs. Existence of a complete matching in each of G and
H ensures the existence of a complete matching in only one of the two com-
ponents of G x H. However, if one of G and H has a perfect matching, then
the existence/non-existence of a complete matching in the other graph is
inherited by each component of G x H. Further, for each bipartite graph G,
there exists an r such that each component of G x K, contains a complete
matching.

2 Bounds on «(G x H)

It is easy to see that if G is a graph, and G\,---,G are subgraphs that
constitute a vertex decomposition of G, then a(G) < Yi_, @(G;). This
fact and the following lemma lead to an upper bound on (G x H) that
appears in Theorem 2.2.

Lemma 2.1 Ifm > n > 2, then K., x Ky, admits of a vertez decomposition
into m cliques, each isomorphic to K.

Proof. That the claim is true of K,, x K5 is easy. In what follows, let
m >n >3, and let V(K,) = {0,...,n—1}. For 0 < j <m — 1, each of
{(i+3,4): 0 <i< n-—1}induces a clique K, in K X Kn. (Here i + 7 is
modulo m.) The resulting m cliques constitute a vertex decomposition of
K, x K. m}

1t follows that a(Km x K;) < max{m,n}. Also, a(Kmn x Ky) > a(Km x
K,) = max{m,n}, and hence a(Km x K,) = max{m,n}.

Theorem 2.2 If G and H are graphs, and Qi,...,Qm (resp. R;,...,R,)
are vertez-disjoint cliques in G (resp. H), all different from K, then

(G x H) < |G| |H| = (X1Qil - IR 1cigm; 1<i¢n
+(3- maz{|Qil, |R;j|})1<i<m; 1<ign-

Proof. Let G, H, Q1,...,Qm and Ry,..., R, be as stated. Note that
{QixRj: 1<i<mand1 <j < n} constitutes a collection of m - n
subgraphs of G x H that are mutually vertex-disjoint. By Lemma 2.1,
each (Q; x R;) contains max{|Qi|,|R;|} vertices that are mutually non-
adjacent. Thus ({Q; x Rj : 1 <i<mand 1< j<n}) contains at most
(> max{|Qil,|R;|})1<i<m; 1<j<n vertices that are mutually non-adjacent.
Consequently, a largest independent set of G x H is of cardinality at most
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|G| - |H|- (X 1Qi] - IR Digicm; 1<i<n +(3 max{|Qil, |R;|}h<i<m; 1<j<n-
a

Let the least value of |G| - |H|- (2 |Qil - IRjI)lsiSm; 1<j<n +
(3" max{|Qil, |R;|})1<i<m; 1<j<n be denoted by @&(G x H), where the min-
imum is taken over all vertex-disjoint cliques in G and H satisfying the hy-
pothesis of Theorem 2.2. Clearly, @(G x H) is an upper bound on a(G x H).
It is next shown that & = @ holds in certain cases.

For m,n > 3, let (K, + K, + ) be the graph obtainable from a K,,
and a vertex-disjoint K, by introducing an edge (i.e., a bridge) between a
vertex of K, and a vertex of K,,. Let vertex set of this graph be given by
{0,---,m=1}uU{m,---,m+n— 1} where edge set consists of (i) all edges
among 0,---,m — 1, (ii) all edges among m,---,m +n — 1, and (iii) the
bridge {m — 1,m}. (Let G? stand for G x G.)

Lemma 2.3 For m,n >3, a((Km + K. +€)2) = a((Km + K + €)?).

Proof. Assume that m > n > 3, and check to see that &((/(,;, + K, +e)?) =
3m + n. That this upper bound is correct is seen from the existence of the
following independent set of the same cardinality:

{(0,j): 0<j<m—-1}U{(m,j): 0<j<m-1}

U{,m+1): 0<i<m+n-1}. O

Remark: Note that g((Km,+Kn+€)?) = 2(m+n). Consequently, a((K,+
K, +¢€)?) = a((Km + Kp + €)?) if and only if m = n. Also, if m and n
are of the same parity, then the graph (K,, + K, + e) contains a perfect
matching, and hence so does (K, + Kn + €)2. It follows that if m,n > 3,
m # n and m,n are of the same parity, then the graph (K., + K, +¢)? is
such that « > g and 7 = 71.

Let G = (VUW, E) be a bipartite graph, and let n > 3. Consider the
graph G x K, that is bipartite having partite sets V x K, and W x K.
Letting |G| = r and 7(G) = t, it is clear that a(G x K,;) = a(G) -n =
(r —t) - n. Also, since G contains exactly t vertex-disjoint K>'s, it follows
that @(G x K,) =r-n—-2-t-n+t-n = (r —t) - n. Consequently,
a(Gx K,)=(r—t)-n=a(G)-n, and hence 7(G x K,) =t-n = 7(G) -n.
Thus the graph G x K, is such that each of @ and @ is achievable, and
if n is even, then 7 = 7 holds. The reader may further check to see that
G x K,, contains a complete matching if and only if G contains a complete
matching.

It is next observed that if m, n > 3 and m is odd, then a(C,, x K,) =
o(Cm x K3) = (m —1)n/2. To see this, consider the following sequences of
vertices for 0 < j < n—1: (0,a0+7), (1,a1+j), ..., (m—1,a:m-1+3), where
@ =a = =ap-3=0;a =a3 = =ap-2 = 1; and ap-; = 2.
Each induces a cycle of length m, and the resulting n cycles constitute a
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Figure 1: The tree (Ki,m + K1,n +€)

vertex decomposition of Cy;, X K. Thus a(Cy, x K,) < (m —1)n/2. Also,
a(Cm x Kp,) = (m — 1)n/2.

Remark: Let m and n be both odd > 3, and m > n. It is known that
a(Cm x Cp) = (m — 1)n/2 [6]. Also, as shown above, a(Cp x Kp) =
(m - 1)n/2. Thus Cp, x C, is independence-insensitive to the introduction
of a total of mn(n — 3) edges from E(Cp, x K;) \ E(Cy X Cy). A similar
statement holds with respect to each of the following: (i) Cs; x C, and
Cai x Ky, and (ii) Piy1 X C2j41 and Poip1 X Kajt1.

Finally in this section, it is shown that o need not be equal to & even
for the product of two trees. Let (Ki,m + K1, +€) be the tree that appears
in Figure 1 and that is obtainable from a K, and a vertex-disjoint Kj .
by introducing an edge between the “centers” of the two stars.

Lemma 2.4 a((K1,m + K1,n + €)%) = a((K1,m + K1,n + €)?) if and only
if m=n.

Proof. The two partite sets of (Ki,m + K1,n +€) are {b,z1,...,Tm} and
{6,¥1,...,¥n}. Let 1 <m < n. First consider the component

(({baxlv--')a:ﬂl} X {bsxla'--azm})u({a)yh""yﬂ} X {a7y1)"')yn}))

of (K1,m + K1,n + €)? that has a total of (m + 1)2 + (n + 1)? vertices. The
set I) and the set M;, respectively, constitute an independent set and a
matching of this component:

Il = ({zl"' ',zm} X {zly"')w‘m})u ({yl,"')yn} X {yl:"')yn})
U{(a,y:) : 1<i<n}U{(ya): 1<i<n}

My = {{(zb), (w0} 1<3 < m}U{{(,z0), i)} : 14 < m)
U{{(bib))(yhyl)}’{(mlvxl):(aya)}}'
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Note that |I;| = m? + n? + 2n and [M;| = 2m + 2. Since |I}| + |M;|
is equal to the number of vertices in this component (that is bipartite), it
follows that I is a largest independent set and M, is a largest matching.

Next consider the other component

(({byz1,.. .y 2m} X {@, 415, un DU ({@, 91, .-, ¥n} X {b,21,...,Zm}))

that has a total of 2(m + 1)(n + 1) vertices. I, and M, are an independent
set and a matching, respectively:

I2 = ({xl:"'3xm} X {yl:""yn}) U({yly"'ay‘n} X {zla"':zm})
U{(a,z:): 1<i<m}u{(by:): 1<i<n}
{{(xha)v(a’zi)} 01 S i S m} U {{(biyt)r (ynb)} 01 S?, S n}
U{{(b,a),(y1,$1)},{(a,b),(wl,yl)}}-

Note that |I;| = 2mn + m + n and [Ma] = m + n + 2. Since || + | M|
is equal to the total number of vertices in this component, I> is a largest
independent set and M, is a largest matching.

Thus a((K1,m + Ki,n + €)%) = (m? +n? + 2n) + (2mn + m + n). Also,
a((K1,m +K1,n+e€)?) = (m+n)-(m+n+2) = (m?+n2+2n) +(2mn+2m).
Clearly, = ¢ if and only if m =n. a

Let (2K1,m + €) stand for (Ky,m + K1,m +¢). The reader may check to
see that if m, p, ¢ are integers such that 1 < m < min{p, ¢}, then the graph
(2K1,m +e€) x (K1 ,+ K),4+e€), that consists of two isomorphic components
(7], is such that & = @.

M,

3 Complete Matching in the Product of Bi-
partite Graphs

Throughout this section, G and H are bipartite graphs, so G x H consists
of two connected components, themselves bipartite.

Theorem 3.1 If each of G and H contains a complete matching, then
one component of G x H contains a complete matching while the other
component of G x H need not contain a complete matching.

Proof. Let G = (VUW,E) and H = (X UY, F) be bipartite graphs,
where |V| < |W| and |X]| < [Y]. It is easy to see that if M (resp. M’) is
a matching in G (resp. H) then M x M’ (that is of size 2 - |[M| - |M'|) is
a matching in G x H that is evenly divided between the two components.
Based on this, existence of a complete matching in each of G and H implies
existence of a complete matching in the component {((V x X) U (W x Y))
of G x H.
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Figure 2: The tree (K} mn + v)

On the other hand, the other component of G x H need not contain a
complete matching. To see this, let (K, + v) be the tree that appears
in Figure 2. It has m + 2 vertices with partite sets Xo = {a,b} and X, =
{z1,--+,Tm}. Similarly, let (Kin + v) be the tree with partite sets Yy =
{c,d} and Y1 = {y1,"--,yn}, where c (resp. d) is analogous to a (resp. b)
in (K1,m + v). It is clear that each of (K1, +v) and (Ki,m + v) contains
a complete matching. Assume that 3 <m <mn.

Now consider the component ((Xo x Y1) U (X; x Yp)) of (Kym +v) X
(K1,n + v) that has a total of 2- (m + n) vertices. It is easy to check that

I={(a,y:): 1<i<n}u{(bvs): 2<i<n}U{(zi,c): 2<i<m}
is an independent set of this component, and that

M = {{(a,11),(z1,9)}, {(a,¥2), (z1,d)}, {(b, 1), (z2,¢)}}
U{{(bayi)= (xi,d)} 12<i<L m}

is a matching of this component. Note that |I| = m+2n—2and |[M| = m+2.
Since |I] + |M| is equal to the number of vertices in this component, I
(resp. M) is a largest independent set (resp. largest matching). Since |M|
is strictly less than the cardinality of the smaller partite set, this component
does not contain a complete matching. To conclude the proof, each of Pa;41
and Pyj4) contains a complete matching, and so does each component of
Py X Pajyy [6]. O

Remark: The trees (K m + v) and (K, + v) presented in the proof of
Theorem 3.1 are such that a((Kim +v) X (Kin+v)) =mn+m+2n-2>
a((K1,m +v) x (K1,n +v)) = mn+2n. Also, T((Ki1,m +v) X (Kin+v)) =
m+6>7((Kim +v) X (Ki,n+v)) =8

Theorem 3.2 1. If G contains a complete matching and H contains a
perfect matching, then each component of G x H contains a complete
matching.

2. If G does not contain a complete matching and H contains a perfect
matching, then each component of G x H does not contain a complete
matching.
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Proof. (1) is left to the reader. For {2), it suffices to show that if G does
not contain a complete matching, then each component of G x K., does
not contain a complete matching, where r > 1.

Let G = (VUW,E), where V| =m < |W| =n, and let 7(G) = m — i,
so @(G) = n+1i, where i > 1. Observe that 7(G x K,.,.) = 2-(m —i) -7 and
a(GxK,;)=2-(n+1)-r. Since z +a = |G x K, |, it follows that r = 1
and @ = @. The two components of G x K, , being isomorphic [7], the
matching number of each component is equal to (m — ) - r that is strictly
smaller than the cardinality of the smaller partite set of each component.O

It will follow from the result of Theorem 3.3 that “H contains a per-
fect matching” appearing in the statement of Theorem 3.2(2) cannot be
weakened to “H contains a complete matching.”

Theorem 3.3 For every bipartite graph G, there exists an integer r such
that each component of G x K, . contains a complete matching.

Proof. Let G = (VUW, E) be a bipartite graph, and let G have a vertex
decomposition into complete bipartite subgraphs Ko, sy, , Km, n, Where
m;,n; > 1. (The existence of such a decomposition may be proved by
induction on the number of vertices of G.) It may be assumed that V can
be partitioned into V;,---, Vi, and W can be partitioned into Wy, ---, W,
such that |Vi| = m;, |W;| = n; and (V; UW;) induces Ky, n,. Thus |V| =
my+---+my and [W| = ny+- - -+ng. Let r = max{my, -, mg,n1,--+,m},
and let V(K ,) = {0}u{1,---,7}.

Now consider the graph G x K , that consists of two components having
vertex sets (V x {0})U (W x {1,---,7}) and (W x {0})U(V x {1,---,7}).
It is clear that (V x {0}) and (W x {0}) are the smaller partite sets of the
respective components.

The component ((V x {0}) U (W x {1,---,7})} is vertex-decomposable
into k subgraphs

(N x {0HU W x {1,---,r}), -+ (Ve x {0 U (Wi x {1,---,7}))

that are, respectively, isomorphic to K, nyr, -, Kmy,npr- It follows that
the matching number of this component is at least m; + --- + m;. Since
this figure coincides with the cardinality of the smaller partite set, this
component contains a complete matching. An analogous statement holds
with respect to the other component. a

Remark: For some r > 1, consider the graph (2K, ,, + €) x K, , that
consists of two isomorphic components [7]. The reader may check to see
that each component contains a complete matching if and only if r > m.
Thus the choice of the integer r in the proof of Theorem 3.3 is tight.
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