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Abstract

Broadcasting refers to the process of information dissemination in a communication net-
work whereby a message is to be sent from a single originator to all members of the network,
subject to the restriction that a member may participate in only one message transfer during
a given time unit. In this paper we present a family of broadcasting schemes over the odd
graphs, Ony4y. It is shown that the broadcast time of On4), 5(On41), is bounded by 2n.
Moreover, the conjecture that 6(Op,41) = 2n is put forward, and several facts supporting this
conjecture are given.
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1 Introduction

The Broadcasting problem on a network, also called OTA (One-To-All). is the
process of disseminating a message from one initial node to all others in the
network. The message is known by this initial node, called the originator node,
but not by any other one in the net (see (4], [7]). The process must be done as
quickly as possible following a predefined model which conforms to the following
rules: one unit of time is needed to make a call from one node to another. only
one call can be done by the same node in a unit of time and calls are made
only between adjacent nodes. A broadcast scheme is a formal description of this
process.

We represent a communication network as a connected undirected graph
G = (V, E), where the node set V' represents the set of processors and the edge
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set E represents the set of bidirectional communication lines between processors
(see [1]).

Given a connected graph G and a vertex u € V, the broadcast time of u,
denoted by b(u), is the minimum number of time units required to complete
broadcasting from u. The broadcast time b(G) of the graph G is the maximum
broadcast time of any vertex u of G. The problem of determining the value
b(G) is known to be NP-HARD (see [8]). Nevertheless the values of b(G) are
known for many common interconnection networks (like grids and hypercubes).

It is easy to see that, after ¢ units of time, the maximum number of mem-
bers which may have received the message is 2¢, including the originator. This
fact implies that the minimum number of time units required to broadcast a
message in a set of n members is flog,n]. A minimal broadcast network is a
communication network with n nodes in which a message can be broadcasted
in [log, n] time units, regardless of the originator.

In this paper, we study (G) when G is an odd graph and we compare this
value with [log, [V|], where |V] is the order of the graph G. One important
reason to consider this family of graphs is its vertex-transitivity, which allows
each node in the associated network to execute the same communication soft-
ware. Odd graphs have been used for many applications in computer systems.
There are some results on analysis of odd graphs for building communication
architecture for large multiprocessor systems (see [5]). The topology defined by
odd graphs admits simple distributed routing algorithms. A complete analysis
of odd graphs in [5] shows that the resulting networks based on it possess many
good features which makes them competitives with various well-known archi-
tectures. Furthermore, these graphs have a remarkable property of partitioning
into symmetrical regions, which is similar to the one discovered for bisectional
networks in [6].

This paper is organized as follows: In the next section we recall the definition
and some properties of the odd graphs (see (3], [9]). A family of broadcasting
protocols is defined in Section 3. This family makes use of the symmetries of
odd graphs. Some results on the broadcasting time of these protocols are given,
in particular a sharp bound is found. In Section 4 the minimality in time of a
particular protocol belonging to the above family is conjectured. Finally some
facts supporting this conjecture are given.

2 0Odd graphs

An odd graph, denoted by Oy, has as its set of vertices the n-subsets of a
(2n + 1)-set X; for instance the set X = {1,2,---,2n+ 1} can be considered.
Two vertices U, W C X are adjacent iff UNW = B. Therefore, O, 4, is a regular
graph with order (z":l) and A = n+ L. The Figure | shows O,.

The elements of the set X are called colours. The adjacency rule in O, 4
allows us the labelling of every edge with the unique colour of X' which is not
in its end-vertices. This fact, in turn, leads to the identification of the paths by
the colours of their edges. see [3]. We note that for each colour of X there exist
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Figure 1: Oq4

exactly (3") edges of 0,4 labelled with this colour.
Some well-known properties of On4, follow from this colouring:

e P1 If a path of even length coloured by
adycads ---cp dy,
leads from a vertex U to a vertex W, then
W = [UU {e:H\(U'{d:}),

where U’ means that repeated elements are considered as many times as
they appear.

e P2 Analogously, if a path of odd length 2k + 1 coloured by
C1 d] Czdz “'Ck([ka.H,
joins a vertex U with a vertex W, then

W= [(X - U)U {d I\ {e).

By avoiding repetitions of the ¢;’s and d;’s we get the following result about
shortest paths:

e P3 Let U and W be two vertices of Ont1 and let m = {UNW|. Then,
the shortest paths of even length between U and W have length 2(n — i)
and the shortest paths of odd length between U and W have length 2m+1.

The following known facts about O,y are trivial consequences of P3:
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e P4 The shortest odd cycle length of O 4 is 2n+ 1. Moreover from P2
it follows that cycles of length 2n + 1 are those using the 2n + 1 colours
of X.

e P5 The distance between two nodes U and W such that [UNW|[=m
is

d(U,W):min{2m+l,2(n—m)}={ 2%,’1"_““"‘1) :f, ms

(33

e P6 The diameter of Op4; is
D(On41) = max{d(U, W) /U W € V(On1)} = n.

e P7  Ony is distance-transitive (see (2], [3]). [n particular, it is vertex-
transitive.

From now on we call odd (even) paths those paths with odd (even) length value.

3 A Family of Broadcasting Protocols in Odd
Graphs

We can choose any vertex of On 41 as the originator of a protocol, since the odd
graphs are vertex-transitive. We take A = {1,2,...,n} as originator.

Let B be a vertex of Op41 with |[AN B] = m. From the sets A and B a
classification of elements of X can be made as follows:

A\ B ={a1,az,*,8n-m}, ANB={ay, a2, -, am},
B\A = {bl’bZ."’nbn—m}; X\(AUB) = {61-62»"%61!1-{-1}-

From P1, P2 it follows that the path coloured by b, a) b2 a2 s bp—m Bnom IS
an even shortest path from A to B, and f) a; 2 a2 - - Bm &m Bm41 is an odd
shortest path from A to B (see [9]).

So the same vertex B can be attained from the originator by two different
vertex-disjoint paths, an even and an odd shortest path respectively. We have
used this fact to generate our family of protocols on Op 4.

From now on, we assume, without loss of generality, that

gy <ar<---<ag-m, a <ax < - < am,
by <ba<- - <bpom, i <B2< - < B

Definition 1 Let P be the family of broadcasting protocols over Op 41 satisfying
the following two rules:

[R1) The message is disseminated on the network from the originator A=
{1,2,...,n} only through paths coloured by ryy; T2y2z3y3 - -~ where z; €
X\ A, ¥ € A and satisfying

) <za<ry3< -,
n<y<ys<
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Given a path ¥ as in [R1] with final vertex B, we call a vertex C a -
adjacency of B if the path obtained by adding the edge { B.C} to v satisfies
[R1].

[R2] Let B be a vertex of Ony, informed from A at time t, through a path v
asin [R1]. Let B', B" be two v-adjacencies of B uninformed at time less
than or equal to t. The verter B cannot inform B' sooner than B” if the
colour of the edge { B, B'} is greater than the colour of the edge {B, B"}.

It is obvious that P # @ because we can reach any vertex N # A from A
through exactly two different paths, odd and even respectively, and satisfying
the rule [R1}. We remark that [R1] implies that the paths used are the shortest
ones within the same parity class.

Proposition 1 There erists a unique protocol Py € P such that any verter B
which is informed at time t through a path 4 and has uninformed v-adjacencies
informs one of these nodes at time t 4+ 1. Moreover, the time which the verter
B is informed according to Py, ty(B), satisfies

to(B) = -1+ Qm + Bma1 if B is informed through an odd path,
0 T | —n+anem+boem if B is informed through an even path.

In any case
tO(B) = min{—n +am + Bmg1,~n+an_pm + bn—m}

and
max{to(B)/B € V(On41} = 2n.

Proof. First, we will prove that the expression of to(B) is true when the protocol
Py is well defined.

Let B be an informed vertex through a path y according to [R1] in time ¢.
Assume that v is an odd path. Then

Yy=Fa; "'ﬂmamﬂm-i-l-

Denote by By, B}, By, Bj, -+, Bm, Bl,, Bm41 = B the vertices of the path v
in the same order as they have been informed. Since P, informs the v-adjacencies
of minimum colour, we have

to(Bi) = —n, 1o(By)—1o(B1) =ay.
Similarly, for all 1 < i < m we have to(B;41) ~ to(B!) = Bis1 — B; and for all
1 <i<m—1 wehave lo(B;,,) — to(Biy1) = aig1 — 0.

So it follows that

to(B)

o) —n+ﬂz—ﬂ1+"'+ﬂm+1—ﬁm
tay+or—a1+ -+ apm —ap)
—nt+Pmsr +am.

It
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On the other hand, if v is an even path, we can proceed in the same form
and we obtain
to(B)= —n+an-m +bn-m.

If we prove the existence of the protocol Fo, then the uniqueness is obvious. To
prove the existence, it is sufficient to see that if a vertex B is reached in the same
time through the two paths and it has y-adjacencies, then all the y-adjacencies
of B are already informed.
Now we will see that if B is a vertex informed at the same time ¢ through
the two paths
Yeven = b1 brar - by—m@uom,
Yodd =By fraz ~ Bm am Bmsr,
then all the y-adjacencies of B are already informed.
The equality of times through the two paths implies

to(B)= -n+am +Bmr1 = ~n+an-m +bnom.

We know that max{am,@n_m} = n and max{Bms+1,0n-m} = 2n + 1. By the
above identity of times, the values a,, and Bn 41 (resp. @n—m and b,;n) can not
take the maximum values simultaneously. We must study the following cases:

e am =n and by_m = 2n + 1. Then B has no y-adjacencies.

e Bmsy1 = 2n+ 1 and ap—m = n. From the vertex B, following paths
according to the rule [R1] we have two different types of y-adjacencies:

1. Let B’ be a Yeven-adjacency of B, then the colour of the edge { B, B'}
is B; for some bp_m < B;. The two paths connecting A and B’ are

Bray Baaa - Bicyaicy Big1 @i -+ Bl O,
b] a) b'_» as “b,,_m An-m ﬁi-

So to(B') = min{—n + am + Bmt1. N+ an-m + Gi}.
As
—ntam+Pmy = -+ iom Fboom < —ntaim+5i

we have Lg(B’') = —n+am + Bins1 = to(B). and B’ has already been
informed.

2. Let B’ be a Yeda-adjacency of B and let a; € A be the colour of the
edge {B, B'} with a,, < a,. The two paths connecting the vertices
A and B’ are

,BI @y ﬂ'.! az - ;jm yn v"m-{-l a;,

byay - biaj4 bigr - bnom-18n-mbn_m-

Then to(B’') = min{—=n+di+3ms1. =N+ t-m+bo-m}. By am < a;
we have

—n+an,+ ﬁm-H =-n+adyn-m-+ by-m < —n + Bm+l + a,.

Then to{ B') = to(B) and B’ is an already informed vertex.
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By the above proved equality of times, for all vertices B we have 1o(B) <
—n+n+(2n+1) =2n+1. fam+Bms1 = 3n+1 (resp. ayom+bn_m = In+1).
then —n + dyom + bpem < 2n 1 (resp. —n+am + Bmsy < 2n—1). So it
follows that {o(B) < 2n. As {(B) = 2n, if B = {1,2,---,n — 1,2n}, then
max{{o(B)/B € V(Ons1)} =2n. O

Figure 2 shows the broadcasting scheme Py for the graph Q4. The vertices
are grouped by columns, according to the time needed to get the message to
them from the originator vertex {1,2,3}.

=0 t=1 =2 =3 =4 1=5 1=6

{1.5.6}————— (347}

{5.6.7
(26.TF———(1 4.5}

nagye—mmm_ 1257

{2.5.6)

{3.6.7)
ll.2.4)/

T TTTT———357)
1147 1.5.6)
«z.z.s.<
/ T
{1.4.6)
e {1.3.5¢ (247}
RN \
{1.2.5)
(2.3.6)
(4.5.1@\
[1.).6)

(2.0.7)
|4.5.6/ {117

Figure 2: The protocol Py over 04



Corollary 1. 5(On41) < 2n.

Let Voni = {B € Ony1/to(B) = 2n — i}, for any 0 < i < 2n. We
denote by Van_i2 the elements of Va,_; which are reached at the same time
t = 2n — i through two different paths according to Po. Let va,—; = |Van-i| and
vzn-i2 = |Van-iz2|- Note that (:‘) = 0 for any integer value m < 0.

Proposition 2 With the above notation, we have:

2n-2i~2

i) van—i,2 = (5 sy ). In particular. van_i2 > 0 if and only if i < [";l .

ii) U2n = U2n,2-
iti) If i <n—1, then

. In-i-2 .
2n —2i ‘Zn—z— j
vzn-'—(n—%—l) 2,2 ( )+2, ) (j—n+l)'

j=n=i-l j=2n-2i-1
iv) Ifn <i<2n—1, then vaa_; = 22"'"1.

Proof.
i) Vertices receiving the message through two different paths at the same time
t = 2n — i are those of the two following options

option Qm Bm+1 An-m bpnem
(a) n 2n—ifln—i—1|2n+1
(b) n—i—1|2n+1 n 2n—1i

Option (a) includes the vertices B withn—i,---,n,2n—i+1,---2n+1 € B and
n—i—-1,2n—i ¢ B. ’I‘he number of cases of this type is the same as the number
of subsets from {l n—i=2,n+1,---,2n—1i—1} with n — 2{ — 2 elements,
that is ("2 3. Slmllarly the number of cases of option (b) is (*"~%7%). So

n—-2i-2 n-2
o= 2n — 2 — 2)
Wi T \p-2i-1)"

i) It is easy to see that von = v2n,2.

iii) Vertices in Va,_; are those satisfying min{am + Bm41.0n-m + bn-m} =
3n —i. The cases related to Va, ;.2 have been already calculated in 7). Now we
compute those cases such that @m + 8m+1 # tn-m +bn-m- Asn € {am.@n-m}
and 2n + 1 € {Bm+1.bn—m}, we distinguish four more subcases:

Subcase 1.-am =n, Bm4) =2n+ 1, so
(am.Bmt1:@n-m.bn_m) = (0, 20+ 1,n - E2n—i+ k)

with 1 < k <7, and we obtain the number of these subcases
2n-—-i+k—l—(k+l))_(2n—i—2 |
n—(k+1) TA\n-k-1/"
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Subcase 2. an-m =1, bp.m =2n+1, s0
(m,Bmt1,8nem bpn—m) =(n—k,2n—i+ k,n,2n+ 1)

with 1 € k < i and the number of these subcases is

2n—-i—2 2n—1i—2 .
(n—(2+i—k))_ (n+k—2-i)' lsksi,

Note that the number of subcases 1 is the same as the number of subcases

2, and their sum is
9 Z <2n -1 ) '

_'I—l—

Subcase 3. am = n, by, = 2n + 1. We distinguish two more subcases, (3a)
and (3b). Subcase (3a) corresponds to the vertices of the form

(am:ﬂm+l,an—m. bn—m) = (nl 2n — kl n-— i - 1‘271 + 1)1
with 0 < k < i — 1. The total number of these vertices is

<2n—i-k—3

n—i—k—?)' 0<k<i-1.

Subcase (3b) corresponds to those vertices of the form
(amo ﬂm-{-l 18n—m, bn..m) = (ﬂ-. 2n—-in—k2n+1)

with 1 < & < i. Its total number is

2n—-i—-k—2
n—i—k-1

), 1<k<i.

Note that the number of (3a) subcases is the same as those of (3b).

Subcase 4. an_m = n, fny = 2n + 1. We distinguish two subcases, (4a) and
(4b), as above. Subcase (4a) corresponds to the vertices of the form

(am,Bm+118n-m bn_m)=(n—i—-1,2n+ 1,n,2n-k),
with 0 < & < i — 1. The total number of these vertices is

(2n—i—k—3

n_9 ), 0<k<i-1.

Vertices of subcase (4b) are those of the form

(am,Bms1.@n—m.bn_m) =(n = k. 2n+ 1, n,2n—-1),
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with 1 < & < i. The total number of these vertices is

(2"_'_“2)‘ l<k<i
n—2 - -

The number of subcases of (4a) is the same as in (4b).
Adding all the possibilities in subcase 3 and subcase 4 we obtain

n—-i-2

2§<n_nl—_l _2)=2 2 (j—iﬂ)'

j=2n-~2i-1

iv) It is a consequence of the fact that for t < n all informed vertices have
uninformed y-adjacencies.00

The following situation appears in our protocol Py: There exist different
vertices By, B2 such that they inform the same vertex B at time {. A suitable
prearrangement of vertices would avoid this situation according to {R1] and [R2].
So a new protocol of the family P is obtained and it improves the values vy, _;.
The following Proposition assures that the time of this new protocol is the same
as the previous Py.

Proposition 3 The time of any protocol P € P is at least 2n.

Proof.

Protocol Pp can only be improved in P if the possibility of informing a vertex B
simultaneously through two different paths is avoided. In this case, the number
of vertices which reduce the time needed to be informed is at most ) ., van—i,2,
by Proposition 2. It is easy to see that this value is at most va, = vay 2.

4 Conclusions

In this article we have obtained a good bound on the broadcasting time in odd
graphs. This fact follows from the time needed to broadcast Onyy by Py, 2n
units of time. Note that Py doubles the number of informed vertices in each
step until the time ¢t = n + 1. Probably Py is a minimal time protocol in O, 4,

However it is difficult to prove that any other protocol defined in Op 4y will take
more than 2n time units (and Pp would be optimal in this sense). The following
Proposition and Table reinforce this conjecture.

Proposition 4 The time of the protocol Py over Opn 4y ts asymptolically cquue-

alent to P
n
flog; (*" 1)1

asn — oG
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Proof.
By Stirling’s identity we have the following asymptotic equivalences as n = oo

2n+1)"’" ( 1 5‘:(2n+1)% (2n+1)?)% )
n V2rn n+1 n?2+n ’
2n+41

So 2n ~ log, (*"F') asn 2 00. O

The following Table shows the variation of the expression 2n — [log, (**')]
for different values of n.

n 2n — [log, (*}7)]
n<3
4<n<19
20<n<80
81<n<314
315 < n <1302
1303 < n < 5213
5214 < n < 20859

n > 20860 >17

(=]

O A LN —

Note that for n = 20859 the number of vertices of Oy, 4, is about 1.8 x 10!25%6,
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