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Abstract

Nonbinary power residue codes are constructed using the rela-
tionship between these codes and quasi-cyclic codes. Eleven of these
codes exceed the known lower bounds on the maximum possible min-
imum distance of a linear code.
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1 Introduction

Let GF(q) denote the Galois field of ¢ elements, and let ' (n, ¢) denote the
vector space of all ordered n-tuples over GF(¢). A linear [n, k] code C of
length n and dimension k over G F(q) is a k-dimensional subspace of V (n.q).
An [n,k,d] code is an [n, k] code with minimum Hamming distance d. The
dual code C* of C is defined as C*+ = {z € GF(p)"| z-y =0 for ally € C}.

Let 4; be the number of codewords of weight i in C. Then the numnbers
Ao, . A, form the weight distribution of C.

A central problem in coding theory is that of optimising one of the
parameters n,k and d for given values of the other two. One version is
to find dg(n, k), the largest value of d for which there exists an [n.k.d]
code over GF(g). Another is to find n,(k,d), the smallest value of n for
which there exists an [n,k,d] code over GF(q). A code which achieves
either of these values is called optimal. Tables of bounds on ng(k,d) for
¢ =2.3,4,5,7,8 and 9 are maintained by Brouwer [2].

The Griesmer bound is a well-known lower bound on ny(k,d)

ng(k,d) > go(k,d) = Z[ (1)

where [r] denotes the smallest integer > z. For & < 2, the Griesmer
bound is met for all ¢ and d. In addition, most values of n,(3,d) have
been determined [2]. For larger dimensions, far less is known. Eleven codes
are presented here which improve the lower bounds on minimum distance
(¢ < 9). Two of these codes meet the upper bound and so are optimal.
Codes over larger fields are given for which tables of bounds do not vet
exist (¢ > 9), but eleven meet the Griesmer bound (1). These codes are
presented in the next section.

2 Power Residue Codes

The search for optimal codes is difficult because of the large number of
possible generator matrices. This problem is very acute for codes over
noubinary fields, where an exhaustive search of all codes is not tractable
even for small dimensions. For larger dimensions, constructive techniques
can be used. In this paper, the class of power residue (PR) codes are
considered.
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Power residue codes are cyclic codes which can be transformed into
quasi-cyclic (QC) codes using the Normal Basis Theorem [3]. The resulting
QC codes over GF(3) and GF(4) have previously been used to initialise
stochastic search algorithms (5, 6). The codes obtained confirm that many
PR codes are good codes [1]. This motivates the investigation of these
codes over other fields in search of those which improve the bounds on
minimum distance. In this paper PR codes are constructed over GF(q) for
¢ = 5.7.8,9,11,13,16,17 and 19. The technique employed to find these
codes is presented below.

Let m be the order of ¢ mod n, (¢™ = 1 mod n), n a prime. Then if m
divides (n— 1), i.e., n = ems + 1, a cyclic (n, em), es-th power residue code
C' exists. Using a normal basis, C can be transformed into an equivalent
code €' formed of m x m circulant matrices and the all 1's column. The
punctured code resulting from deleting the all 1’s column is talled quasi-
cyclic.

A rate 1/s QC code has an m x ms generator matrix of the forin

G = (B, Bs, ... Bd], (2)

where B; is an m X mn circulant matrix given by

bo bl b?. e bm-—l
bu—r b by - bp—2
B = bm—‘l bm—l bO e bm—3 s (3)
by by b3 -0 bo

with b; € GF(q). The algebra of m x m circulant matrices over GF(q) is
isomorphic to the algebra of polynomials in the ring GF(g){z]/(z™ - 1) if
B; is mapped onto the polynomial

bi(x) = bg; + by iz + bg,,':L‘g + -+ bm_l‘,':nm—l .

formed from the entries in the first row of B; (7). The b;(x) are called
defining polynomials.

To illustrate the construction of PR codes, consider the following exam-
ple. Let n =11 and ¢ = 5, then 5°> = 3125 =1 (mod 11). Thus we have
an (11.5) PR code over GF(3) composed of two 5 x 5 circulant matrices
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and an all 1's column, (in this case e = 1,5 = 2 and m = 5). By definition
[3], this is a cyclic code over GF(5) with generator matrix

G = [l d, o, .., ), (4)

where « is a primitive 11th root of unity over GF(5). To form the circulant
matrices, the columns of G are rearranged according to the cyclic classes
mod 11 over GF(5), i.e.

{ =. qo, ¢z, ¢z, ¢z}
{ =z qz2, ¢*T2, ¢Pra, ¢lea )

Substituting z; = 1,z, = 2 and ¢ = 5, we obtain

I, 5 3, 4, 9
2, 10. 6, 8, 7

Thus G becomes

10

G = [1,a.0% & o4 @ o* o'’ ab, a8, a7], (5)

Now, if these columns are represented in terms of a Normal Basis, a® be-
comes a cyclic shift of a, a® becomes a cyclic shift of a®, and so on. (A
normal basis can be formed from the roots of a primitive polynomial of
degree m with linearly independent roots, as found in {4].) The resulting
generator matrix is of the form

G = [1,C.Cl,

1033213333290
11033203333 (6)
= 121033320333
132103336033
1332103332033

This code has weight distribution
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Weight Count

0 1

6 220
7 220
8 880
9 660
10 924
11 220

and the dual code has minimmum distance 5. Both of these codes are optimal.
The related [10,5] QC code formed by deleting the all 1’s column has
weight distribution

Weight Count

120
240
720
780
960
10 304

Nelie-BEEN B« BN A ]

and is also optimal.

The PR codes are formulated according to (4) instead of the more com-
mon dual representation because the weight distribution of G can easily be
computed.

Tables 1 to 9 present the PR codes obtained over GF(5), GF(7), GF(8),
GF(9). GF(11). GF(13), GF(16), GF(17) and GF(19), respectively. A su-
perscript ¢ denotes an optimal code. Optimality was established either by
meeting the upper bound in [2] or (1). Codes denoted ** are those with
weights divisible by z. The codes which improve the bounds on minimum
distance are denoted by ¢, and the defining polynomials for these codes
are listed in Table 10 (excluding the all 1's column). The polynomials are
listed with the lowest degree coefficient on the left, i.e., 2021 corresponds
to the polynomial z3 + 222 + 2. For GF(8), if ar is a root of the primitive
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polynomial 3 + % + 1 over GF(2), then 2 = o, 3 = o, cte. For GF(9), a
is & root of the primitive polynomial x* + 1 + 2

References

{1] E.R. Berlekamyp, Algebraic Coding Theory, McGraw Hill, New York.

N.Y.. 1969.

2] AE. Brouwer, Linear code bound (server),

3]

(4]

(5]

(6}

(7]

Eindhoven University of Technology. Eindhoven, The Netherlands.
http://www.win.tue.nl/win/math/dw/voorlincod.html.

C.L. Chen. W.W. Peterson and E.J. Weldon. Jr.. “Some results on
quasi-cyclic codes,” Inform. and Control, vol. 15, pp. 4Q7-423, 1969.

T.A. Gulliver, M. Serra and V.K. Bhargava, “The generation of prim-
itive polynomials in GF(¢) with independent roots and their applica-
tions for power residue codes. VLSI testing and finite field muitipliers
using normal basis,” Int. J. Electronics, Vol. 71, No. 4, pp. 539-576.
Oct. 1991.

T.A. Gulliver and V.K. Bhargava, “Some best rate 1/p and (p—-1)/p
svstematic quasi-cvclic codes,” IEEE Trens. Inform. Theory, vol. 37,
pp. 532-333, 1991.

T.A. Gulliver and V.K. Bhargava, ~“Some best rate 1/p and (p —
1)/p quasi-cyclic codes over GF(3) and GF(4).” IEEE Trans. Inform.
Theory, vol. 38, pp. 1369-1374, 1992.

F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting
Codes, North-Holland, 1977.

240



Table 1: Power Residue Codes Over GF(5)

code dnin dual code dmin
(11,5)° 6 (11.6)° 5
(13,4)¢ 8 (13.9)¢ 4
(19,9) 8 (19,10) 7
(31,3) 25 (31,28)° 3
(31,6) 19 (31,25) 4
(71,3) 50 (71.66) 3
(71,10)¢ 44 (71,61)¢ 6
(313,8) 235 (313,305) 4
(521,10) 370 (521,511) 4
(601,12) 430 (601.589) 3
(829,9) 633% (829,820) 3
(19331,7) 15625 | (19531.19524) 3

Table 2: Power Residue Codes Over GF(7)

PR code din dual code din
(19,3)° 15 (19.16)° 3
(19.6) 11 (19.13) 5
(19,9) 9 (19.10) 8
(29,7)¢ 19 (29.22)¢ 6
(37,9) 18 (37.28) 5
(43.6) 30 (43.37) 4

{191,10) 137 (191,181) 4

(1063,9) 864 (11063.1054) 3

(1201,8) 980 (1201.1193) 2

(2801,5) 24019%40! | (2801.2796) 3

(4733,7)  40189%° (4733.4726) 3
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Table 3: Power Residue Codes Over GF(8)

PR code d,.in | dual code duin
(7.3) 4 (7,4) 3
(13,4)° 9 (13,9)° 4

(17,8) 6 (17,9) 5
(19.6)¢ 12 | (19,13)¢° 6
(31.3)  16% | (31,26) 3
(73.3)° 64 (73,70)° 3
(73.6)  56% | (73,67) 3
3

3

3

3

3

(73.9) 28 (73,64)

(127,7)  6441¢ | (127,120)
(151,3) 121 | (151,146)
(241,8) 194 | (241,233)
(337.7) 253 | (337,330)

Table 4: Power Residue Codes Over GF(9)

code dmin dual code  dnin
(7,3)° 5 (7,4)° 4
(11,5)° 6 (11,6)° 5
(13,3)% 9 (13,10)° 3
(13,6) 6 (13,7)° 3
(17,8) 8 (17,9) 7
(19,9)° 10 (19,10)° 9
(37.9)¢ 23 (37,28)¢ 7
L (41,4)¢° 34 (41,37)° 4
(41,8) 22 (41,33) 5
L (61,5) 49 (61,56)° 4
L (73,6)° 57 (73,67) 3
t(193,8) 145 (193,185) 4
: (547,7) 470 | (547,540) 4
L (757,9) 486 (757,748) 3
! (1093,7) 729943 | (1093,1086) 3
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Table 5: Power Residue Codes Over GF(11)

code dmin | dual code dpin
(7,3)° 5 (7,4)° 4
(19,3)° 16 (19,16) 3
(19,6) 12 (19,13)° 6
(37,6) 27 (37,31) 5
(43.,7) 30 (43,36) 5
(61,4) 52 (61,57) 4
(3221,5) 2905 | (3221,3216) 3

Table 6: Power Residue Codes Over GF(13)

code  dpin | dual code dnin
(17,4) 12 (17,13) 4
(61,3) 54 (61,58) 3
(61,6) 47 (61,53) 4
(127,6) 109 | (127,121) 4
(157,6) 136 | (157,151) 4

Table 7: Power Residue Codes Over GF(16)

code dmin | dual code dpin
(7,3) 4 (7.4) 3
(11,3) 6 (11,6) 5
(13,3) 11 (13,10) 4
(13,6) 6 (13,7) 5
(17,4) 12 (17,11) 4
(29,7) 20 (29,22) 6
(31,5) 16" | (31,26) 3
(41,5) 33 (41,36) 4
(43,7) 27 (43,36) 5
(113,7) 93 | (113,106) 5
(127,7) 649 | (127,120) 3
(241,6) 216 | (241,235) 4
(257,4)° 240 | (257,253) 4
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Table 8: Power Residue Codes Over GF(17)

code dipin | dual code  dyin
(13,6)° 8 (13,7)° 7

(29.4) 24 (29.23) 4
(307,3)¢ 289 | (307,304)° 3

Table 9;: Power Residue Codes Over GF(19)

code  dpin | dual code dpin
(127.3) 118 | (127.124) 3
(127.6) 109 | (127,121)
(151.5) 135 | (151.146)
(181,4) 167 | (181.177)
(911.3) 850 | (911.906)

[
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Table 10: Defining Polynomials for PR Codes

code g | m d bi(x)
[71.10] B 5 4 40324, 33422, 34013, 31123, 34110, 33002, 00204, 22120, 24022, 32032. 00334, 41114, 00312, 44101
row 2 24022, 34003, 44101, 22120, 00312, 40020, 02330, 12331, 32410, 14011, 23342, 32320, 11034, 01334
29,7 7 7 19 L426011, 2310145, 6600564, HG34450
19,6 8 6 12 563521, 473476, 072744
37.9 9 9 23 614450660, 647524066, 646383560, 783821714
(4!, 4] 9 4 34 0657, G818, 6883, 1315, 0221, 2501, 3761, 8838, 8207, 5278
[61.5] 9 5 49 76466, 33530, 22184, 61755, 81578, 13402, 65466, 73616, 17RI7. GBGG2, 17260, 65025
[73,6} 9 6 o7 768-118. 831107, 805666, 662512, 024275, G57216, 002342, 611504, 107111, 285114, 8R1083. 632076
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