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Abstract

The cycle graph C(H) of a graph H is the edge intersection graph
of all induced chordless cycles of H. We investigate iterates of the
mapping C : G — C(G) where C denotes the map that associates
to a graph its cycle graph. We call a graph G vanishing under C if
C"(G) = 0 for some n, otherwise G is called C-persistent. We call
a graph G expanding under C, if [C"(G)| — oo, as n — c0. We
show that the lowest order of a C-expanding graph is 6 and determine
the behaviour under C of some special graphs, including trees, null
graphs, cycles and complete bipartite graphs.

1 Introduction

‘We consider finite, simple undirected graphs only. For definitions and no-
tation not given here refer to [3]. Let G = (Vg, Eg) be a graph. A graph
H = (Vy, Eg) is a subgraph of G, if Vg C Vg and Ey C Eg. The graph
H is an induced subgraph of G, denoted by H C G, if H is an edge-maximal
subgraph of G. An n-cycle is a sequence of adjacent vertices vgv; . .. v, with
vp = v, and v; # v; for all other indices i and j. A chord of an n-cycle is
an edge joining non-consecutive vertices of the cycle. A cycle is said to be
chordless if it has no chords. We denote a chordless cycle on n vertices by
¢n- We adopt the following notations: Ny denotes the graph consisting of
k isolated vertices, P, the path with n vertices, and W,, = ¢, + N; denotes
the wheel of order n + 1. The empty graph will be denoted by #. We write
a » b if vertex a is not adjacent to vertex b.
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The cycle graph C(G) of a graph G was introduced in [2] as the graph
whose vertices are the chordless cycles of G with two of them adjacent in
C(G), if the corresponding cycles in G have an edge in common. Thus the
cycle graph of an acyclic graph is the empty graph 0. The operator C has
been extensively studied in the literature ([1, 2, 7]) and graphs have been
classified in accordance to their behaviour under iterates of the operator
C. In [7) the question regarding the relationship between C(G) and C(@G)
was posed. In this paper we introduce the composite operator C defined by
C(G) = C(G) and determine the behaviour of some classes of graphs under
iterates of C. In analogy with [2] we say that a graph G is C-vanishing if
there is a positive integer n such that T"(G) = 0; G is called C-persistent,
if C"(G) # 0 for all n; if moreover |V(-C-’"(G))| — 00 a8 n — 00, then G
is C-expanding.

The image of a graph G under C is determined by the chordless cycles
of G. A vertex in C(G) corresponds to an induced chordless cycle in G and
two vertices of C(G) are adjacent if the corresponding chordless cycles of
G have at least one edge in common.

If G = Ns, then C(G) = C(Ns) = C(Ns) = C(Ks). The only chordless
cycles of K5 are 3-cycles. Denoting the vertex set of K5 by {1,2,3,4,5}
the chordless cycles of K5 are a = 1231, b = 1241, ¢ = 1251, d = 1341,
e = 1351, f = 1451, g = 2342, h = 2352, i = 2452 and j = 3453, and so
C(Ns) is the following graph:

ANy
‘ Y <
9.
.
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The Petersen graph has 12 induced chordless 5-cycles and 10 induced chord-
less 6-cycles. They are A=ajcdia, B=jcgebj, C=beidhb, D=hdcgfh, E=fgeiaf,
F=>bhfgeb, G=hfaidh, H=fajcgf, I=ajbeia, J=jbhdcj, K=ajbhdia, L=jbhfgcj,
M=bhfaieb, N= hfajcdh, O= fajbegf, P=ajcgeia, Q=jbeidcj, R=bhdcgeb,
S=hfgeidh, T=faidcgf, U= ajbhfa and V=cdiegc. Then in C"(Ns) we have
the following non—a.djacency relations: Aw F, B G, Cw H, DowI E =

J, and U = V. Thus C(Ns) = 6P; U Nio and so C°(Ns) is acyclic. Thus
—3
C(N5)=0
We denote the complement of the chordless cycle ¢ by si and call it

the k-pointed star. It has been shown in [4] that C(G) is the graph whose
vertices are the induced k-pointed star subgraphs of G, 3 < k < |V(G)|.
Two vertices in C(G) are adjacent if the corresponding subgraphs s, and

s¢ in G have at least one pair of non-adjacent vertices in common. Thus
the operator C is a subgraph defined operator ( see [5] ). The operator C
satisfies the following properties (called axioms 3a and 3b in [5]);

Property 1 If X,Y C G C H and z,y € V(C(H)), then z,y € V(C(G)).
Moreover, zy € E(C(H)) implies zy € E(C(G)).

Property 2 Let G C H. Then z € V(C(G) implies z € V(C(G)) and
zy € E(C(G)) implies zy € E(C(H)).

An immediate consequence is the following heredity property (see Corol-
lary 9.6 in [5])

Proposition 1 If H is an induced subgraph of G, then C ' (H) is an in-
duced subgraph of Em(G) for every positive integer n.

Proposition 1 provides a first step towards  classifying graphs with regard
to the behaviour of graphs under iterates of C:

Proposition 2 Every induced subgraph of a C-vanishing graph is C-vanishing.
Every graph containing a C-expanding induced subgraph is C-expanding.

2 The minimum order of a C-expanding graph

In this section we establish that the minimum order of a C-persistent graph
is 6. We first show that all graphs of order 5 are C-vanishing and then
consider the iterated behaviour of Ni under C.

Lemma 3 All graphs of order at most 5 are C-vanishing.
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Proof. By Proposition 2 it suffices to show that all graphs of order 5 are
C-vanishing, Straightforward calculation shows that for a graph G of order
5 and size at least 2 its image under C is isomorphic to one of @, N1, Nz, Pz,
P, c3, K4 and the graph consisting of K4 and exactly one common edge
with a cycle c3 . Therefore 52(0') = (. For N5 we have-C_'2(N5) =6P;U Ny
so that O°(Ns) = 0. Finally, C(P, U Na) is an induced subgraph of T(Ns)
and so Us(Pg UN3) =0. [

In [6] the cycle graph of the complete graph K, on n vertices was shown
to be isomorphic to the uniform intersection graph G(n,3,2), the graph
whose vertex set consists of all 3-subsets of a set of cardinality n where
two vertices are adjacent if they have precisely two elements in common.
We therefore have C(Ni) = G(k, 3,2). We will use this result to show that

—C"'Z(Nk) contains at least k + 2 pair-wise non-adjacent vertices.

Proposition 4 For each k > 6, the graph Ni42 is an induced subgraph of

-C-iz(Nk)

Proof. For each k > 6 we will exhibit k + 2 3-cycles in G(k,3,2) no two
of which have an edge in common. Define for 0 < £ < k — 1 the following
3-subsets of {1,2,...,k}

A(®) = {1+ ¢modk, (2 + £)modk, (3 + ¢)modk}
A(®) = {(1+ ¢)modk, (4 + ¢)modk, (5 + ¢)modk}
A3() = {(2+ ¢)modk,(4+ ¢)modk, (6 + £)modk}

and denote by a;(€) the vertex corresponding to A;(¢) in G(k,3,2). We
associate to each set A;(£) a set of distances between consecutive vertices
on the cycle cx: If A;(€) = {ai(€), Bi(f), %(£)} then the corresponding
set is {de, (2:(0), Bi(8)), dey(Bi(€),%:(8)), de (7(€), i(€))}, where de, (u,v)
denotes the length of the shortest path between the vertices u and v of c.
For fixed i the set is independent of £ and will be denoted by ¢;.

We have t; = {1, 1, 2}, while the remaining sets depend on the number
of vertices of N:

{3, 1, 2},k=6 (2,2 2},k=6
t2=1{ {3,1,3},k=7 ,andts={ {2, 2 3},k=7
(3,1, 4} ,k>8 2,2 4},k>8

Thus the distance sets t; and t; differ in at least one element for i # j.

Thus
Ai(0) # A;(0), i #3
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In fact, since the distance from the first element to the second element
in A;(¢) is different to the distance between the first element and second
element in A4;(£), we have

[4:(€)nA4;(0) <1

and so the 3-cycles a;(€) and a;(¢) do not have any common edge. Also we
have by construction that

A1(6) N A2(6) N A3(6) =0

Thus the set S(¢) = {a1(¢),a2(¢),a3(€)} is the vertex set of a 3-cycle in
G(k,3,2). We can think of the set A;(£+ 1) as obtained from the set A;(¢)
by a rotation on ¢ of one unit a clock-wise direction. Thus the sets A4;(¢),
1=1,2,3and £=0,1,...k — 1 have the following properties

Ai(6) # Ai(m), E#m

Az(€) # Ax(m), £#m

As(f) # As(m), L#m, k27
As(€) = As(€+2), k=6

Since the distance sets ¢; and t; are not equal,
Al # Ai(m), E#m, i ]
Moreover, for £ # n the sets S(¢) and S(n) satisfy
ISE)NSr) <1

and so the sets S(€), £ =0,...k—1 correspond to k pair-wise non-adjacent
vertices in -52(Nk).

For k > 7 the 3-cycles with vertex sets {{1,2,4}, {1,3,5}, {3,4,6}}
and {{4,5,7}, {2,3,5}, {2,4,6}} do not have a common edge and also do
not share any edge with S(0),...,S(k—1). For k = 6 the 3-cycles with ver-
tex sets {{1,2,5}, {2,3,6}, {1,3,4}} and {{2,4,5}, {1,3,5}, {1,4,6}}
do not have a common edge. They also do not haxzre any edge in common
with S(0),...,S(5). It thus follows that Ni42 CC (Ni). B

We now prove that the minimum order of a C-expanding null graph is
6.

Proposition 5 The null graph Ny, of order k is C-vanishing for k < 6 and
C-expanding for k > 6.
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Proof We have already shown in Lemma 3 that Nj is C-vanishing and so

Ny, is C-vanishing for k£ < 6. From Proposition 1 it follows that Ni2m is
an induced subgraph of G- (IVi) for m > 1 and k > 6. Thus we have with
Proposition 1 that G(k + 2m, 3,2) = C(Ni42m) C E"zm“(Nk) and hence
V@™ (Nl 2 (*52™) and [V(T ™ (Ne)| > k+ 2m for each m 2 0

and each k > 6. Thus, N is C-expanding for k¥ > 6.l

An immediate consequence of Proposition 5 is

gorollary 6 Every graph with verter independence number at least 6 is
C-ezpanding.

We conclude this section by determining the maximum size for a graph
of order 6 to be C-expanding

Proposition 7 All graphs of o_rdier 6 and size at most 3 are C-ezpanding,
those of size greater than 3 are C-vanishing.

Proof. A straightforward calculation shows that Ne is an induced subgraph
of T (P> U Ny), C2(2P2 U Ny), T (cs U Ng), T (K1,3U Na) and T (P U
P, U N,) and that 2P, U Ny C T*(3By), K1,3U Ny £ T (P4 U Ny), and
3P, C 52 (P3 U N3). Thus it follows from Proposition 2 that the graphs of
order 6 and size < 3 are C-expanding.

Graphs of order 6 and size < 8 have at most 5 chordless cycles, so that
their complements are C-vanishing. If G is a connected graph of order 6
and size 6, then its image under C is one of @, Ny, Na, or P, U N3 and
so they are C-vanishing. Graphs of order 6 and size 6 with more than one
connected component either contain an isolated vertex or are one of 2¢3 or
the disjoint union of a 4-cycle with one exactly one chord e, denoted by
¢4 + e and P;. We denote this graph by (c4 +€) U P;. The complements
of the graphs with an isolated vertex have at most 4 cycles, so that these
graphs are C-vanishing, and T?(2c3) =C ((cs +€) U Py) = 0.

The images under ?3-2 of graphs of size 5 can be shown to be 0, N;,
6P, U N1p or the graph of order 6 consisting of one wheel W, and one cycle
c3 which have exactly one edge of ¢4 in Wy in common. Thus they are
C-vanishing. Finally, the images of graphs of size 4 under T’ are T;UN;,
P, U N3, 6P U Nyo, Ky, c3, W5, K4, K4, and 2c3 and so in each case the
third iterated image under C vanishes. ll

‘We now also have

Corollary 8 Any graph that conteins a graph of order 6 and size at most
3 as an induced subgraph is C-ezpanding.
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3 Behaviour of Special Graphs under Iterates
of C

We may now determine the minimum order for cycles, paths, trees and

bipartite graphs to be C-expanding. As we will see below, the minimum

order is 7 for trees and cycles, while for complete bipartite graphs it is 8,
unless one of the partite sets has cardinality 1.

Proposition 9 The path P, of order n is C-vanishing for n < 7 and C-
expanding forn > 7.

Proof. By Proposition 7 and Lemma 3 every path of order at most 6 is
C-vanishing. Since P; C P, for n > 7, it suffices to show that P; is C-
expanding. We let P; = 1234567, then a = {1, 3, 5}, b= {1, 3, 6}, c = {1,
3,7},d={1,4,6},e={1,4,7}, f={1,5,7},9={2,4,6}, h={2,4, 7},
and ¢ = {2, 5, 7} are 3-pointed stars and m = {_ 56} is a 4-pointed star in
Py and so they are vertices in C(P). The following non-adjacency relations
hold in C(P;): a = d,e,g,h; b=e, f,9,4 c=d,g,i,m; dw h,m; e g,i
f»g; gmi. Thus {a,d, h}, {a, & g}, {b, e, i}, {b, £, g}, {c, d, m}, and
{c, g, i} are six 3-pointed stars in C(P;) any two of which do not have two
vertices in common. Therefore Ng C cT (Py) and so P; is C-expanding by
Proposition 2. B

As an immediate consequence we have
Corollary 10 Every connected graph of diameter at least 6 is C-ezpanding.

Corollary 8 and Proposition 2 allow us to classify each tree of order at
least 7 as C-expanding:

Proposition 11 Fach tree of order at least 7 is C-ezpanding.

Proof. Since each tree of order greater than 7 contains a tree of order 7
as an induced subgraph, we need only establish that trees of order 7 are
-C'-expanding. The graph K, ¢ contains Ng as an induced subgraph. There
are three trees of order 7 with degree sequence 1112223. Two of these
are obtained from P = 123456 by adding a seventh vertex and joining it
with an edge either to vertex 5 or to vertex 4. The last one is obtained
from Ps = 12345 by attaching P, to vertex 3. Call the trees T}, 7> and
T3 respectively. Then T contains P4 U N, as an induced subgraph,T;
contains P3 U P, U N; and T3 contains 3P;.
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The trees with degree sequence 1111224 are obtained from P5 = 12345
by the addition of two vertices both of which are either adjacent to vertex
3 or to vertex 4. The first of these trees contains 2P, U N as an induced
subgraph, the second contains P3 U Nj.

The tree with degree sequence 1111125 contains P, U Ny and the trees
with degree sequence 1111233 contains P3 U P; U N; and K(1,3) U N,
respectively. Finally the tree with degree sequence 1111134 contains P; U
N3 as an induced subgraph.

Thus all trees of order 7 are C-expanding by Corollary 8.l

The proposition below shows that the minimum order of a C-expanding
cycle is the same as that of a path.

Proposition 12 The chordless cycle ¢, of ordern is C-vanishing forn <7
and C-expanding forn > 7.

Proof It is a consequence of Propositions 3 and 8 that cycles of order at
most 6 are C-vanishing. Since P; is an induced subgraph of c, for n > 8,
it follows that ¢y, is C-expanding for n > 8.

It remains to show that c7 is C-expanding. Let ¢z = 12345671. Then
a=1{1,3,5}b=1{1,3, 6}, c={1,_4_,§1,d= {2,4, 6}, e=1{24,7},
F=12527"7,9=1357h h= {1245}, m= (23,67}, n = {34,867}
and p = {45,71} are vertices in C(c7) with the following non-adjacency
relation: a = c,d,e, fym,n; b d,e f,g,h,p; c»efim; d» f,g,p;
ewg; fon; g h Hence, the elements of each of the six sets A, B,
C, D, E and F below are 3-pointed stars in Clc7) and so are vertices in

—C-z(c'z) :

{ {a,c,e}, {a,d, f}.{b,d,p} }
{ {a,c,e},{a, f,n},{b,d, g} }
{ {a,c,m}, {a, f,n}, {b,d, f} }
{ {a,c,m},{a,d,f},{b,d,g} }
= {{apc f},{b,d,p},{b,e,g} }
= { {a,c,f},{b,d,f},{b,g,h} }

D QW
|

These six sets cc;rrespond to 3-pointed stars in —C-"z(c-,). Furthermore, they
are vertices in C (c7) which form Ng since they are pair-wise non-adjacent.

Therefore, we have shown that ﬁ(c—;) is C-expanding by Proposition 2,
and so ¢7 is C-expanding. B

Since the wheel W, = Nj + ¢, we have
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Corollary 13 The wheel W, is C-vanishing for n < 6 and C-expanding
forn>T1.

__ Finally, we classify a complete bipartite graph as either C-vanishing or
C-expanding based on the cardinalities of its partite sets.

Proposition 14 Let K, , be a complete bipartite graph with partite sets
Vi and V2 such that |Vi| =m and |V2| =n, myn>1, m <n. Then K n
is C-vanishing form=1,2and1<n<5;m=n=3;andm=3, n=4;
and C-ezpanding for all other values of m and n.

Proof. Without loss of genera.hty assume that m < n. We note that
mn = Ny + N, and so C(Km,n) = C(Nm + N,) = C (Nm+ Nyp) =
C(KmUK,;) = C(Nm) U C(Ny,). Therefore Kpn,» is C-expanding by
Proposition 5 if either m or n is at least six and K, is C-vanishing

form=1,2and1<n<5.

Since C(K3,4) = Ny U Ky, and hence 52(K3,4) = C(K1,4) = 0, the
graphs K33 and K34 are C-vanishing.

The complete bipartite graphs K35, K44, K45 and K5 5 remain to be
considered.

‘We observe that C(Ks 5) =C(K3UK5)=NU C(Ns) =N+ C(Ns)
Let the vertex set of K5 be {1,2,3,4,5}. Then the vertices of C(Ns) &

C(Ks) are a = {1,2,3}, b = {124},c— {1,2,5}, d = {1,3,4}, e
{1,3,5}, f = {1,4,5}, g = {2,3,4}, h = {2,3,5}, ¢ = {2,4,5} and j =
{3,4,5}. They have the following non-adjacency relations: a = f,%,7; b =
e h,j; c~dgj; d o~ hi e gi and f » g,h Letting z denote the
vertex corresponding to Ni, it follows that zdhz, zeiz, zafz, xzbjz, hbegfh
and aidcja are chordless cycles in C(K3,5) no two of which have an edge in
common so that they form six pair-wise non-adjacent vertices inC (K3,5) =
C(C(K3s). Therefore, 52(1{3 5) contains Ng as an induced subgraph. It
follows that K3 5y K45 and Ks 5 are C'-expandmg

Finally we consider K4 4. We have C(K,4) = C(2K;) = 2K4 and so
o (K4,4) = C(K4,4). Let the partite sets of K44 be Vi = {1,2,3,4} and
Vo = {5,6,7,8}. All chordless cycles of K4 are 4-cycles. They include
a = 15261, b = 15271, ¢ = 15281, d = 37483, e = 35463, f = 35473,
g= 35483 h = 36473 and 7 = 36483. These cycles correspond to vertices

inC (K4,4) with the following non-adjacency relations: a ~ d, e, f, g, h, i;
bwdye f,g,h coode f,g,hi dowe fooi andgooh Hence, the

elements of the six sets below are 3-pointed stars in C- (K4,4) and so are
vertices in 53(1{4 4):
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{{a,f,i}, {a,9,R}, {a,d,e} }
{ {b,f.i}, {bg,h}, {bd,e} }
{{afii}, {c,g,h}, {c,d,e} }
{ {a7f’i} ’ {b’g7h} ¥ {c’d’e} }
{ {b,f.3}, {c,9,h}, {a,d,e} }
{{c,f,i}, {a,9,h}, {b,d,e} }

While each of A, B and C intersects each of D, E and F in exactly
one element, A, B and C are pair-wise disjoint; and D, E and F are
pair-wise disjoint. Thus, they form six pair-wise non-adjacent vertices in
54(1{4,4). Therefore, Ng is an induced subgraph of -0—4(K4,4) and so Ky 4
is C-expanding. B

o QW
il

The graphs we have considered above have all been seen to be either
C-expanding or C-vanishing. There is no fixed point of C in the range of
these graphs. We end with an open problem: Are there any C-persistent
graphs which are not C-expanding?
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