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Abstract

In this paper we investigate the kth lower multiexponent
f(n. k) for tournament matrices.

It was proved that f(rn.3) = 2 if and only if n > 11.Thus
the conjecture in [2] is disproved.Further we obtain a new
sufficient condition for f(n. k) = 1.

1 INTRODUCTION

An n x n Boolean matrix A is called prunitive if there exists some positive
integer ¢ such that A' > 0.Such a least positive integer ! is called the exponemt
of 4.

As we know,a directed graph D = (V. E) defined by a (0, 1) matrix 4 = («;)
consists of n vertices 1,2,...,n such that an arc(i,j ) goes from i to j if and
only if the entry aj; of A is one.A is called the adjacency matrix of D.while D
is called the associated digraph of A.If A s primitive.then its associate digraph
D(A) is a primitive graph.lt is well known that [J is primitive if and only if 1
is strongly connected and ged(r.ra,....7¢) = Lwhere L(D) = {r{,ro,....75} is
the set of distinct lengths of the directed cycles of D).

FDEY, 1 < k < niis called the kth lower multiexponent for a primitive
directed graph D of order n if there exists a set. X of & vertices of D such that
for each vertex i of D there is a walk of length f( 1), k) from some vertex of .X to
i. Equivalently f(D.k) is a least positive integer ¢ such that A*(D) has a k x n
submatrix without zero column.

In [1], R.A.Brualdi and Bolian Liu first introduced f(12. k) and found the up-
per bound of f((: k) for primitive simple graphs.In [2]. Bolian Liu investigated
F(Ty, . k) for primitive tournaments of order n.

A tournament 7;, is a directed graph £ such that cach pair of distinet vertices
i and jis joined by exactly one of the ares(i, j) or (4. 1) qued no vertex is joined
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to itself by an arc.A tournament matrix M, is a matrix that is the adjacency
matrix of a tournament. T;,.

In 1967,J.W.Moon and N.J.Pullman ([3]) proved that a tournament T, is
primitive if and only if n >4 and T, is strongly connected.

In this paper we will consider only primitive tournament T,(n > 4).

Let.

S k) = MAXT f(TW k). k=1,2,...n

where M AX is taken over all the primitive tournament 7T,(n > 4).
According to the above definition,we have

Sl k) > f(n,ka) if Ky <k (n

In [2],Bolian Liu proved the following
THEOREM A([2))

3 k=1
2 k=2
J(n k) = l or2 3§k<2+L(n+l)
1 k>2+4 4—(n+l)J
and conjectured
3 k=1
fnk)=1¢ 2 k=2 n>4 (B.L.conjecture)
I k>3

In fact,let n and & be integers such that 3 < & < n and n > 4,we say
a subtournament 7} of a tournament T, is dominating if every vertex of T,
loses to some nodes of Ti.It follows that a primitive tournament 7, with the

property that f(T,.k) = 1 is equivalent to T;, having at least one dominating
subtournament Tj.

In this paper we show that f(n,3) = 2ifand only if n > 11.Hence B.L.conjecture
in (2] is disproved.ln [4].E. and (i.Szekeres mentioned Sy tournaments and
proved an inequality f(k) > (k +2)2%~! — [ .With that result,we know that

if 4 < n < (k+ 1)28-2 — 2,then any strong tournament of order n has one
dominating Tk .which weans

fin k) =1 if A<n<(k+1)25"2 -2 (k>3).
More precisely we shall prove that

S k)y=1 if 4<n<k-2*"' -2 (k>3)

The result improves the above conclusion.

258



2 MAIN RESULTS

Let T = (V, E) be a tournament whose set of vertices is V,|V| = n,and whose
set of arcs is E.
Fori e V(T),
N* ()= {jlli.j)e E.jeV},

N=(i) = {jlG.5) € E.je V}

N* (i) is also called the neighbourhood of i.Clearly, N* ({)UN~ (i)u{i} = V(T),
for each i € V(T),and |[N*(i)|+|N ~(i)] = n—1.where |S| denotes the cardinality
of the set S.Let

A*(T) := max{|N*(i)] .i e V},

6~(T) := min{|N~(3)] ,i € V}

clearly A+(T) > L ( n ) = 831 and A*(T)+6~(T) = n— LIf T is strong,then

2
§~(T)>0. , ,
For a subgraph 7" of T, Nt (i) := N*(i)n V(T'),i € V(T').
To prove Theorem 2.2,we first present a Lemma.

Lemma 2.1.For & > 3JJet T be a tournament and k& < |V(T)| < 2k —
2.If T has no transmitter(that is there has no vertex,say u,A*(u) = |V(T)| -
1),then there exists a subset of V(7T")say X such that U;ex N*(i) = V(T) and
|X| < k.Furthermore,for the set 5* = V(T) — X there exists a vertex v €
V(T),N*(v) D S".

Proof.Let v be a vertex with maximum outdegree. With the fact that T has
no transmitter,we know that N~ (v,) is nonempty.Since A+(T) > ILEz)u,we

have
V-1 _
2

|N=(w)] < V(T - L

IN—("I)l < %_l.

Now k < |[V(T) < 2k-2s0 1 < [N~ (1) < k—2.Clearly v, € UueN-(u.)N*'(u).Since
T = T[N~(v)] has at most one transmitter,surely we can add one vertex
u(u € V(T)) to N~ (v1) U {v} such that the set N~ (v;)U {v;,u} whose neigh-
bourhood union is V(T).Thus N ~(v; )U{v,, u} is the set we required.It is obvious
that [N"(v))U {n,u}|<k—-2+2=k.

Clearly vi € V(T) and N*{v) D V(T) = (N~ (v) U {vy,u}).Hence the
lemma holds. 0

Now we establish the following
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Theorem 2.2.Let T° be a strong ournament of order n(n > 4).If for some
integer k > 3.0 =2 > A+(T) > n— k- 2572 4 |, then there cxists a subset .Y
of V(T) with |.X| = k such that U,ex Nt (v) = V(T).

Proof.Let v be a vertex with the largest outdegree in 7. Then

L <N (w)] S k-2672 -2,

Let Ty denote T \(N*(v1) U {v1}).Clearly V(T1) = N~ (m).

If IN“(v)| < 2by A (T) < n — 2then there exist two vertices whose
neighbourhood union contains V(T}).Thus this theorem holds.

If [N~ (v)| > 2.Let v be a vertex in T} whose outdegree(as a vertex in 77)
is maximal. Then

0 < |N7, (v2)] < %(k k=2

Hence 0 < |N.;l(p~3)| < k- 28=3 — 2.and for any vertex u € N’Fl(v-_,),.'v,f“(u)
contains vo.Let Ty denote T.\(N,}".I(vg) U {v2}).Take a vertex with the Jargest
outdegree in T>say vs,

And so on.Continuing the process we take k — 2 vertices,say vy, va. ..., Vg_2.

Il there exists a subscript 1,2 < i < k — 2,such that |N7'.i_‘(v,~)| < 2,then

we have

erota L JUNT (v} € 24 k=2 =kt is not difficult to ver-
T =

ify that this theorem holds.Otherwise let Ti_a denote 73&--:&\(/\1'?3_‘(1:;;_-_.) U
{vk-2}). Then
3<|V(Tioa)] S k25D g

We consider the f{ollowing two cases.

('ase |.If Ti_+ contains a transinitter,then the theorem holds.

Case 2.In this case. T _» has no transmitter.From the hypothesesthere is a
jsuch that 3 < j < kand j < |V(Ti-2}| < 2j - 2,50 by Lemma 2.1.we can find
an X with the desired properties such that |.X| < j < k .Now we consider the
subset X

If Uyex Nt(u) = V(T)since |X| < k,we can get a k-vertex subset X' by
adding k& — |.X| vertices to X, then X' is the required set.If Uyex V¥ (u) #
V(T).then there exists a vertex w ¢ V(Ti_-2) with the property that N*(w) D
X.Hence N*(w)UNT(v) D V(Ti—2)U{vi-2}.then the k vertices vy, va. ... k3,
g, v, w are required. The theorem holds.

This completes the proof of Theoremn 2.2. m]

By Theoremn 2.2 clearly we have
Corollary 2.3.1f T;, is a strong tournament of order n with

d<n<k -2 -2 (k>3
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then T, has a dominating subtournament 7i It follows that
frky=1 if 4<n<k-2*7'-2 (k>3).

In fact,Theorem 2.2 provides a means of finding out a dominating subtour-
nament T} of every strong tournament T, with 4 < n <k 2871 -2 (k > 3).
According to Corollary 2.3,we have

f(n3)y =1 (4<n<10) (2)

Furthermore for n > 11,we have

Theorem 2.4.f(n,3) =2 for n> 1l

Proof.By Theorem A and (1)we have f(n,3) < 2(n > 11).Now we show
that f(n,3) > 2(n > I1).

Let @, denote the (strong) tournament with vertices 1,2,...,11 in which
arc(¢,j ) is present if and only if j — i in which arc(i, j) is a quadratic residue
modulo 11 clearly it is feasible.To verify that @y has no dominating T3.it is
only necessary to consider the 55 3-cycles in Jy,:and even these don’t need to
be considered separately.For,every arc of @y, is similar to every other arc of
@11 under the automorphism group of @,.S0 we need only examine the three
3-cycles containing any given arc of @y).then it is easy to check that @, has
no dominating T3.

Next we let T}, denote the tournatuent obtained from @), by replacing vertex
| say,of @, by a transitive tournament R, _y and then adding arcs between
all vertices of R,_q and the remaining vertices (2 < i < 11) of @y, that have
the same orientations as the original arcs between vertices | and .1t is easy to
see that this T, is strong and that if @1, has no dominating T3.then T;, doesn’t
either.It follows that f(n,3} > 2(n > 11).

Hence the Theorem holds. (m]

By Theorem 2.4 and (2).we know that
S(n,3)=2 ifandonlyif n>11.

Thus we disprove B.L.conjecture in [2].

According to Corollary 2.3.we know that if f(n,4) > | then n > 31.

In fact,P. Erdés had shown the following result([5]):

Let n and k be integers such that n > 4 and 4 < k < n.If n/logn > k2% then
there exists some strong 7, having no dominating T.

From the above.we know that if n/logn > k-2%(n > 4.4 < & < n).then
f(n. k) =2
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