The kth Lower Multiexponent of Tournament Matrices Bolian Liu Wang Yan (Department of Mathematics South China Normal University Guangzhou, P.R. China) #### Abstract In this paper we investigate the kth lower multiexponent f(n,k) for tournament matrices. It was proved that f(n,3) = 2 if and only if $n \ge 11$. Thus the conjecture in [2] is disproved. Further we obtain a new sufficient condition for f(n,k) = 1. ### 1 INTRODUCTION An $n \times n$ Boolean matrix A is called primitive if there exists some positive integer t such that $A^t > 0$. Such a least positive integer t is called the exponent of A. As we know, a directed graph D = (V, E) defined by a (0, 1) matrix $A = (a_{ij})$ consists of n vertices 1, 2, ..., n such that an $\operatorname{arc}(i, j)$ goes from i to j if and only if the entry a_{ij} of A is one A is called the adjacency matrix of D, while D is called the associated digraph of A. If A is primitive, then its associate digraph D(A) is a primitive graph. It is well known that D is primitive if and only if D is strongly connected and $\gcd(r_1, r_2, ..., r_s) = 1$, where $L(D) = \{r_1, r_2, ..., r_s\}$ is the set of distinct lengths of the directed cycles of D. $f(D,k), 1 \le k \le n$, is called the kth lower multiexponent for a primitive directed graph D of order n if there exists a set X of k vertices of D such that for each vertex i of D, there is a walk of length f(D,k) from some vertex of X to i. Equivalently f(D,k) is a least positive integer t such that $A^t(D)$ has a $k \times n$ submatrix without zero column. In [1], R.A.Brualdi and Bolian Liu first introduced f(D, k) and found the upper bound of f(G, k) for primitive simple graphs. In [2], Bolian Liu investigated $f(T_n, k)$ for primitive tournaments of order n. A tournament T_n is a directed graph D such that each pair of distinct vertices i and j is joined by exactly one of the arcs(i,j) or (j,i) and no vertex is joined to itself by an arc. A tournament matrix M_n is a matrix that is the adjacency matrix of a tournament T_n . In 1967, J.W. Moon and N.J. Pullman ([3]) proved that a tournament T_n is primitive if and only if $n \ge 4$ and T_n is strongly connected. In this paper we will consider only primitive tournament $T_n (n \ge 4)$. Let $$f(n,k) := MAX_{T_n} f(T_n,k), k = 1, 2, ..., n$$ where MAX is taken over all the primitive tournament $T_n (n \geq 4)$. According to the above definition, we have $$f(n, k_1) > f(n, k_2)$$ if $k_1 < k_2$. (1) In [2], Bolian Liu proved the following THEOREM A([2]) $$f(n,k) = \begin{cases} 3 & k = 1\\ 2 & k = 2\\ 1 \text{ or } 2 & 3 \le k < 2 + \left\lfloor \frac{1}{4}(n+1) \right\rfloor \\ 1 & k \ge 2 + \left\lfloor \frac{1}{4}(n+1) \right\rfloor \end{cases}$$ and conjectured $$f(n,k) = \begin{cases} 3 & k=1\\ 2 & k=2\\ 1 & k \ge 3 \end{cases}$$ (B.L.conjecture) In fact, let n and k be integers such that $3 \le k \le n$ and $n \ge 4$, we say a subtournament T_k of a tournament T_n is dominating if every vertex of T_n loses to some nodes of T_k . It follows that a primitive tournament T_n with the property that $f(T_n, k) = 1$ is equivalent to T_n having at least one dominating subtournament T_k . In this paper we show that f(n,3) = 2 if and only if $n \ge 11$. Hence B.L. conjecture in [2] is disproved. In [4], E. and G. Szekeres mentioned S_k tournaments and proved an inequality $f(k) \ge (k+2)2^{k-1} - 1$. With that result, we know that if $4 \le n \le (k+1)2^{k-2} - 2$, then any strong tournament of order n has one dominating T_k , which means $$f(n,k) = 1$$ if $4 \le n \le (k+1)2^{k-2} - 2$ $(k > 3)$. More precisely we shall prove that $$f(n,k) = 1$$ if $4 \le n \le k \cdot 2^{k-1} - 2$ $(k \ge 3)$ The result improves the above conclusion. ## 2 MAIN RESULTS Let T = (V, E) be a tournament whose set of vertices is V, |V| = n, and whose set of arcs is E. For $i \in V(T)$, $$N^+(i) := \{j | (i, j) \in E, j \in V\},\$$ $$N^{-}(i) := \{j | (j, i) \in E, j \in V\}$$ $N^+(i)$ is also called the neighbourhood of i.Clearly, $N^+(i) \cup N^-(i) \cup \{i\} = V(T)$, for each $i \in V(T)$, and $|N^+(i)| + |N^-(i)| = n - 1$, where |S| denotes the cardinality of the set S.Let $$\Delta^+(T) := \max\{\left|N^+(i)\right|, i \in V\},\,$$ $$\delta^{-}(T) := \min\{\left|N^{-}(i)\right|, i \in V\}$$ clearly $\Delta^+(T) \ge \frac{1}{n} \binom{n}{2} = \frac{n-1}{2}$ and $\Delta^+(T) + \delta^-(T) = n - 1$. If T is strong, then $\delta^-(T) > 0$. For a subgraph T' of T, $N_{T'}^+(i) := N^+(i) \cap V(T'), i \in V(T')$ To prove Theorem 2.2, we first present a Lemma. Lemma 2.1. For $k \geq 3$, let T be a tournament and $k \leq |V(T)| \leq 2k - 2$. If T has no transmitter(that is there has no vertex, say $u, \Delta^+(u) = |V(T)| - 1$), then there exists a subset of V(T), say X, such that $\bigcup_{i \in X} N^+(i) = V(T)$ and $|X| \leq k$. Furthermore, for the set $S^* = V(T) - X$, there exists a vertex $v \in V(T)$, $N^+(v) \supset S^*$. **Proof.** Let v_1 be a vertex with maximum outdegree. With the fact that T has no transmitter, we know that $N^-(v_1)$ is nonempty. Since $\Delta^+(T) \geq \frac{|V(T)|-1}{2}$, we have $$|N^-(v_1)| \leq |V(T)| - \frac{|V(T)|-1}{2} - 1,$$ i.e. $$|N^-(v_1)|\leq \frac{|V(T)|-1}{2}.$$ Now $k \leq |V(T)| \leq 2k-2$, so $1 \leq |N^-(v_1)| \leq k-2$. Clearly $v_1 \in \bigcup_{u \in N^-(v_1)} N^+(u)$. Since $T' = T[N^-(v_1)]$ has at most one transmitter, surely we can add one vertex $u(u \in V(T))$ to $N^-(v_1) \cup \{v_1\}$ such that the set $N^-(v_1) \cup \{v_1, u\}$ whose neighbourhood union is V(T). Thus $N^-(v_1) \cup \{v_1, u\}$ is the set we required. It is obvious that $|N^-(v_1) \cup \{v_1, u\}| \leq k-2+2=k$. Clearly $v_1 \in V(T)$ and $N^+(v_1) \supset V(T) - (N^-(v_1) \cup \{v_1, u\})$. Hence the lemma holds. Now we establish the following **Theorem 2.2.** Let T be a strong ournament of order $n(n \ge 4)$. If for some integer $k \ge 3, n-2 \ge \Delta^+(T) \ge n-k \cdot 2^{k-2}+1$, then there exists a subset X of V(T) with |X| = k such that $\bigcup_{v \in X} N^+(v) = V(T)$. **Proof.**Let v_1 be a vertex with the largest outdegree in T. Then $$1 < |N^-(v_1)| \le k \cdot 2^{k-2} - 2.$$ Let T_1 denote $T \setminus (N^+(v_1) \cup \{v_1\})$. Clearly $V(T_1) = N^-(v_1)$. If $|N^-(v_1)| \leq 2$, by $\Delta^+(T) \leq n-2$, then there exist two vertices whose neighbourhood union contains $V(T_1)$. Thus this theorem holds. If $|N^-(v_1)| > 2$. Let v_2 be a vertex in T_1 whose outdegree(as a vertex in T_1) is maximal. Then $$0 \leq \left| N_{T_1}^-(v_2) \right| \leq \frac{1}{2} (k \cdot 2^{k-2} - 2 - 1)$$ Hence $0 \leq \left|N_{T_1}^-(v_2)\right| \leq k \cdot 2^{k-3} - 2$, and for any vertex $u \in N_{T_1}^-(v_2), N_{T_1}^+(u)$ contains v_2 . Let T_2 denote $T_1 \setminus (N_{T_1}^+(v_2) \cup \{v_2\})$. Take a vertex with the largest outdegree in T_2 , say v_3 , And so on. Continuing the process we take k-2 vertices, say $v_1, v_2, ..., v_{k-2}$. If there exists a subscript $i,2 \leq i \leq k-2$, such that $\left|N_{T_{i-1}}^-(v_i)\right| \leq 2$, then we have $\left|\{v_1,v_2,...,v_i\} \cup N_{T_{i-1}}^-(v_i)\right| \leq 2+k-2=k$. It is not difficult to verify that this theorem holds. Otherwise let T_{k-2} denote $T_{k-3} \setminus (N_{T_{k-3}}^+(v_{k-2}) \cup \{v_{k-2}\})$. Then $3 \le |V(T_{k-2})| \le k \cdot 2^{k-(k-1)} - 2$, We consider the following two cases. Case 1.If T_{k-2} contains a transmitter, then the theorem holds. Case 2.In this case, T_{k-2} has no transmitter. From the hypotheses, there is a j such that $3 \le j \le k$ and $j \le |V(T_{k-2})| \le 2j-2$, so by Lemma 2.1, we can find an X with the desired properties such that $|X| \le j \le k$. Now we consider the subset X. If $\bigcup_{u\in X} N^+(u) = V(T)$, since $|X| \leq k$, we can get a k-vertex subset X' by adding k-|X| vertices to X, then X' is the required set. If $\bigcup_{u\in X} N^+(u) \neq V(T)$, then there exists a vertex $w\notin V(T_{k-2})$ with the property that $N^+(w)\supset X$. Hence $N^+(w)\cup N^+(v)\supset V(T_{k-2})\cup \{v_{k-2}\}$, then the k vertices $v_1,v_2,...,v_{k-3},v_{k-2},v,w$ are required. The theorem holds. This completes the proof of Theorem 2.2. \Box By Theorem 2.2, clearly we have Corollary 2.3.If T_n is a strong tournament of order n with $$4 \le n \le k \cdot 2^{k-1} - 2 \quad (k \ge 3),$$ then T_n has a dominating subtournament T_k . It follows that $$f(n,k) = 1$$ if $4 \le n \le k \cdot 2^{k-1} - 2$ $(k \ge 3)$. In fact, Theorem 2.2 provides a means of finding out a dominating subtournament T_k of every strong tournament T_n with $4 \le n \le k \cdot 2^{k-1} - 2$ $(k \ge 3)$. According to Corollary 2.3, we have $$f(n,3) = 1 \qquad (4 \le n \le 10) \tag{2}$$ Furthermore for $n \ge 11$, we have **Theorem 2.4.** f(n,3) = 2 for $n \ge 11$. **Proof.By** Theorem A and (1),we have $f(n,3) \leq 2(n \geq 11)$. Now we show that $f(n,3) \geq 2(n \geq 11)$. Let Q_{11} denote the (strong) tournament with vertices 1, 2, ..., 11 in which $\operatorname{arc}(i, j)$ is present if and only if j-i in which $\operatorname{arc}(i, j)$ is a quadratic residue modulo 11, clearly it is feasible. To verify that Q_{11} has no dominating T_3 , it is only necessary to consider the 55 3-cycles in Q_{11} : and even these don't need to be considered separately. For, every arc of Q_{11} is similar to every other arc of Q_{11} under the automorphism group of Q_{11} . So we need only examine the three 3-cycles containing any given arc of Q_{11} , then it is easy to check that Q_{11} has no dominating T_3 . Next we let T_n denote the tournament obtained from Q_{11} by replacing vertex 1,say,of Q_{11} by a transitive tournament R_{n-10} and then adding arcs between all vertices of R_{n-10} and the remaining vertices $i(2 \le i \le 11)$ of Q_{11} that have the same orientations as the original arcs between vertices 1 and i.It is easy to see that this T_n is strong and that if Q_{11} has no dominating T_3 , then T_n doesn't either.It follows that f(n,3) > 2(n > 11). Hence the Theorem holds. By Theorem 2.4 and (2), we know that $$f(n,3) = 2$$ if and only if $n \ge 11$. Thus we disprove B.L.conjecture in [2]. According to Corollary 2.3, we know that if f(n,4) > 1 then n > 31. In fact, P. Erdös had shown the following result([5]): Let n and k be integers such that $n \ge 4$ and $4 \le k \le n$. If $n/\log n \ge k \cdot 2^k$, then there exists some strong T_n having no dominating T_k . From the above, we know that if $n/\log n \ge k \cdot 2^k (n \ge 4, 4 \le k \le n)$, then f(n,k) = 2. #### Acknowledgement The authors would like to thank the referees for their helpful comments and suggestions. Especially, the proof of Theorem 2.4 is greatly improved due to the referees' help. It is their kind help that leads to this Theory. ### References - [1] R.A.Brualdi and Bolian Liu, Generalized Exponents of Primitive Directed Graphs, J. Graph Theory, 14(1990) 4:483—499. - [2] Bolian Liu, Multiexponent of Tournament Matrices, ARS. Combinatoria 41(1995), 269-277. - [3] J.W.Moon and N.J.Pullman, On the Powers of Tournament Matrices, J. Comb. Theory 3(1965)290-293. - [4] E.and G.Szekeres, On a Problem of Schütte and Erdös, Math. Gazette 49(1965)290-293. - [5] P. Erdös, On a problem in Graph Theorey, Math. Gazette 47(1963)220-223.