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Abstract
Bollob4s, Brightwell [1] and independently Shi [3] proved the ex-

istence of a cycle through all vertices of degree at least 7 in any
2-connected graph of order n. The aim of this paper is to show that

the above degree requirement can be relaxed for 1-tough graphs.

1 Introduction

Bollob4as and Brightwell [1] proved that if G is a graph of order n and W
is a set of w vertices of degree at least d, then there is a cycle through at
least [T-fﬁ-_l] vertices of W. In the case d > % this implies the existence
of a cycle through all vertices of degree at least 3. This special case was
proved independently by Shi [3] for 2-connected graphs. In fact, Bollobis
and Brightwell proved an Ore type result which can be read as

Theorem 1 (1] Let G be a graph on n vertices and let W C Vg such that
each pair of non-adjacent vertices u,v € W satisfies d(u) + d(v) > n. If
|W| > 3, then G contains a cycle through all vertices of W.

In this paper we show that the above degree requirement can be relaxed
for 1-tough graphs. A graph is called 1-tough if {(G — S) < |S| for every
subset S of Vg with (G — S) > 2, where ¢{(G — S) denotes the number
of components of G — S. To be able to state our result we need some
definitions and notation.

For any subset S of Vg the subgraph induced by the vertices from S
is denoted by (S). Let u and v be two non-adjacent vertices of G. Let
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¥(u,v) be the number of components of (N (u)) containing no neighbour of
v, where N (u) denotes the neighbourhood of u. Let a(u, v) = |N(u)NN(v)|
and B(u,v) = |{z;z ¢ N(u) U N(v), d(u,z) = 2 or d(v,z) = 2}|, where
d(z,y) denotes the distance of z and y. We define, involving these terms,
a graph invariant

x(u,v) = pos(min{¥(u,v), ¥(v,u)} — 1) + pos(a(x, v) — B(u,v) — 1),

where pos(z) = max{0,z}. Notice that similar invariants were defined
in [4, 5, 2] where several conditions for hamiltonicity were generalized.
Our aim is to show that the degree-sum requirement from Theorem 1 can
be decreased by x(u,v) for 1-tough graphs. To see the significance of x
let us observe that in any graph of girth > 5, ¥(u,v) > 6 — 1, where §
denotes the minimal degree of the graph. Thus x(u,v) > § — 2 for all
pairs of non-adjacent vertices in such graph. Moreover, if there is a pair of
non-adjacent vertices with “many” neighbours in common, then, usually,
¥(u,v) is “small”, but a(u,v) — B(u,v) can be “large”. Thus x may be
well applicable to both sparse and dense graphs. Our main result is the
following Theorem 2 the proof of which is given in the next section.

Theorem 2 Let G be a 1-tough graph of order n and let W C V. Assume
that for each pair of non-adjacent vertices z,y € W we have d(z) + d(y) +
x(z,y) > n. Then, G contains a cycle through all vertices of W.

Let W be a subset of Vg of a graph G. If we define for all u € W
ww (u) = minug.ew X(u,v), then we obtain
uv@Eg
Corollary 1 Let W C Vg of a 1-tough graph G. If for allv € W, d(v) >
"—'“’—;’M, then G contains a cycle through all vertices of W.

Proof. Let W be a set of vertices v of degree at least ﬁ#ﬂ If W] <2,
then the statement follows from the 2-connectivity of G. If all vertices from
W are adjacent to each other, then, trivially, there is a cycle containing

all vertices of W. Thus, let £ and y be two non-adjacent vertices from W.
Then d(z)+d(y) > 2=¢w(=)  noww(y) > noxlew) 4 ooxv2) — 5y (z,y).

The following example shows that Corollary 1 is indeed stronger than
the related result of Bollobas, Brightwell [1] and Shi [3]. We define for each
p > 6 the graph G, of order 2p%+2p+3 as follows: G, consists of p+1 copies
of Kp41 with the vertex sets {uyi,u2;4,...,up15}, (i = 1,2,...,p+ 1);
of p* vertices v1,V2,...,Vp2; of another two vertices z,y; and all edges
viugg, (5 =1,2,...,p%), (k=2,3,...,p+ 1), ( =1,2,...,p+ 1); zuy,
({=1,2,...,p+1); and yv;, (i = 1,2,...,p%).
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For a graph Gp, p > 6, let W = Vg, \ {u1,1,u1,2,.. ., u1,p41,2,y}. It is
easy but time consuming exercise to observe that G, is 1-tough and that
ww(v;) > 1 for all v; € W and ww(u;,;) > 3 for all u;; € W. Thus by
Corollary 1, there is a cycle through all vertices of W. But the related
result of Bollobas, Brightwell [1] and Shi [3] cannot be applied because no
vertex of Gp has degree > p? + p+ 2. Note that using Theorem 1 one can
ensure a cycle through all vertices of {vj, 42,3, ..., up41,i} for some ¢ and j.

2 Proof of Theorem 2

Let C =cic2 ... cker be a cycle of length k. If u = ¢; € V¢, then by ut
(u~) we denote the vertex ci41 (ci-1), where ck41 = ¢ and co = cx. We
say that C is non-extendable if for each edge uv of C there is no u — v
path internally disjoint from C. If P is a path and = and y are two vertices
of P, then by [z,y]p we denote the unique subpath of P beginning at z
and ending at y. Similarly, if C is a cycle and z and y are two its vertices,
z # y, then by [ze¢, y]c , where € € {z*, 2™}, we denote the unique subpath
of C beginning at z, ending at y, and passing through ¢. Finally, let P and
Q be two internally disjoint paths with just one vertex in common—the
last vertex of P is the first vertex of @. Then by P o Q we denote the path
P followed by Q.

Proof of Theorem 2. If |W| < 2, then the result follows from the 2-
connectivity of G. Thus let |W| > 3. Assuming the theorem is false,
let C = cycz...crec be a non-extendable cycle containing as many ver-
tices from W as possible. Note that C contains at least two vertices of W.
Let H = Vg \ V. Then there is at least one vertex, say c, from HNW.
Since G is 2-connected, it follows that there is a path P connecting two
vertices of C that is internally disjoint from C and contains ¢. Without
loose of generality we may assume that Vo N Vp = {c;,c:}. Moreover, we
may assume that C and P are chosen in such a way that:

() the path [c;, ¢]p is as short as possible;
(#7) t is as small as possible with respect to (z).

It follows from (i), that there is no edge cc; for 1 < i < t. By the
choice of C, there is at least one vertex ¢, € W N V¢, where 1 < s < t. If
we take s as small as possible, it will hold that ¢; ¢ W for 1 < i < s.

Claim 1. Under the above assumptions the following holds.

(®) If u € V¢ and there is a u — ¢ path internally disjoint from C, then
ute, ¢ Eg, unless u = ¢;.
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() For u € V¢ there is no u — u* path internally disjoint from C.
(£2) There is no ¢, — ¢ path internally disjoint from C.

To prove (®), assume there is such a u — ¢ path, say L, and the edge u*c,.
If the path L is not internally disjoint from [c;,c]p, then let w denote the
first vertex on the path L (passing through u towards ¢) which is also an
inner vertex of [c1,c]p. Moreover, if [u, w]L is not internally disjoint from
[c,ce]p as well, let z denote the first vertex on the path [u,w]; (passing
through u towards w) which is also an inner vertex of [c,¢:]p and let y
denote the first vertex on the path [w,u]r (passing through w towards u)
which is also an inner vertex of [c, ¢¢]p.
We distinguish several cases according to u and L. Let u € {cz,c¢3,...,¢5}
(u € {ct,...,ck}). If L is internally disjoint from [c1,c]p, then, since
€2,¢3,...,u~ & Wand c € W, the cycle [e1, ¢] po[e, u]o[uut, e1)¢ ([c1, c]po
[e,u]L o [uu~,¢5)c o esut o [ut(ut)*,c1)c) contains more vertices from
W than C, a contradiction. If L is not internally disjoint from [c;,c]p
and [u, w]L is internally disjoint from [c, ¢;]p, then consider the cycle F =
fe1, w]p o [w,u]L o [uut,e1]lc (F = [e1,w]p o [w,u]g o [uu~,c)c 0 csut o
[ut(ut)*,c1)c). Obviously, it contains all the vertices from W that are
on C. Moreover, the path J = [w,c]p is a path containing ¢ which is
internally disjoint from F and VFNV; = {w, ¢;}. It is a matter of routine to
observe that we may assume that F is non-extendable. But the path [w, c];
is shorter than the path [c;,¢]p, contradicting (7). If L is not internally
disjoint from [c;, ¢]p and [, w]y is not internally disjoint from [c, ¢¢]p, then
considering the cycle F = [c1,w]p o [w,y]L o [y,2]p o [, u]L o [uut,ci]c
(F =[er,wlpolw,ylroy,z]lpolr,u)rofuu™, c]c o csut o [ut(ut)t, ci]c)
and the path J = [w, y]p, or the path J = [w, 2]p if z precedes y on [¢, c¢]p,
we obtain again a contradiction with (7).

The part (¥) follows directly from the assumption that C is non-
extendable. The part (£2) has been proved, in fact, in (®) - the case
u=cs.

Consider the following sets; see Figure 1.

{z; 2 ¢ Ve, zc € Eg},

{v: y€ Ve, y"c € Eg} — {c2} + {c},

{z;3k € H: ck,kz € Eg, zc,2¢, ¢ Eg, z # ¢},
{r;reVe,AeH: cr ,r c; € Eg,r"c¢ Eg} — {cz2},
{u; u€ Ve, uc € Eg, u”c,uc, ¢ Eg},

{t; t € Ve, d(t,c) > 3, d(t, ;) > 3}

N QN
il

Claim 2. The sets X,Y,Z,R,U, and T are pairwise disjoint.
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This follows immediately from their definitions for all pairs with the ex-
ceptions of Y, Z; Z, R; and U, R. So, assume there is a vertex u €Y N Z.
Since u € Y, u € V¢ and there is the edge u~c. Similarly, since u € Z,
there is a vertex k € H and edges ck, ku in G. Thus the path u~ cku is
internally disjoint from C, contradicting (¥). Let u € ZNR. Thenu € V¢
and there exist k and [ in H so that ck, ku,cl,lu~ € Eg. If k # |, then the
path ukclu~ is internally disjoint from C, contradicting (¥). If k = {,
then uku~ is such a path. Finally,let u€ UNR. SinceueU,u€ V¢
and the edge uc is in G. Since u € R, there is a vertex | € H and edges
u~l,lc in G. But now the path uclu~ is internally disjoint from C, again
contradicting (¥). This proves the claim.

Figure 1:

Claim 3. No neighbour of ¢, isin L=XUYUZURUUUT.

This follows directly from their definitions for all these sets with the ex-
ceptions of X, Y, and R. Consider the case c,z, z € X, is an edge of G.
Then the path ¢, z ¢ is internally disjoint from C, contradicting (£2). Let
¢y, ¥y €Y, be an edge of G. Note that, by assumptions, y # ¢, ¢z, ¢;. Since
Yy~ # c1, the edge y~c is a path internally disjoint from C, contradicting
(®). Finally, let rc,, r € R, be an edge of G. Note that r # c3,c;. Then
the path r—lc is internally disjoint from C, contradicting (®). Thus no
neighbour of ¢, is in L. This proves Claim 3.

In what follows we estimate the cardinalities of the six sets to obtain
an upper bound for the degree of the vertex c,.

Claim 4. The sets X,Y, Z, R, U, and T satisfy the following:
(1) IX VY| 2> du(ec) + de(c) = da(c);
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(2) 1ZURUU| 2> pos(¥(c,es) —1);
(3) IT| > pos(a(c,c;s) — B(c,cs) — 1).

(1) holds trivially. To prove (2), let m (I) denote the number of components
of (N(c)) containing no neighbour of ¢, and containing some (no) vertex
of V. Obviously, m +1 = 9(c, ¢,).

First, consider the components containing some vertex from V. Let
Cj, 1 < j < m,beone of them. Let ¢; be the vertex from V¢; NV with the
smallest subscript . The vertex ¢;—; cannot be adjacent to ¢, otherwise it
would belong to C; and i would not be the smallest. It follows from the
definition of C; that cc; € Eg and c;c; ¢ Eg, thus c; belongs to U. We
can find for each such component a vertex from U, and so [U| > m.

Second, consider the components containing no vertex from V¢; say
Dy, ..., DD;. Define a bipartite graph K with bipartition (A, B) as follows.
The set A contains ! vertices corresponding to the components D, (1 <
s < l). The set B consists of vertices corresponding to the vertices in
the set N(U!_,D;) \ {c}. We define the edge-set of K as: The edge ab,
a € A and b € B, is from K iff the corresponding vertex to b is from
N(D,), where D, is the corresponding component to the vertex a. By
the well-known Hall’s theorem, K contains a matching M that saturates
every vertex in A. Indeed, if this is not the case, then, by Hall’s theorem,
there is a subset S of A such that |[N(S)] < |S]|. Without loss of generality
we assume that S consists of vertices corresponding to Dy,...,D; (j <1!).
Now it follows from the construction of K that |N(Ul_, Di)\{c}| < j. If we
delete all vertices from N (U{___ID;)U{C}, then G becomes disconnected with
components Dy,. .., Dj, and at least one another component containing the
vertex c¢,. Indeed, since c;c ¢ Eg, the vertex ¢, ¢ U£=1D; and, by (£2),
¢s ¢ N(U:Z,D;). But this contradicts the fact that G is 1-tough. Thus
there is such a matching M guaranteeing the existence of ! vertices, say
v1,...,u, from N(Ui_,D;) \ {c}, one for each D;; say the vertex v; is
adjacent to D; (i = 1,...,1). If there is not the edge c,v;, then let v be
the vertex of D; adjacent to v;. Thus there are edges cv,vv; and are not
edges cv; (since v; is not from Dj;), and c,v;, and it follows that v; € Z.
If there is the edge c,v;, then, by (§2), the vertex v; € V. Since v; is
not from Dj, there is not the edge vic, and it follows that if v; # ¢,
then v;4; € R. We have observed that [ZU R| > { — 1. By Claim 2,
|IZURUU| > pos(¥(e,c,) — 1).

To obtain a lower bound on the cardinality of the set T let vy, ..., Va(c,c,)
be the common neighbours of ¢ and ¢,. By (£2), all these vertices lie on C.

Claim 4.1. If there are two vertices z;,z; € Ve \ {c2,. .., ct—1} such that
i < j and czi,c;z; € Eg, then a vertex z; € V¢ must exist such that
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i<l< jandcz,c,z; ¢ Eg.

If z; = c1, then, by assumptions j > ¢, and the claim follows (by taking
z) = ¢,). Thus let z; # ¢;. Since the edge z;c is internally disjoint from
C, by (®), we have j —i > 2. By (¥), the edge z;41¢c ¢ Eg, and again by
(®), the edge zi41¢, ¢ Eg. We put z; = z;4;1. Obviously, i <i+1< j.

Since for i = 2,...,t — 1 we have cic ¢ Eg, all vertices vy, ..., ¥a(c,c,)
belong to V¢ \ {¢2,..., ct—1}. Recall that in our notation c; can be sub-
stituted by cx4+1. Now, by Claim 4.1, there are a(c, c;) vertices on C that
are adjacent neither to ¢ nor ¢;. At most B(c, ¢;) of them are of distance 2
either from ¢ or c,, and at most one of them is c;. Thus there are at least
pos(a(c,cs) — B(c, ¢s) — 1) vertices in T. This proves Claim 4.

Now we are ready to estimate the upper bound of d(c,). It holds d(c,) <
[Ve|—HesH = |1XUY|=|ZURUU|-|T| < n—1-d(c) — pos(¢(c,¢c,) —
1) — pos(a(c,c;) — B(c,e5) — 1) <n—1—d(c) — x(c,cs). But the vertices
¢ and ¢, are non-adjacent and both are from the set W, a contradiction.
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