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Abstract
Cwatscts are subscts of Z§ which are nearly subgroups and which
naturally appear in statistics and coding theory [8]. Each cwatset can
be represented by a highly symmetric hypergraph [7]. We introduce
and study the svmmetry group of the hypergraph and connect it
to the corresponding cwatset. We use this connection to establish
structure theorems for several classes of cwatsets.

1 Introduction

Cwatsets are subsets of Z¢ that were introduced by G.J. Sherman and
M. Wattenberg [8]. They are generalizations of subgroups of Z¢ and they
appear naturally in statistics and in coding theory (see [1],"[8]). In [8],
using standard group-theoretic tools, some basic properties about cwatsets
were proven, most notably the fact that they are projections into Zg of
subgroups of Z.‘_,’ ><45¢, the semidirect product of Z¢ by Sy. To date, one
paper [7] has been published in response to [8]. In [7], perfect cwatsets
were introduced. The hope was that any ewatset could be represented as
a direct sum of perfect cwatsets; although this turned out not to be the
case, it seems that studying perfect cwatsets could still be fruitful. Indeed,
a one-to-one correspondence between perfect cwatsets and a certain type
of hypergraphs was established, and the combinatorial properties of these
hypergraphs were used to prove a number of statements about the orders
of cwatsets.
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After first defining morphisms of cwatsets and deriving several basic
properties of the category of cwatsets (such as characterizing isomorphisms
of ewatsets in Theorem 1), we attempt to unify the two earlier approaches
by introducing o group-theoretic structure, the structure group of a cwatset,
which is directly related to the hypergraph of a ewatset (see our Theorem
2). Theorem 3 then shows that every subgroup of the symmetric group
S whose action on {1,.2...., d} is transitive is a subgroup of the structure
group of some perfect ewatset. Theorem 3 also provides a way of checking
whether the subgroup is in fact the structure group of a perfect cwatset.
Theorem 4 provides a decomposition of perfect cwatsets into irreducible
cwatsets which are even simpler than the perfect cwatsets from [7], and
Theorem 5 establishes a number of properties of this decomposition.

The results through Theorem 3 build a fairly specific group-theoretic and
graph-theoretic structure: enonugh so that the standard literature on graph
theory is now of great nse in classifying ewatsets through their hypergraphs.
By applying these resalts to graphs in Sections 6 and 7, we are able to
completely classify a small class of cwatsets (see Theorem 6). Using these
same facts about groups and graphs, and applying them to more general
cases, we obtain existence of a number of cwatsets of various orders (see
Theorems 7 and 8).

2 Preliminaries

Recall that Z¢ is the group of binary strings of length d under the operation
of digit-by-digit addition without carrving. Forb € Z§ and o € Sy, we write
as b? the permutation by o of the digits of b, i.e. if b = (a1,a.,...,a4)
with a; € Z., b” = (a,-x“,,a,-u(g), cen ,(l”-l((”)-

Let @ = {by,b.,...b,} be a subset of Z.‘_f, and let o € Sy, the symmetric
group of permutations on d elements. When we speak of Q7, we mean
{bf,bg,...,b7}.

Definition 1 [8) A subset Q of Z§ is a cwatset (of degree, or dimension, d)
if for every b € Q, there exists a permutation o € Sy such that (Q+b)? = Q.

A subset of ZY is a cwatset if and only if it is the projection of a subgroup
of the semidirect product Z4 ><1,,S, [8]; in fact, although it is never explic-
itly stated in [8], the proof of this fact produces a subgroup of Z§ ><,S
which is the unique maximal group projecting onto §2. We call this subgroup

/! Here, for a permutation # € Sy and b € Z!_,', we define ¢(o)(b) = b7,
the permutation of the digits of b by . Recall that the semidirect product
N > of N and K. where ¢ : K — Aut(N). is the set N x i\ along with
the operation (ny. ky) - (na, ka) = [y - (¢(ky))(n2), ki - ka]. Tt follows that
a cwatset of degree d must. have order dividing 29d! (sce [8]). The converse
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does not hold; that is. there exists & which divides 244! and & < 27 for
which there is no ewatset in Z4 of order k (for example. there is no ewatset
of degree 5 and order 15 [7]). This result naturally brings up the question
of exactly what orders of ewatsets can be constructed given a fixed degree.
This question was the focus of [7] and motivates most of the constructions
that will be used in our discussion.

It is often useful to represent a ewatset by a matrix whose rows are the
clements of the ewatset. Hence, a permutation is simply an action on the
columns.

For convenience, in the matrix representation of a cwatset, a column
containing k 1's is called a k-colwmn. Since the number of 1°siin a column
is invariant under a permutation of the rows, the definition of a k-column
is independent of the matrix representation.

Definition 2 [7] A cwatset of order n is called perfect if for some k, all
of its columns are either k-columns or (n — k)-columns.

We call max{k,n — k} the splitting number of (2.

Definition 3 [7] Let 2 be a perfect cwatset of degree d and order n with
splitting number k strictly larger than n/2. Then Q is called a (d,m)-
cwatset if the number of k-columns is exactly m.

Definition 4 [7] A hypergraph is a set of labelled vertices and edges, in
which any given edge and vertex are called either incident or not incident.
(Observe that a graph is a hypergraph with the limitation that each edge is
meident to cxactly Ltwo vertices.)

[ [7), the hypergraph H () associated with a (d, 1n)-cwatset 2 is defined
as follows: Each column represents a vertex, and each row represents an
edge. An edge is incident to a vertex if the corresponding column is a k-
column and the entry of the corresponding row in that column is 0, or if
the column is an (1 = k)-column with a 1 in the corresponding row.

Since there is a well-defined correspondence between the cwatsets, ma-
trices. and hypergraphs that we will be considering, we may speak of the
columns or rows of a hypergraph, or of the edges and vertices of a matrix
or cwatset.

It is casy to check that the hypergraph of a (d,m)-cwatset of order n
and splitting number & has.d vertices, n cdges, and each vertex is incident
to n =k edges. Furthermore. each edge is incident to exactly m vertices (7).
Consequently, the hypergraph of a (d.2)-cwatset is simply a graph, which
makes (d. 2)-cwatsets considerably easier to study.

We say that a hypergraph is regular if each vertex is incident to the same
number of edges, and uniform if cach edge is incident to the same number
of vertices. Hence, every graph is uniform.
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The hypergraph of each perfect cwatset has the following three properties
[7):

(3) It is regular.

(#) It is uniform.

(ii1) For any two edges e and f, there is a permutation on the vertices
which sends edges onto edges and e onto f. (A graph with this property is
called an edge-symmetric graph [3).)

Also, if a hypergraph has the properties (), (i), and (éi1), then it repre-
sents a perfect cwatset [7].

Notice also that it is clear that if there is a (d, m)-cwatset Q of order n,
with splitting number k, then for every natural number y there is a (dp,m)-
cwatset ©, of order np and splitting number k + n(p — 1). Indeed, if we
take H(,) to be p disjoint copies of H(Q), then it is clear that H (9,,) has
propertics (i), (i), and (iti), and furthermore, it has dp vertices and np
edges, and each edge is still incident to m vertices, and each vertex is still
incident to n — k edges, so the splitting number becomes np — (n—-k) =
k+n(p-1).

3 Morphisms of Cwatsets

None of the carlier work on cwatsets discusses any sorts of maps between
cwatsets; thus cwatsets cannot be considered to form a category. In fact,
there is not even a notion of what it means for two cwatsets to be isomor-
phic. The aim of this section is to endow the set of cwatsets with a category
structure. Obviously, this structure would have to reflect both the additive
and permutation structures that cwatsets carry.

Definition 5 Let 2, and 0, be cwatsets, and G and G2 their corre-
sponding subgroups of Z3 ><,S4; we define a morphism ¢ : Q; = Q. to be
a map making the following diagram commutative, where 1 : G - G% is
some group homomorphism, and the vertical maps m, are the projections.
The set of all such ¢ is denoted Mor(Q),92).

G —Y G
0 —2— O

Notice that there may exist no such ¢ for a given 9. In particular, if
(b,o) and (b,s') are two elements of G, then ¢(m(b,0)) = p(b) =
Am(b.a")), and m((b,a)) = m(¥(b,a’)), so the first coordinate of
v(b,) must not depend on o (this is not surprising, since, after all, our
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goal is to define a function of b). This is equivalent to the requircment that
m(¥(0,0)) = 0 for all (0,0) € G

Proposition 1 With morphisms defined as above, cwatsets form a category
which contains a zero object, and for which kernels and images are defined.

PROOF: It is clementary to show that cwatsets form a category: if Q; = Q,,
then G = G and » = id obviously induces the identity map on Q,,
and if we have cwatsets €2y, Q2. and Q3, with corresponding groups G
G, and G, and maps @1 2 M, 02 Dy = Qy, 9y - G o G,
and ¢y : G — G, then v := P2 0 ) induces @ := s 0y, s0 we have a
composition law.

The cwatset {0} serves as a zero object (an object which is both initial
and final). We also have kernels; indeed, if ¢ : @, = Q, is @ morphism,
then Qp = {b € Q|p(b) = 0} is a cwatset itself. Indeed, if by € Qo,
there exists a permutation g with Q7° + by = Q,. We must show that
Q3° +bg = Q. Let b € Q. Then b? +bg € © because P(b? +by,000) =
¥((bo, 30) - (b,0)) = ¥(bo,d0) - ¥i(b,a) = (0,7) - (0,7) = (0,77), 50
Q0% + by C N and hence Q5° + by = Q. The injection i : Oy = Q; can
easily be seen to satisfy the universal property of the kernel.

We can also define the image of a map o : Q) — Qs by im(p) = {bs €
M:]3b, € Q),(by) = ba}. This is a cwatset, because if ¥ : G — G%
is the map corresponding to ¢ on subgroups of the semidirect product,
im(p) = m (im(y)). O

Now that we have this category, perhaps the first reasonable issue to
consider is that of what constitutes an isomorphism of cwatsets. That is,
if ¥ : GM = G induces an isomorphism ¢ : Q; — 0., what can be said
about ¢)? Certainly, ¢ need not be a group isomorphism; indeed, the zero
cwatset Q) in Z} and the zero cwatset Q2 in Z3 are certainly isomorphic,
but G% = (), the group of one element, whercas G = Z,. However,
note that in the cwatset QF = {00}, the two columns are identical: we will
soon see that all obstructions to making v an isomorphism are of this form.

Definition 6 For a cuatset Q, the isotropy group is the subgroup I < Sy
consisting of all elements o such that for allb € Q, b® = b.

Note that the isotropy subgroup of any cwatset Q will be of the form
I =S8, x...x8S,,, where the m; form a partition of d, the number of
columns of 2, and each m; corresponds to some set of m; identical columns.
The following theorem was asserted in an earlier version of this article; the
anthor would like to thank C. Girod et al. [6] for pointing out an error in
the proof and providing a correction.
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commute. then 4; x 4y is called the product of A4, and .. Also, if
AT Az is an object with maps 7y : Ay = A [[ Az and i) : 4o = A4 [ 4
such that for every object B with maps ¢ : 4 = Band ¢ : 4y - B
there is a unique map ¢ [J 2 : A [] A2 = B making the diagram

A

commute, then Ay [] A. is called the coproduct of A and A.. Lastly, in a
category where for every pair Ay and Ao, Ay x Ay and A, LI A2 exist and are
equal (note that uniquencess of products and coproducts follows immediately
from the definition), then the object Ay x Ay is denoted 4, -5 As and is
called the direct sum of 4, and ..
The following definition was the first step toward the dv( omposition
theorem presented in {7):

Definition 7 [7] The dircct sum Q,; Qs of cwatsets Q, = {by,ba,..., by, }
of dimension dy and Q» = {c),ca,...,¢c4,} of dimension d» is the (dy +d>)-
dimensional cwatset of order kyks with elements of the form b;c;, where
the first dy digits form an element of Q,, and the last dy digits form an
clement of Q..

It was suggested but not proven in [7) that any cwatset is the direct sum
of perfect ewatsets. In particular. a computer search gave the connterexam-
ple {0000000000, 1100011000, 1010011110, 1001001111, 1000100011}. How-
ever, because of the combinatorial structure associated with perfect cwat-
sets, it seems that the study of perfect cwatsets could be of interest in its
on right. and therefore. from now on we restrict our discussion to perfect
cwitsets.

Notice that in our category, given ewatsets Q) and s, it is casy to sce
that the maps @ @ Q) -5 Qy = Q and 72 0 Q) & Qy = Q, defined by
mi(b,c;) = b, and ma(b,c;) = ¢; make Q, (b Q, into the product Q) x Qa,
and the maps iy @ Q) = Q4 Qy and in : Q2 = Q) & Dy defined by
{1(b) = b0 and ix(c) = 0c make 2, & Q> into the coproduct Q, LI 2, so
Q) @ Qs really is the direct sum.

277



4 The Structure Group of a Cwatset

In [8], ewatsets were studied using primarily group-theoretic analysis. In
[7]. the focus shifted exclusively to hypergraphs. We will demonstrate that
the two constructions are connected, using the notion of the structure group
of a cwatset.

Recall that a perfect cwatset is a cwatset of order n each of whose
columns have either k or n — k 1’s for some integer k. We define a perfect
subset of Z{,’ to be a set of order n which, when arranged in mpatrix form,
only has k-columns and (n — k)-columns. Hence, since the only combi-
natorial property of perfect cwatsets that was used in the construction of
their hypergraphs was the fact that they were perfect, we can define the
hypergraph of a perfect subset of Z¢ in an analogous manner (since we still
have k-columns and (n — k)-columns).

Lemma 1 For any perfect set @ C Z$ and for every b € Z§, H(Q) =
H(Q +Db).

PROOF: Suppose, without loss of generality, that the ith column of Q is
a k-column. Pick an arbitrary b € Z4. If the ith place of b is a 0, then
the ith column of  + b is the same as the ith column of 2 and hence, by
definition, is incident to the same rows. If the ith place of b is a 1, then
the ith column of Q + b is an (n — k)-column, with 1's in exactly the same
places as there were 0’s in the ith column of Q, so again, it is incident to
the same rows. Since this is true for any column, the two hypergraphs are
equal. O

Definition 8 The group of automorphisms, S(H), of a hypergraph H is
the group of all permutations of the vertices which map edges onto edges.
Note that o € S(H(Q)) if and only if H(R) = H(Q°).
Definition 9 The structure group Gq of a cwatset Q is
{a € Sq|there ezists b € Q such that Q° = Q + b}.

As we will now see, we are justified in calling this object a group; in fact,
it is closcly associated with the structure of both Q and H(f).

Theorem 2 For any cwatset Q, S(H(Q)) = Gq.

PROOF: We first show that Go C S(H()). Fix o € Sy, and suppose there
exists b € Q such that 0 + b = Q°. From Lemma 1, H(Q) = H(Q + b),
and clearly H(2 + b) = H(Q°), so H(Q) = H(Q); this means that ¢ €
S(H(Q)).
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Next we prove that S(H(Q)) C Gqa. Suppose 0 € S(H()). Then
H(Q) = H(Q°). Pick an arbitrary vertex of H(2). It corresponds to the
ith column of  for some i. Also, the same vertex of H(Q°) corresponds to
the ith column of Q7. Assume, without loss of generality (as in the proof of
Lemma 1) that the ith column of Q is a k-column. The same rows of  must
be incident to the ith column as in 07, since their hypergraphs are equal.
Hencee, if the ith column of Q7 is a k-column, then it must be identical to
the ith column of Q. If the ith column of Q7 is an (n — k)-column, then
its I's must appear in exactly the same places as the 0’s of the ith column
of ©, so that adding 1 to each entry in the column would produce the ith
column of Q. Therefore, if we let the ith place of b € Z¢ to be 0 if the ith
columns of Q and Q7 are both k-columns or are both (n — k)-columns, and
1 if one of them is a k-column and the other is an (n — k)-column, then
N4+ b = 07. We will now show that b € Q, which would imply the desired
result. Since Q is a cwatset, 0 € Q. s0 0 € Q7 = Q + b and therefore
0=a+bwithae Q. But a+b = 0if and only if a = b; therefore b € Q.
a

In fact, it is easy to see that Gq is the projection into Sy of G®. Thus,
the map Q — Gq defines a covariant functor from the category of cwatsets
to the category of groups.

Since Gg acts transitively on the edges of , the orbit of any edge is 0
itself. For any edge ¢, let I be the isotropy subgroup of Gg for e; that
is, the subgroup of Gg which fixes e. Then the orbit of e is 2, and the
stabilizer of ¢ is I, so |Q| = j-'(—;—:’l-l Since, if Q is perfect, |Q] divides |Gq),
which divides |Sy] = d!, we have

Proposition 2 If Q) is a perfect cwatset in Z4, then || divides d!. O

The divisibility result in [8] only stated that the order of 2 must divide
24d!. Note however, that the new property does not hold for cwatsets that
are not perfect. For example, the group Z3 is certainly a cwatset of order
21 =16 but 16 does not divide 24 = 4.

It does not seem reasonable to search for a complete classification of
cwatsets based on their structure groups; it is easy to construct, even for
fixed m, more than one distinct (d, m)-cwatset with the same structure
group (for example, the graphs H, and H- on the vertices {1,2, 3, 4} where
H, has edges {1,3} and {2,4} and H> has edges {1,2}, {2,3}, {3,4}, and
{4,1}). However, it would be of use to understand which groups can appear
as structure groups of certain cwatsets.

If G is the structure group of a perfect cwatset, G acts both on the set
of edges and the set of vertices of the hypergraph of the cwatset. We know
that it acts transitively on these edges. We would now like to give some
conditions on a subgroup of Sy for it to be the structure group of a cwatset.
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Theorem 3 Let G < Sy give a transitive action on {1,2,...,d}. Then for
cvery m < ‘—f there is a (d.m)-cwatset Q such that G < Gq.

Proor: Label the d vertices {1.2,...,d} and define e to be the edge
{1.2,....m}. Let H¢;,, be the hypergraph whose edges are {¢?|o € G}. Tt
is obvious that G < S(H¢;.m). We now show that Hg p,, is the hypergraph
of some perfect ewatset Q , and that this ewatset is a (d, m)-cwatset.

Notice first of all that since G acts transitively on the vertices, [{o €
Gla(i) = j} is independent of the choice of § and j Indeed, let 7 be a vertex,
and let [, be the isotropy subgroup for i: then for every j, {0 € G| o(i) = j}
is a coset of 1;. so its order is independent of the choice of j. Hence, we
must only show that |7,] = |I;] for every i and j. Fix ¢ and j. Since 7 acts
transitively, there exists ¢ € G such that o(i) = j. Hence, I; = l,,(,, But
7 € I; if and only if 7(i) = i. which occurs if and 011]) if GT(I) =J, \\hl(h
oceurs if and only if e7o~'(j) = j, meaning that I; = I, = olio™!, so
|1} = 14l

Because of this fact. He;: ., is regular, for the number of edges incident
toavertex v is [{o € Glo(i) = v,i € {1,2,...,m}}| = m|[;]. Also, Hg m is
uniform, because cach edge is of the form {o(1),0(2),...,0(m)} and hence
has m clements (this also implics that Q is a (d, m)-cwatset). Lastly, it is
evidemt by construction that He; , is edge-symmetric.

Therefore, He; o = H(), 50 G < S(He:m) = S(H(Q)) = G- O

Note that  is a minimal (d, m)-cwatset with G < Gg in the sense that,
if 2 is a ewatset with G < Gar, and Q and €' have at least one common
edge, then H; p, is isomorphic to a subhypergraph of H(Q2').

Furthermore. if G is in fact the structure group of a (d, m)-cwatset one
of whose edges is {1.2,....m}, then H¢ n, is exactly the hypergraph of
that cwatset. This gives us an casy way of determining whether a fixed
subgroup of Sy is the strueture group of a (d, m)-cwatset: G is the structure
group of a (d, m)-cwatset if and only if for some ordering of the vertices,
G =S

5 Properties of Sums of Hypergraphs

Clearly. we would prefer to find a necessary and sufficient condition which
would determine whether a given subgroup of S, corresponds to a cwatset,
withont using an algorithm like the one described in the previous section.
We first define a new form of irreducible cwatsct whose hypergraph has
stronger symmetry properties.

Definition 10 Two vertices u and v of a hypergraph H are isomorphic if
there exists an awlomorphism of H mapping u onto v; we write u = v. If all
of the vertices of a graph are isomorphic, we call the graph point-symmetric.
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For convenience we will denote an edge by the set of vertices to which it
is incident.

Definition 11 A hypergraph H whose vertices and edges are &y, vs, ..., vy
and ey, ea. ... e, respectively, is a swm Hy + Hi of two hypergraphs H,,
with vertices vy, va,....0p and edges e}, el ... ¢l and Hy, with vertices
Vipisrgne ..t and edges ¢3¢, .00, 63 if el = e N {vi,v2,..., v} and
7 = i 0o, ety ). A sum of more than two hypergraphs is
defined in an analagous manner.

Translating this from the language of hypergraphs into the language of
ewatsets, we find that a perfect ewatset  is the sum Q) + Q, of perfect
cwatsets ) and Qs if and only if up to a reordering of the columns of Q:

(7) Every clement a € Q is of the form be with b € Q, and ¢ € Q,, and

(#) For every element b € Q. there is an element ¢ € Q. with be € O
(and, similarly, for all ¢ € Q2, there exists b € Q) with be € Q).

OFf course this definition makes sense even if 2, Q,, and Q. are not
perfect, but then there is no analogous hypergraph statement. Note that
there are obvious projection maps 1y ¢ Q;+Qa = Q) and 72 : Q,+Q2 = Q.
but these do not necessarily make Q into a product; indeed, if € is another
ewatset with ) @ Qo = Q; and 2 @ Q9 = , then there is a map
21+ 92 1 Qo = Q making the diagram below commute if and only if for all
d € £, 91 (d)pa(d) € .

Q

Definition 12 A hypergraph H is a reduced sum H\ + H» if it satisfies the
conditions of Definition 11 and if furthermore, in H, v; = v; if and only if
1<i<landl1 < j<lorl+1<i<dandl+1<j<d. A reduced sum
of more than 2 cwatsets is defined analogously.

Lemma 2 Let H be a reduced sum of Hy + H,, where H is the hypergraph
of a perfect cwatsct. For an edge e in Hy. let n, = #{¢' is an cdge in Hle'n
{vr,va,...,00} = e}. Then, for any two edges ¢ and f in Hy, n, = ny:=
ny. (And, similarly, for any two edges ¢ and f in Hs, n, = n fi=na.)

PROOF: Let e and f be edges in Hy. Then let {eg,ea,...,¢,, } be edges in
I such that e; N {uy,v2,...,19} = e, and {f, 25+ s fu, } be edges in H
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such that f; N {v,v2,...,u} = f. Since H is edge-symmetric, there is a
symmetry ¢ of H such that ¢(e,) = f1. Since by the definition of a reduced
sum ¢({vi,v2,...,m}) = {v1,va,...,u}, then ¢(ey N {v1,va,...,0}) =
dle) N{ey,vay...op} = fin {vy,v2,..., v} = f, so there exists a j such
that ¢(e)) = f;. In fact, for every i, there exists a j; such that ¢(e;) = f;;,
$0 ¢ : {er,ea,. .00 Y {fi fo,. .., fu, ). Since ¢ is bijective it induces a
bijection on edges, so n, =ny. O

Lemma 3 If H is the hypergraph of a perfect cwatset and H is the reduced
sum H, + Has, then H, and H, are both hypergraphs of perfect cwatsets.

Proor: We will prove the lemma, without loss of generality, for H, only.
We must show that H, is regular and uniform, and that its automorphism
group acts transitively on its edges. H) is regular, because there is some
integer d such that for all 7, v; is incident to d edges in H. By Lemma 2,
if 1 <i <1, then cach edge of H, containing v; corresponds tg exactly n,
edges of H, so there are % edges of H, incident to each vertex v; of H,, and
hence Hy is regular. We now show that all of the edges of H, are isomorphic
and therefore that H, is uniform. Fix e} and e_‘,- in H;. We know that there
exists 0 € S(H) such that o(e;) = ej. Since a(e}) C {vi,v2,...,u} and
a(e}) Cej, ale!) Cel. But o7'(el) C e} (by the same reasoning), so e;
and e} have the same number of vertices so o(e}) = ej. This obviously
means that H, is uniform. O

Theorem 4 The hypergraph H(Q) of a perfect cwatset Q can be expressed
as a reduced sum of hypergraphs of perfect cwatsets each of which has the
property that its symmeltry group acts transitively on its vertices.

PRroOOF: Let G denote the structure group of Q. We say that two vertices
vy and va are equivalent if there exists ¢ € G such that a(v,) = va (i.e.,
in earlier notation, if v, = v2), and in this case, we write v; ~ v». This is
casily seen to be an equivalence relation.

For every equivalence class [v], let H|,) be the hypergraph whose edges
are
{eiN[v] ] ei is an edge of H}. It is evident that

H= Z Hiy-
veEH

Also, from Lemma 3, Hy, is the hypergraph of a perfect cwatset for every v,
and the fact that the sum is reduced is merely the definition of the reduced
sum. O
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We call a hypergraph irreducible if it cannot be expressed as a reduced
sum of two hypergraphs, and we call a perfect cwatset irreducible if its
hypergraph is irreducible. Notice that there are perfect cwatsets which are
not irreducible [5], and therefore Theorem 4 (which yields a decomposition
of a cwatset to a collection of irreducible cwatsets) is meaningful.

However, the sum is not a uniquely defined operation. There exist hy-
pergraphs H 2 H', and hypergraphs H, and H, such that H, = H, + H,
and H' = H, + H,. Since Theorem 4 provides a decomposition into reduced
sums, it is only necessary for our purposes to understand the reduced sum.

Theorem 5 Let H be the reduced sum H, + H, where H, and H, are
hypergraphs of perfect cwatsets. Then H is uniform. Furthermore, let d,
(resp. da) be the degree of each vertez in H, (resp. H,) and e; (resp. es)
the number of edges in H, (resp. Hs). Then H is regular if and only if
‘:1 = ':'2.,

PROOF: (i) Since H, and H, are both hypergraphs of perfect cwatsets, H),
and H, are both uniform; suppose that each edge of H, has u; vertices and
cach edge of Hy has u vertices. Then, clearly, each edge of H has u; + u»
vertices, so H is uniform.

(i) Let v, be a vertex of H,. The degree of v, in H, is dy, so there are
dy edges of H, incident to v,. However, each edge in H) corresponds to
ny edges in H, and therefore v, is incident to n,d, edges in H. Let e be
the number of edges in H. Then e = ejn;, sony = =, 80 vy is incident to
md, = ﬁd. edges in H. Similarly, if v, is a vertex oil H,, v, is incident to

nady = Zdy edges in H. Thus, H is regular if and only if &dy = ﬁd;, or
d - d2 0 )
€] €2

Lemma 4 For any regular, edge-symmetric hypergraph with v vertices, e
edges, d edges incident to each vertez and u vertices incident to each edge,
vd = eu.

PROOF: We count the edges of the hypergraph: by multiplying the number
of vertices by the number of edges incident to each vertex, we count all
of the edges as many times as there are vertices in each edge, so we have
counted each edge u times. Then by dividing by « we obtain e = %’ Hence,
vd=ey. O

Corollary 2 Suppose H is the reduced sum H, + H,, and suppose further-
more that H, H,, and H, are all hypergraphs of perfect cwatsets. Then we
have the following tuble, where the first column is the number of vertices,
the second column is the number of edges, the third column is the number
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of edges incident to each vertez, the fourth column is the number of vertices
incident to each edge, and k is an integer with 1 < k < ged(ey.ea):

v e d n
H, " ey d, %llvl
}1-_) [22] € %‘1’83 "':-:"Uz
, . ) dy 1.1~ !
H | vy +uvs | klem(ey,ex) | Gk lem(er,e) | SH(uvr + v2)

Proor: We will denote by v., e.. d., and u, the number of vertices, edges,
degree of each vertex, and number of vertices incident to each edge of H.

We obtain u, = ‘,-le-ul as a direct result of Lemma 45 do = :—fll('-_: is due to

Theorem 5. Henee, by Lemma -1, ws = hiy,. Tt is clear that v, = v +
) 2 = Lt 1

from the definition of the smn, and u, = f{-l('vl + va) from Theorem 5.

Since we know from Lemma 2 that ep and ez both divide e., we know
that lem(ey, e2) also divides e., so e, = klem(ey, ea). Since the set of edges
E of H is a subset of E; x Es, where E) is the set of edges of Hy and E»
is the set of edges of Hy, #(E) < #(E\ x Ey) = #(E\) - #(E2) = ere2 =
lem(ey, eq) ged(ey, €a), so k < ged(er, ea).

Finally, we have d, = %:-kl('m(r’.,cg) because from Th(-oriom 5, d, =
md, = "—f}e. = "—flll.'l('m(r’,,eg). 0

6 Perfect (d,2)-Cwatsets of Prime Degree

Now, armed with the previons results involving the structure group and
decomposition of a perfect ewatset, we continue the combinatorial study of
the hypergraphs introduced in [7). We obtain combinatorial properties of
the hypergraphs which are useful in determining specific classes of cwatsets,
as we do in the next two sections.

Since (d, 2)-cwatsets can be represented by graphs, we begin our study of
perfect ewatsets with (d. 2)-cwatsets. Initially, we classify an even smaller
class of perfeet ewatsets: the irreducible (d.2)-cwatsets that have prime
dimension.

In a graph, we will denote by we the edge whose vertices are u and v,
and we call the vertices v and v adjacent.

Definition 13 A graph is civculant if there is an ordering vy, v, ..., vq of
its vertices such that if v;v; is an edge, then 0 is viyvj4x for every k,
where the indeces are considered modulo d. If the graph associated with a
(d,2)-cwatset is circulant, we call that cwatsct circulant as well.
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It is known [4] that a point-symmetric graph with p vertices where p is
prime is necessarily circulant (in fact, we know that the group of symmetries
of such a graph contains Ds,, the dihedral group of 2p elements). Hence,
in this section. we will consider only circulant graphs.

We are now ready to completely classify the (p, 2)-cwatsets where p is
prime. Recall that F, is the field of integers modulo p and that ¥, = F,—{0}
is the multiplicative group of F,.

We know ([2] and [4]) that there exists a point-symmetric and edge-
symmetric (and henee ¢irculant) graph T with p vertices, each of which are
incident to h edges, if and only if & is even and divides p — 1. It is further
shown ([2] and [4]) that there is only one isomorphism class of, such graphs
for cach such p and h. This gives us the following result.

Theorem 6 The irreducible (p. 2)-cwatsets with p prime have order 2 and
splitting number "2 — I where h is an even divisor of p—-1. Furthennore
the graph of such a cwatset is isomorphic to the graph whose vertices are
elements of F,, and whose edges are {a,a + 1} where a € F, and l € L,
where L is the subgroup of F* » of order h.

For example, since 4 and 6 divide 12, there are (13, 2)-cwatsets of order
26 and 39 (in addition to the cyclic one of order 13 and the complete one
of order 78).

Apart from completely classifying the (p, 2)-cwatsets with p prime, this
theorem is of importance because it is the first example of the already-
existing literature about graphs or hypergraphs readily giving results about
ewatsets: up to now, the hypergraph representation had only conceptual
valne.  Furthermore, this theorem indicates the usefulness of circulant
graphs. While not all irreducible (d, 2)-cwatsets are circulant, it does scemn
likely that a classification of all (d. 2)-cwatsets will be preceded by a classi-
fication of circulant (d, 2)-cwatsets.

7 Perfect (d,2)-Cwatsets of Arbitrary Degree

Theorem 6 suggests that a complete listing of irreducible (d, 2)-cwatsets
based simply on order and derived from only the combinatorics of the graphs
might be possible. At the very least, it seems that it should be possible to
solve this problem for the circulant case. We will, for the remainder of this
paper, study cirenlant (d, 2)-cwatsets only. By definition, if the incidence
matrix is of the form [a;;], then we have the following three propertics:

() aij = aj;

(12) A = 0

(%) a;; = ay, wherek=i+1 (modd)and!=j+1 (mod d).
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The first two are true of any incidence matrix. The third results from
the isomorphism of all vertices under rotation (i.e. circulancé). An edge
between vertex a and vertex b implies that there is an edge between vertex
a + j and vertex b+ j, for every integer j. Notice that since each row has
the same number of 1’s, the graph is regular.

However, not all matrices of this form correspond to cwatsets. A matrix
of this form does in fact correspond to a cwatset if the associated graph is
edge-symmetric, that is, given any two 1’s in the places a;; and ay in the
matrix, we can apply one permutation to both the rows and the columns
that maps 1’s onto 1’s and a;j onto ayy. Clearly, any (d, 2)-cwatset must
have order of the form !l where [ is the degree of each vertex.

Theorem 7 If | divides d and d is even, then there is e circulant (d,2)-
cwatset of degree d and order %

Proor: Let d = pl. We form an incidence matrix A as follows: a,; = 0
when g does not divide j — 1 and a); = 1 otherwise. The rest of the rows
of the matrix are determined by property (iii) above. Since a rotation of
the vertices can map any 1 in the matrix onto a 1 in the first row, we must
only show that we can map any 1 in the first row onto any other. Choose
two arbitrary 1's, @, o, and a; 3,. We apply the permutation o = (au Bu)
to the rows and columns of A. Ohviously, 0 mMaps a) o, onto a; g,. Also,
for every natural number v, ay 4, = lif and only if k =1 (mod p), so
the columns ap and Bp are identical. Similarly, a,, ¢ = 1 if and only if
k=1 (mod p), so the rows au and Sy are identical as well: Therefore,
o preserves A, so A is the incidence matrix of a graph which represents a
cwatset. Also, that cwatset must have order ¥, because the first row of
the matrix has ! 1’s, so, since each row is a permutatlon of the others, each
row has [ 1’s, and thercfore the matrix has dl 1's. Each edge is represented
by two 1's in the matrix, so the order of the cwatset is % o

Each vertex of such a cwatset clearly has degree I, since the number of
edges, {,1, is equal to the number of vertices, d, times the number of edges
incident to cach vertex divided by the number of vertices incident to each
e(lg:. Thus the splitting number of the (d, 2)-cwatset given by Theorem 7
is § — 1.

Note that the set of elements generated by the edge from vertex d to
vertex a is a cycle if and only if ged(d,a) = 1.

Theorem 8 If d is not a prime power and d # 2 (mod 4), there is a
(d, 2)-cwatset of order 2d.

PROOF: We claim that there exist a < “, and b< 3 4 such that gcd(e,d) =
ged(b,d) = 1and a=cb (mod d), where 2 =1 (mod d).

286



IfdZ2 (mod 4)), then d = 4s, or d is odd.

Ifd =4s, thenlet a = 25s—1 =cand b = 1. Then ¢ = ab and
¢® = (25— 1)> = 452 — 4s + 1, which is congruent to 1 (mod d).

If d is odd and not a prime power, then we may write d = jk where
ged(j k) = 1 and j,k # 1. Let a = &% and b = L5£, both of which are
integers because j and k are both odd. Since ged(d,b) = 1, there is an
integer ¢ such that « = ¢b  (mod d). Then

a® =c® (mod d),

SO
(G+k)? =G -k)* (mod d),
SO
7%+ 2kj + K = ¢*(j% - 2kj + k%) (mod d),

or, eliminating the kj’s since d = kj,
(> +K)-1)=0 (mod d).

Since ged(j% + k%,d) = 1, it follows that ¢ =1 (mod d).
Hence, the claim is true.

Now let T be the circulant graph on d ordered vertices such that vy is
an edge if and only if i =+ A (mod d) where A = a or A = b. Certainly
it is uniform (since every graph is uniform) and regular (since each vertex
is incident to exactly 4 edges), and it is edge-symmetric. Indeed, since the
graph is circulant, ((12---d)) < S(T), so all of the edges of the form v;v; 44
are in the same orbit under the action of the automorphism group, as are
all edges of the form v;v;y,. Hence, to demonstrate edge-symmetry, we
must only exhibit an element of S(I") which send vyv, onto vov,. Define
o € Sq by o i ci. Then o({0,b}) = {0,bc} = {0,a}. Also, o € S(T)
because o({i,i £ b}) = {ci,ci + be} = {ci,ci £ a} which is an edge, and
o({i,ita}) = a({i,i £be}) = {ci,ci £ be®} = {ci,ci £ b}, which is an edge.
a

Theorem 8 is representative of the sorts of combinatorial and number-
theoretic methods which one can use to determine orders of cwatsets (see
also [7]). Only one such theorem was included here because other similar
theorems are proven using very similar arguments.
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