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ABSTRACT. Let K¢ be the product of d copies of the complete
graph K,. Wojciechowski [4] proved that for any d > 2 the
hypercube K§ can be vertex covered with at most 16 disjoint
snakes. We show that for any odd integer n > 3, d > 2 the
graph K2, can be vertex covered with 2n® snakes.

1 Introduction

Throughout this paper we consider only finite, undirected, simple graphs.
We define a path in a graph G to be a sequence of distinct vertices of G
with every pair of consecutive vertices being adjacent. A closed path is a
path whose first vertex is adjacent to the last one. A chord of a path Pin a
graph G is an edge of G joining two nonconsecutive vertices of P. If e is a
chord in a closed path P, then e is called proper if it is not the edge joining
the first vertex of P to its last vertex. Note that a proper chord of a closed .
path corresponds to the standard notion of a chord in a cycle. A snake in
a graph G is a closed path in G without proper chords, and an open snake
is a path without chords.

The (cartesian) product of two graphs G and H is the graph G x H
with the vertex set V(G) x V(H) and the edge set defined in the following
way: (g1, h;) is adjacent to (gq, h) if either g,go € E(G) and h; = hy, or
else g1 = go and h1he € E(H). Let K2 be the product of d copies of the
complete graph K,, n > 2, d > 1. It is convenient to think of the vertices of
K¢ as d-tuples of n-ary digits, i.e., the elements of the set {0,1,--- ,n—1},
with edges between two d-tuples differing at exactly one coordinate.
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Let S(K2) be the length of the longest snake in K. The problem of
estimating the value of S(K¢) was first met by Kautz [3] in the case n = 2
(known in the literature as the snake-in-the-box problem) in constructing
a type of error-checking code for a certain analog-to-digital conversion sys-
tems. As a consequence several authors became interested in estimating
the value of S(K¢) and a large literature has evolved (see [2] for a list of
references). Subsequently, the general case of the problem with an arbitrary
value of n has been introduced by Abbott and Dierker [1].

During the XXIII Southeastern International Conference, Boca Raton
1992, Erdos posed the problem of deciding whether there is a number k
such that for every d > 2 the vertices of Kz“ can be covered using at most
k snakes, and if the answer to the problem is positive, then whether it
can be done in such a way that the snakes are pairwise vertex-disjoint.
Wojciechowski [4] proved the following stronger result.

Theorem 1. For every d > 2, there is a subgroup Hq C K% and a snake
Ca C K¢ such that [H4| < 16 and Cy uses exacty one element of every
coset of Hg, where the group structure of K$ is of the product (Z5)¢. O

Theorem 1 implies that for any d > 2 the vertices of K¢ can be covered
with at most 16 vertex disjoint snakes.

In this paper we prove that for any fixed odd integer n > 3 there is a
constant r, such that the graph Kﬁ can be vertex covered with r, snakes.

Theorem 2. Let n > 3 be an odd integer and r, = 2n. For any d > 2
the vertices of K% can be covered with r, snakes. (]

2 Basic definitions

We define an m-path in a graph G to be a path containing m vertices, i.e.,
a path of length m — 1. If P is an m-path, then we will write m = |P|. A
chain P of paths in a graph G is a sequence (Py, Ps, -+ , Py) of paths in G
such that each path in P has at least two vertices, and the last vertex of
P; is equal to the first vertex of P;; 1, where 1 <i <m —1. When we need
to specify the number m of paths in a chain, we refer to it as an m-chain
of paths. An m-chain P = (P;)[2, of paths will be called closed if the first
vertex of P, is equal to the last vertex of P,,.

Given an m-path P = (a;)%, in a graph G and an m-chain of paths
L = (P;), in a graph H, let P ® £ be the (}_;-, |P;|)-path in the graph
G x H constructed in the following way. For any path P; = (b;1, b2, - - - , biks)
in L, let P/ be the path ({(ai, bi1), (@i, bi2), - , (@i, biri)) in G x H. Note
that for any 1 < ¢ < m —1, the last vertex of the path P/ is adjacent to the
first vertex of the path P, ;. Let P ® £ be the path obtained by joining
together (juxtaposing) the paths P{, P;,--- , P;,. We will say that P® L is
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the path generated by P and £. Note that the path generated by a closed
path and a closed chain of paths is a closed path.

If R is an sm-chain of paths in a graph H, then the m-splitting of R
is the sequence (R1,Ry,--+,Ry) of s-chains of paths in H which joined
together (juxtaposed) give R. The above definition of the operation ®
can be generalized in the following way. Let £ = (P;)2; be an m-chain
of s-paths in a graph G, let R be an sm-chain of paths in H, and let
(R1,Ra,-- - , Rm) be the m-splitting of R. Note that forany 1 <i <m-—1,
the last vertex of the path P; ® R; in the graph G x H is equal to the first
vertex of the path P4; ® Ri41. Set

LOR=(PI®R,P2ORy, - ,Pn®Rnm).

We will say that £L® R is the chain of paths generated by £ and R. Note
that the chain of paths generated by two closed chains of paths is also a
closed chain of paths.

Let £ = (P;), be a chain of paths in a graph G. We say that L is
openly separated if for i <m —1 and j = i41, P; and P; have exactly one
vertex in common, and otherwise P; and P; are vertex disjoint. We say
that £ is closely separated if £ is closed, P; and P; have exactly one vertex
in common when either i <m ~1land j=i4+1,or¢t=1and j =m and
otherwise P; and P; are vertex disjoint.

If P is a path, then let —P be the path obtained from P by reversing
the order of vertices, and if £ = (P;)[2, is a chain of paths, then let —£ =
(=Pm,—Pm-1,-+ , —P1) be the chain of paths obtained from £ by reversing
the order of paths and reversing every path. The expression (—1)!X, where
X is a path or a chain of paths, will mean X for 7 even and —X for ¢ odd.

Let £ be an sm-chain of paths, and let R = (£;,L3,---,Ly;,) be the
m-splitting of £. The alternate matriz of the splitting R is the following
(m x s)-matrix A of paths :

Ly QI @ - &

—L Q @ - @3

A= : = : : :
(=1)™=1L, QL Q% - Q.

where (Q}, @2, -, Qf) is the sequence of paths forming the s-chain (—1)*~!
L;. The splitting R will be called openly alternating if for every odd 7,
1 <j <m-—1, the paths Q] and Q3 have exactly one vertex in common,
for every even j, 2 < 7 < m — 1, the paths Q,l- and QJI-_H have exactly one
vertex in common, and otherwise the paths @} and Qj are vertex disjoint,
1<i<s 1<41<m j+# 1 Notethat the splitting R is openly
alternating if for every column of its alternate matrix .4 the paths in the
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column are mutually vertex disjoint except for the shared vertices which
are necessary for £ to be a chain of paths, i.e. @Qf and Q3 have exactly one
vertex in common, @3 and QJ} have exactly one vertex in common, and so
on.

Assume that the sm-chain £ is a closed chain of paths and m is even.
Then, the splitting R is closely alternating if for eachodd j,1 < j <m-—1,
the paths Q7 and Q3 , have exactly one vertex in common, for each even 7,
2 € j £ m—1, the paths QJI- and Q;. +1 have exactly one vertex in common,
the paths Q} and Q], have exactly one vertex in common, and otherwise
the paths Q; and Q} are vertex disjoint, 1 <i<s, 1< 51<m, j#L
Note that the splitting R is closely alternating if for every column of its
alternate matrix A the paths in the column are mutually vertex disjoint
except for the shared vertices which are necesary for £ to be a closed chain
of paths.

Assume that n > 3 is a fixed odd integer. For any integer d > 1, we
define the n?-path 7 in K2, and the closed (n —1)n%-paths y2¢+! and 42+!
in Kg+1,

Let m} be the n-path (0,1,--- ,n — 1) in K,,, and let y,, 4, be the closed
(n —1)-paths (0,1,--- ,n —2) and (1,2,--- ,n — 1) in K, respectively. If
d > 1 and the path 72 in K¢ is defined, then let

d+1 1 d d _d d d
1rn+ =7, ® (7rn7 Ty Tpy — Tyt !ﬂn):
d+1 __ d d . d d
711. =Tn ® (7fn, _7r1n 7fn, —7I’n, Tty ""71'7;),
and
ad+1 _ o d d _d d d
ab = @ (mg, —mg, T, =g, e, —TR).

Let H be a graph, d > 1 be an integer, £ be an n%-chain of paths in H,
and D be an (n — 1)n%-chain of paths in H. We define that £ is openly
well distributed if cither d =1 and £ is an openly separated chain of open
snakes, or d > 2, every chain £; in the n-splitting S = (£y,£q,---,£L,)
of £ is openly well distributed and S is openly alternating. We also say
that D is closely well distributed if every chain D; in the (n — 1)-splitting
S’ = (D1,Da,-++ ,Dn_1) of D is openly well distributed and S’ is closely
alternating.

3 Proof of Theorem 2

The construction establishing Theorem 2 is complicated. It will be conve-
nient if we describe it in a sequence of lemmas. Two of these, Lemmas 1
and 3, were proved in [5].

Lemma 1. If d > 1 and L is a closely well distributed (n — 1)n®-chains
of paths in a graph H, then the path ¥3*! ® L is a snake in the graph
K3+l x H. a
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Since any permutation of the digits at the first coordinate is an isomor-
phism of K2+!, the following lemma immediately follows from Lemma 1.

Lemma 2. If d > 1 and L is a closely well distributed (n — 1)n%-chain

of paths in a graph H, then the path 43t! ® L is a snake in the graph
Kétl x H. ]

The following lemma was proved by Wojciechowski [5] (Lemma 4).

Lemma 3. For each d > 1, there exists a closely well distributed (n—1)n?-
chain of paths in K&*1. O

Let
a:{0,1,---,n—1} - {0,1,--- ,n—1}

be a [unction defined by o(i) =i+1if0<i<n—1and a(n—-1) =0.
Let z = (a1, a2, a3) € V(K3), where a;,a3,a3 € {0,1,--- ,n—1}. Let

o,7,6: V(K}) = V(K})
be permutations such that
0'(0.1, az, 0.3) = (a(a'l)r az, 03),
7(a1, a2, a3) = (a1, &(a2), az),

and

8(ai, az, az) = (a1, az, afasz)).
Let ¥ be the set of all permutations
[V = V(K
such that f = o*776% with 1,7,k € {0,1,--- ,n—1}.
Lemma 4. For any z,y € V(K3), there is f € £ with y = f(z).

Proof: Assume that z = (1,91, 21), ¥ = (2, ¥2, 22) be two vertices of K3.
One can easily verify that f(z,y1,21) = (z2,y2, z2) if

f=0(x2—a:1) mod{n—1) T(yz—yg) mod(n—1) 6(22—21) mod(n—l).

]

Let f € . Given apath P = (u1,u2,- - ,u,) in K3, let f(P) be the path
(f(u1), f(u2),- -, f(ur)). Given a chain of paths C = (P;, Py, -+, Ps), let
f(C) be the chain of paths (f(P,), f(F2),- -+, f(Ps))-

Lemma 5. Let f € ¥ and u,v € V(K3). Then u and v are adjacent in
K2 if and only if f(u) and f(v) are adjacent in K3.
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Proof: Let f € £ and u,v € V(K3). Assume that u = (a1,a2,a3) and
v = (by,bs,bs) are adjacent in K3, then u and v differ at exactly one
position. Since a is a bijective function it follows that

f(w) = (f(a1), f(a2), f(as)),

and

f(w) = (f(b1), £(b2), £(b3)),

are differing in exactly one position. Hence f(u) and f(v) are adjacent.
Conversely, if f(x) and f(v) are adjacent in K3, then similarly as above we
show that u and v are adjacent. 0O

Lemma 6. If P is an open snake in K2 and f € Z, then f(P) is also an
open snake in K3.

Proof: Let P = (uj,ug,---,ur) be an open snake in K3 and let f € T
be a given permutation. Since P does not have a chord, it follows from
Lemma 5, that f(P) does not have chords either. Hence f(P) is also an
open snake. a

Lemma 7. If C is an openly separated chain of paths in K3 and f € T,
then the chain f(C) is also openly separated.

Proof: Let C = (P, P,,---, P;) be an openly separated chain of paths in
K3 and let f € . Since C is an openly separated chain of paths, then for
it <s-1and j=1i+1, P; and P; have exactly one vertex in common, and
otherwise P; and P; are vertex disjoint. Since f is a bijection, it follows
that i < s—1and j =i+ 1, f(P;) and f(P;) have exactly one vertex in
common, and otherwise f(P;) and f(P;) are vertex disjoint. Hence

f(C) = (f(Pl)af(PQ)x tet 1f(Ps))!
is also openly separated. O
Lemma 8. If f € £ and P is a path in K3, then f(—P) = —f(P).

Proof: Let f € £ and P = (uj,ua, - ,u,) be a path in K3. Since —P is
the path obtained from P by reversing the order of the vertices, we have

f(_P) = f(ur:'“'r—l:' .t aul)
= (f(u'l‘)’ f(’u"r—l), M) f(ul))
= _(f(ul)1 f(v'?)s STty f(uf))
0
Lemma 9. If f € T and C is a chain of paths in K3, then f(—C) = —f(C).
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Proof: Let f € £ and C = (P, P, -+, P,) be a chain of path in K. Then

f(=C) = f(=Ps, —Pocr,-+- ,=P1)
= (f(=Ps), f(=Pe-1),- -+, f(=P1))
= (=f(Ps), —f(Ps-1),--- , —f(P1))
= —~(f(P1), f(P2),--- , f(Ps))
=—f(C).

O

Lemma 10. Let £ be an sm-chain of pathsin K3, and let R = (L4, L2, - ,
L,,) be the m-splitting of L. If R is openly alternating and f € L, then
SF(R) is also openly alternating.

Proof: Let

£y Qi @ - &
I - T T - S
(-1)™1L,, QL @ - @,
be the alternate matrix of R. Then
f(£1) QN Q) - f(eY)
D O T O 2> (Y
(D)™ f(Lm) FQL) QL) - F(Q%)

is the alternate matrix of f(R). If R is openly alternating, then for every
odd j, 1 < j < m — 1, the paths Q] and Q7,, have exactly one vertex
in common, for every even j, 2 < j < m — 1, the paths Q} and Q},,
have exactly one vertex in common, and otherwise the paths Q;- and Qi are
vererx disjoint, 1 <1< s, 1 <3l <m,j#l Since f is a bijection, then
for every odd j, 1 < 7 < m -1, the paths f(Qf) and f(Q7,,) have exactly
one vertex in common, for every even j, 2 < j < m — 1, the paths f(Q})
and f (Q} +1) have exactly one vertex in common, and otherwise the paths
F(@%) and f(Q}) are vertex disjoint, 1 <i< s, 1 < 4,1 <m, j # . Hence
f ('Rj is also openly alternating. a
Similarly, we can prove the following lemma.

Lemma 11. Let £ be a closed sm-chain of paths, and let R = (£1, £a,- -,
Ly) be the m-splitting of L. If R is closely alternating and f € X, then
f(R) is also closely alternating. O
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Lemma 12. If C is an openly well distributed chain of paths in K3 and
f € Z, then f(C) is also openly well distributed.

Proof: We are going to use induction with respect to d. For d = 1, the
lemma follows from Lemma 7. Assume that the lemma is true for d, we
show that it is true for d 4+ 1. Let & = (£;,Ls,---, Ly,) be the n-splitting
of C. Since C is openly well distributed, it follows that every chain £;,
i=1,2,---n, is openly well distributed and S is openly alternating. Then

is the n-splitting of f(C). By Lemma 10, f(S) is openly alternating and by
the induction hypothesis f(L£;) is openly well distributed, for: =1,2,--- ,n.
Hence f(C) is openly well distributed. O

Lemma 13. If v is a vertex of K2, then v is a vertex of the path 2.

Proof: We are going to use induction with respect to d. For d = 1, the
lemma is true since «} is the n-path (0,1,--- ,n —1) in K,. Assume that
d > 1 and that the lemma is true for d, we show that it is true for d+1. Let
v = (aj,ap, - ,aq, agy1) be a vertex of K3+1, By the inductive hypothesis,
(az,a3,-++ ,aq441) is a vertex of 2. Since

d+1 1 d d d d d
Tn =Tn ® (Wn’_ﬂntwn»’“wnv"' ,ﬂ’n),

is a path in K, x K¢ = K2*! and since a, is a vertex of =}, it follows that

v =/(aj, a9, - ,aq,aq+1) is & vertex of 7d+1, O

Lemma 14. If v is a vertex of K2, then v is a vertex of 42 or a vertex of
~d
Yn-

Proof: Assume that v = (a;,ag,---,aq) is a vertex of K2. We have
d d— d- - - -

Tn =" ® (7rn 11_7rn ln"g l’ —1!':{ l"" 1"""':. 1)’
and

~d N d— — - — _

=T ® ('”n 1’_7rg lxﬂ;is l’ _7";1; 1:"' -_7": 1)’
which are paths in K, x K¢~! = K2, and by Lemma 13, (as, a3, - - ,aq) is
a vertex of 73~1. If a; € {0,1,--- ,n — 2}, then a, is a vertex of +,, and if
ay = n — 1, then a, is a vertex of 4, so it follows that v = (a;,as, - , ay)
is a vertex of 42 or a vertex of 4¢. a

By Lemma 3, there is a closely well distributed (n — 1)n®-chain of paths
Din K3. Given f € £, let Dy = f(D) and let

Pr=v°®Dy,
and
Pr=45®Dy.
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Lemma 15. The chain of paths Dy is closely well distributed for every
feX.

Proof: Let D be a closely well distributed chain of paths and let f € Z.
Since D is a closely well distributed chain of paths, every chain D; in the
(n—1)-splitting S = (D1, D2, -+ - , Dn—1) of D is openly well distributed and
S is closely alternating. By Lemma 12, every chain f(D;) in the (n — 1)-
splitting

f(S) = (f(Dl)a f(DZ)’ v 7f(D —l))v

of Dy is openly well distributed. By Lemma 11, f (S) is closely alternating.
Hence Dy is closely well distributed. O

The following lemma follows immediately from Lemmas 1, 2 and 15.

Lemma 16. P;, P are snakes in K¢ for every f € Z. O

Lemma 17. For every vertex v of K¢, there exist f € ¥ such that v is a
vertex of Py or v is a vertex of Py.

Proof: Suppose that » = (a1, a2, -- ,@aq) is any vertex of K2. By Lemma

14, (ay,az,- - ,aq-3) is a vertex of ¥2~3 or of 4273, Assume first that

(a1,a2,- - ,aa-3) is a vertex of ¥4~ and v2=3 = (vy,v2,- -+ ,vs), Where

s = (n—1)n"%. Then thereisi € {1,2,---,s} withv; = (a1,a2,--- ,aq-3).
Assume that D = (Py, Py, - -+, P;) and let (ba—2, ba—1, ba) be a vertex of P;.
By Lemma. 4, there is f € £ with

(ag-2, ag—1,aq) = f(ba-2,b4—1,bad)-

Then (ag—2, ad—1,aq) is a vertex of f(P;). Since

Df = (f(Pl))f(P2):"' 1f(Ps));
it follows that (a;,az,--- ,aq) is a vertex of

Pr=72®Dy.

A

Similarly, if (ai, a2, - - , aq-3) is a vertex of 4373, it follows that (a1, az,- -,
ag) is a vertex of
Pr=4a°®Ds.
O
Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let S = {Ps: f e Z} U {P: f € £}. By Lemma
16, the elements of S are snakes and by Lemma 17, they vertex-cover Kg.
Since |Z| = n3, it follows that |S| = 2n3 and the proof is complete. a

297



4 Conclusion

The above construction relies heavily on the fact that n is odd. For the case
where n is even, n > 4, we proved that the vertices of K2 can be covered
with n® snakes. By including the construction for the even case the paper
becomes too long, so we introduce it in a separate paper.

It still remains open problem whether the snakes in Theorem 2 can be
made vertex-disjoint.
Acknowledgement. The auther would like to thank Professor Jerzy Wo-
jeiechowski for drawing his attention to the problem in this paper and for
valuable discussions and for careful reading and correcting its original ver-
sion.
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