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ABSTRACT: In this paper necessary and sufficient conditions
for a vector to be the fine structure of a balanced ternary design
with block size 3, index 3 and p2 = 1 and 2 are determined with
one unresolved case.

1 Introduction and definitions

A balanced ternary design is a collection of multi-sets of size k, chosen from
a v-set in such a way that each element occurs 0, 1 or 2 times in any
one block, each pair of non-distinct elements, {z,z}, occurs in p; blocks
of the design and each pair of distinct elements, {z,y}, occurs A times
throughout the design. We denote these parameters by (v; p2; k, A)BTD. A
BTD on the element set V is denoted by (V, B), where B is the collection
of multi-subsets of V. It is easy to see that each element must occur singly
in a constant number of blocks, say p; blocks, and so each element occurs
altogether r = p; + 2p; times. Also if b is the number of blocks in the
design, then

vr=bk and A(v—1)=r(k—1)—2p.

(For further information [3] should be consulted.) In this note we concen-
trate on the case k = A = 3 and p2 = 1 and 2. A necessary and sufficient
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condition for the existence of such a balanced ternary design is that v = 3
(mod 6) and v > 9 when p; = 2. (See for example [3].)

A BTD with a hole, or a frame-BTD, is a collection of multi-sets (blocks)
of size k chosen from a v-set V so that the following conditions hold:

(1) {o0i |i=1,2,...,h} = H is a subset of V called a hole;

(ii) any element in V' \ H occurs 0, 1 or 2 times per block, and precisely
twice in p; blocks;

(iii) at most one (counting repetitions) element of each block is in H;

(iv) any pair zy, where z and y are distinct elements, not both in H,
occurs A times throughout the design.

We write the parameters of a frame-BTD as (u[h]; p2; &, A). Of course a
BTD is a frame with A = 0.

Given a (v; p2; k, A)BTD, the fine structure of the system is the vector
(c1,¢€2, ..., €2), where ¢; is the number of blocks repeated precisely i times.
There are some works on the fine structure for designs (see for example,
[2,6,7,8,9]).

In this paper we shall determine necessary and sufficient conditions for
a vector to be the fine structure of a balanced ternary design with block
size 3, index 3 and p, = 1 and 2. The case p; = 0 was settled in (6] and [7]
and the case p; = 3 appeared in [8].

Since any two of {c;,c3,c3} determine the third, we use a more conve-
nient notation for the fine structure: (£, s) is said to be the fine structure of
a (v; p2;3,3)BTD, if c; =t and ¢3 = v(v —2p; — 1)/6 — s, where p; = 1, 2.
We first need to know the pairs (¢, s) which can possibly arise as fine struc-
tures. We define

Adm1 (‘U)
Admz (1))

{(t,s)] 0 < £ < 5 < u(—3)/6}\ {(0,1),(0,2), (0,3)},
{(t,8) 0< ¢ < 5 < v(v — 5)/6)

and use the notations Fine;(v) and Finey(v) for the set of fine structures
which actually arise in (v; p3; 3, 3)BTDs, where p = 1 and 2 respectively.
Our result is as follows.

MAIN THEOREM

(i) Finei(v) = Admy(v) for all v = 3 (mod 6), v ¢ {9, 15},
Fine,(9) = Adm, (9) \ {(0,4), (1,1)},
Adm, (15)\ {(0,4)} C Fine;(15) and Fine;(15) C Adm,(15).

(ii) Finey(v) = Admgy(v) for all » = 3 (mod 6), v > 9.
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2 Necessary conditions
It is straightforward (see Lemma 1.1 of [8]) to prove:

Lemma 2.1

(i) If (¢, s) € Finey(v) then 0 < ¢t < s < v(v — 3)/6;

<
<

(ii) If (¢, s) € Finep(v) then 0 < ¢t < s < v(v — 5)/6.

Before proceeding, we require some notation and preliminary results.
Let (V, B) be a (v; 1;3, 3)BTD with the fine structure (t,s), and let T C B
be those blocks which are not triply repeated. We define

T, = {{a,a,b} | {a,a,b} € B}, and T; =T\ Th.

It is straightforward to verify that |T'| = 4v/3 + 3s, |T1| = v and |T3| =
v/3 + 3s.

If z,y € V and S C B, then we denote by r;(S) the number of occur-
rences of z in S, and by Azy(S) the number of occurrences of the pair zy
in the blocks of S. Also, let a = |A|, where A = {a1,a2,...,8q} = {2 |
r2(T) = 7}, let B = |B|, where B = {by,b3,...,bg} = {z | r(T) > 10},
and let 4y = |C|, where C = {zy | Azy(T2) = 3}.

The following lemma contains several results which we will require later.

Lemma 2.2
1. Forallz € V, ro(T1) > 2, 7=(T) > 4 and r;(T) = 1 (mod 3);
2. for all distinct z,y € V, Ay(T) =0 or 3;

3. Y 7(T) =4v +9s;
zeV

. 3a+68 < 9s;

. for all distinct z,y € V, Azy(T1) = 0 (mod 2);
. v =3s;

. for all distinct =,y € V, Azy(T2) # 2; and

0 N & U b

forallz e V, r(T2) > 1.
Proof: Note that B\ T contains exactly the triply repeated blocks.

(1) It follows from the definition that r;(T1) > 2. A simple counting
argument verifies that 7.(B) = 1 (mod 3) for all z € V, and it is clear that
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r2(B\T) = 0 (mod 3); hence r;(T) = 1 (mod 3) for all z € V. From
r2(T1) > 2 and 72(T) = 1 (mod 3), it follows that ,(T) > 4.

(2) Since Azy(B\ T') must be either 0 or 3, it follows that A,y (T) = 0 or
3 for all distinct ¢,y € V.

(3) This is easily verified by counting the number of blocks which are not
triply repeated.

(4) Let & = [{z: rz(T) = 4}|. Then from (3), we have

46 + Ta+ 108 < 4v + 9s.

But 6 + a + 8 = v, and so we have 3a + 68 < 9s.

(5) This is immediate since the triples in T} are all of the form zTy.

(6) By (5), for distinct =,y € V, we have Ay (7)) = 0 or 2, and so there
are exactly v pairs zy (z # y) with A,y(T1) = 2. Hence there are exactly v
pairs zy with A.y(T3) = 1 (using (2)). Since |T3| = v/3 + 3s, we must have
Y. Azy(T2) = v + 9s, and so it follows that y = 3s.

(7) This is a consequence of (2) and (5).

(8) We have zzy € Ty, for some y, and so the pair zy must occur in a
triple in T5. O

Lemma 2.3 If A;y(T2) = 3 then r,(T) > 7.

Proof: Clearly, r;(T3) > 3. Hence, since r,(T;) > 2, we must have
r2(T) > 7 (see (1) in Lemma 2.2). a

Lemma 2.4 If (V, B) is a (v; 1;3, 3)BTD with the fine structure (0, s) and
there exist distinct @, y, z with A5y (T3) = Az, (T2) = 3 then r,(T) > 10.

Proof: We make use of the fact that there are no repeated blocks in 7.
The blocks of T; which contain the pairs zy and zz must be either:

(1) =zya, zyb, zyc, zzd, zze, z2f, where {z,y, z}n{a,b,c,dye,f} =0
anda, b, ¢, d, e, fEV; or

(2) =zyz, zya, zyb, z2c, 22d, where a,b,c,d€ V, {z,v,2}n{e,b,c,d} = 0,
a#band c#d.

In case (1), #;(T2) > 6 and 7z(T1) > 2, so r(T) > 10 (using Lemma
2.2 (1)). For case (2), suppose that zyz, zya, zyb, zzc, zzd and zze are
the only blocks in T which contain z. Then we must have e = a, since
otherwise A;4(T) # 3, but similarly we must have e = b, which is not
possible. Hence r3(T') > 7, and so r.(T) > 10. 0O

Lemma 2.5 For a (v; 1;3, 3)BTD with the fine structure (0, s),r< (g) +
@, and if 8 = 0 then v < |a/2].
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Proof: By Lemma 2.3, if A5y(T3) = 3 then z,y € AU B. Moreover, by
Lemma 2.4, for i = 1,2, ..., there is at most one pair za; containing a;
and having Azq,(T2) = 3. There are at most |a/2| pairs a;a;, with no a;
occurring in more than one such pair, and so if 8 =0, vy < |a/2]. Also,
there are at most (g) pairs b;b; with Ap.s; (T2) = 3, and so the result follows.
a

We are now ready to prove the following.

Lemma 2.6 (0,1),(0,2),(0,3) ¢ Fine;(v).

Proof: Let (V,B) be a (v;1;3,3)BTD with the fine structure (0, s), and
let @, A, B, B, v and C be as defined above. If § = 0, then 3s < |a/2] <
/2 (from Lemma 2.2 (5) and Lemma 2.5), and 3c < 95 (Lemma 2.2 (4)),
which tells us that « < «/2, and so & = 0 and s = 0. If 8 # 0, then by
Lemma 2.2 (5) and Lemma 2.5 we have 3s < (g) + «, and so using Lemma
2.2 (4) we see that 3a + 68 < 3( (%) + a), and so 8 > 5. Then Lemma 2.2
(4) tells us that 9s > 30, and so s > 4. Hence (0,1),(0,2), (0, 3) ¢ Fine, (v).
a

Lemma 2.7 (1,1) ¢ Fine;(9).

Proof: Suppose (V,B) is a (9;1;3,3) BTD of type (1,1) with V = {1,2,
...,9}. Without loss of generality we can assume {123,123, 124, 135, 236,
789} C T; (see Lemma 2.2 (5),(7) and (8)). Now consider the pairs 16, 17,
18 and 19. These pairs must be in triply repeated triples; either 167 and
189, 168 and 179, or 169 and 178. This is impossible since each of the pairs
78, 79 and 89 have already occurred in the triple 789. O

Lemma 2.8 If (V, B) is a BTD of type (0,4) then (a,8) = (0, 6) or (2,5).

Proof: The result follows immediately from Lemma 2.2 (4) and Lemma
2.5.

Lemma 2.9 (0,4) ¢ Finei(9).

Proof: Suppose (V,B) is a (9;1;3,2)BTD of type (0,4) with V = {1,2,
...,9} and let T, T}, T3, and B be as defined earlier. By Lemma 2.8 we
must have (a, 8) = (0, 6) or (2,5).

If (a, B) = (0, 6) then by Lemma 2.2 (3) we can assume without loss of
generality that »(T) = r3(T) = ... = re(T) = 10 and r(T) = rg(T) =
TQ(T) =4.

Now, there are exactly five triply repeated triples in B\T and r7(B\T) =
re(B\ T) = ro(B\ T) = 9. Hence 7, 8 and 9 must each occur three times
in these five triples but with no pair 78, 79 or 89 in more than one. This is
impossible and so (e, 8) # (0, 6).
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If (@, 8) = (2,5) then by Lemma 2.2 (3) we can assume without loss
of generality that 1(T) = ro(T) = ... = 75(T) = 10, r6(T) = 7(T) = 7
and rg(T) = ro(T) = 4. Since (g) + a = 12 (see Lemma 2.5) all of the
pairs {z, 7} with ,j € {1,2,3,4,5} must occur exactly three times in T5.
Hence 1, 2, 3, 4, 5 are in distinct triples in B\ T and we can assume without
loss of generality that the five triply repeated triples (in B\ T') are 189,
268, 378, 469, 579. Also (since (§) + & = 12) the other two pairs which
occur three times in T must be {7, 6} and {3, 7} for some , j € {1, 2, 3,4, 5}.
Moreover, looking at the five triply repeated triples we see that i € {1, 3,5}
and j € {1, 2,4}.

If i« = 3 then 36z,36y,362 € T3 for distinct 2,y and 2. But looking
at the five triply repeated triples we see that z,y,2 ¢ {2,4,7, 8,9} which
leaves only two possibilities (1 and 5) for z,y and z and so i # 3. It is
straight forward to check, in a similar manner, that i # 5,5 #.2 and j # 4.
Hence we must have i = j = 1, but this is also impossible as the triple
11z € Ty forces A1z > 3 for any z € {2,3,...,9}. 0

Remark. Whether or not (0,4) € Fine;(15) is unresolved.

We make use of group divisible designs in the next sections. A group
divisible design, (K, A, M;v) GDD, is a collection of subsets of size k € K,
called blocks, chosen from a v-set, where the v-set is partitioned into disjoint
subsets (called groups) of size m € M such that each block contains at most
one element from each group, and any two elements from distinct groups
occur together in A blocks. If M = {m} and K = {k} we write (k, A, m;v)
GDD.

3 The fine structure of small orders

In this section we deal with small cases which are needed for the recur-
sive construction in Section 4 and those which are not covered by these
constructions.

Lemma 3.1 (i) Fine;(9) = Adm,(9) \ {(0,4), (1,1)};
(ii) Finez(9) = Adm,(9).

Proof. (i) By Lemmas 2.6, 2.7 and 2.9 we have that (0, 1), (0,2), (0, 3),
(0,4), and (1,1) are not in Fine;(9). Now apply Lemmas 2.1 and 2.6 and
see (1] for a (9;1;3, 3)BTD of type (t,s) € Adm,(9) \ {(0,4), (1,1)}.

(ii) Apply Lemma 2.1 and see [1] for a (9;2;3,3)BTD of type (t,s) €
Adm3(9). 0
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Lemma 3.2 (i) There exists a (9[3]); 1; 3, 3) frame-BTD with ¢; doubly and
c3 triply repeated blocks where (c2,c3) € {(a,b)| 0 < a+ b < 9} \ R and

R ={(0,4),(1,4),(0,5),(1,5),(0,6),(3,6),(0,7), (0, 8), (1, 8)};

(ii) There exists a (9[3];2; 3, 3) frame-BTD with ¢; doubly and c3 triply
repeated blocks where (c3,c¢3) € {(e,5)|0<a+b< 7}.

Proof. See [1] for these designs. O

Lemma 3.3 (i) Adm,(15) \ {(0,4)} C Fine;(15);
(ll) Fin83(15) = Adm2(15).

Proof. (i) First apply Lemmas 2.1 and 2.6. Secondly, let (V, B;,G) and
(V, B2, G) be two (3,1, 3;15) GDD with m blocks in common, where m €
{0,1,2,...,30}\{1,2, 3,5} (see [4]). Forma (3;1; 3, 3)BTD on the elements
of each group g € G and let Bz be the collection of these blocks. Then
By U By U B; U Bj yields a (15;1;3,3)BTD of type (m,m). Finally, see [1]
for the remaining types.

(ii) Apply Lemma 2.1 and see [1] for a (15;2;3,3)BTD of type (t,s) €
Adm3(15). 0

Lemma 3.4 (i) (0,10),(1,1) € Fine;(v) for v = 21 and 27;
(ii) (0, 4) € Fine,(v) for v = 21, 27, 33 and 39.

Proof. See [1] for these designs. ]

We also need the following well-known result.

Lemma 3.5 There exists a (3,3,3;9) GDD with ¢, doubly and c3 triply
repeated blocks where (c3, ¢3) € {(0,0),(9,0), (0,9)}.

Proof. For the type (cz,c3) = (0,9) we take three copies of a (3,1, 3;9)
GDD which exists (see [5]). For the type (cz,c3) = (9,0) we proceed as
follows. Let (V,B1,G) and (V,B;,G) be two (3,1,3;9) GDD with zero
blocks in common (see [4]). Then (V, 81U B, UB,,G) is a (3,3, 3;9) GDD
with the desired structure. Finally, the following blocks yield a (3,3, 3; 9)
GDD of type (c3,c3) = (0,0). Here the groups are {1,2,3}, {4,5,6} and
{7,8,9}. (The block {a, b, c} is denoted by abe.)

159 357 147 267 168 258 348 249 369
359 257 347 167 368 158 248 149 269
259 157 247 367 268 358 148 349 169
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4 Constructions

We start this section with the following two similar constructions.

Construction A Let w =0 or 1 (mod 3), w > 3, and p3 = 1 or 2. Then
there ezists a (6w + 3; p2; 3,3)BTD.

Proof. Let (V,B,G) be a (3,1,2;2w) GDD (see for example [5]). We
form the desired design on the set (V x {1,2,3}) U {c0y, 003,003}. For
each block b € B we take the blocks of a (3,3,3;9) GDD on the set b x
{1,2,3} with groups b x {i}, ¢ = 1,2,3. For each group g € G except
one group, say g, we take the blocks of a (9[3]; p2; 3,3) frame-BTD on
the set (g x {1,2,3}) U {001,00z,003} such that {co1, 003,003} are the
hole elements. Finally we take the blocks of a (9;p2;3,3)BTD on the set
(9w x {1,2,3}) U {001,003,003}. The collection of these blocks yields a
(6w + 3; p3; 3,3)BTD on the set (V x {1,2,3}) U {o01, 002, 003} 0O

Construction B Let w = 2 ( mod 3), w > 5, and p = 1 or 2. Then there
ezists o (6w + 3; p2; 3,3)BTD.

Proof. Let (V, B,G) be a (3,1,{2,4'}; 2w) GDD (see for example [5]). We
form the desired design on the set (V' x {1,2,3})U{c0;, 003, 003}. For each
block b € B we take the blocks of a (3, 3,3;9) GDD on the set b x {1,2, 3}
with groups b x {i}, i = 1,2,3. For each group g € G with |g| = 2, we
take the blocks of a (9[3]; p2; 3, 3) frame-BTD on the set (g x {1,2, 3}hv
{001,002, 003} such that {001, 003,003} are the hole elements. Finally for
the group of size four, say guw-1, we take the blocks of a (15; p2; 3, 3)BTD
on the set (gy—1 % {1,2,3})U{001, 002,003}. The collection of these blocks
yields a (6w + 3; p2; 3, 3)BTD on the set (V x {1,2,3})U {003, 003, oog}. O

Lemma 4.1 Let v = 3 (mod 6). (i) If v > 33 then (0,10),(1,1) €
Finey(v);
(ii) I v > 45 then (0, 4) € Finey(v).

Proof. (i) First note that there exists a (3,1,{6,12"};v — 3) GDD for all
v = 3 (mod 6), » > 33, (see [5]). Triplicate the blocks of this GDD and use
a (9[3]; 1; 3, 3)BTD for groups of size 6 and a (15;1;3, 3)BTD for the group
of size 12. Since (0,10),(1,1) € Fine,(15) it follows that (0,10),(1,1) €
Fine;(v).

(i) Triplicate the blocks of a (3,1,{6,18"};v — 3) GDD which exists for
all v = 3 (mod 6), v > 42, (see [4]). Then use a (9(3];1;3,3)BTD for
groups of size 6 and a (21;1;3,3)BTD for the group of size 18. Since
(0,4) € Fine,(21) it follows that (0,4) € Fines(v). O
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Lemma 4.2 Let w = 0 or 1 (mod 3), w > 3. Then Fine,(6w + 3) =
Adm, (6w + 3).

Proof. Applying Construction A and using designs of different types for
the ingredients we can find all the types (2,5) € Adm;(6w + 3) except
(¢, s) € {(0, 10),(0,4), (1,1)}. These types are covered by Lemmas 3.4 and
4.1. So Adm; (6w + 3) C Fine;(6w + 3) and using Lemmas 2.1 and 2.6 we
have the equality. (]

Lemma 4.3 Let w = 2 (mod 3), w > 5. Then Fine; (6w+3) = Adm, (6w+
3).

Proof. If we apply Construction B and use designs of different types for the
ingredients we can find all the types (, s) € Adm; (6w + 3) except the type
(0,4). This type is covered by Lemmas 3.4 and 4.1. So Adm;(6w + 3)C
Fine;(6w + 3) and by Lemmas 2.1 and 2.6 we have the equality. a

So far we have proved the following result which is part (i) of the main
theorem.

Theorem 4.4 Let v =3 (mod 6), v > 21. Then Fine;(v) = Adm,(v).

The second part of the Main theorem is proved in the following theorem.
Theorem 4.5 Let v = 3, (mod 6), v > 9. Then Finez(v) = Admgy(v).

Proof. Let v = 6w + 3. If w = 1 or 2 apply Lemmas 3.1 and 3.3 part
(ii). Solet w > 3 and proceed as follows. If w = 0 or 1 (mod 3) apply
Construction A and if w = 2 (mod 3) apply Construction B to construct a
(v;2;3,3)BTD. Now using designs of different types for the ingredients we
find that Fines(v) C Admj(v). So the result follows by Lemma 2.1. O
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