The fine structure of balanced ternary designs with block size three, index three and $\rho_2 = 1, 2$

Peter Adams, Darryn E. Bryant and A. Khodkar
Centre for Discrete Mathematics and Computing
Department of Mathematics
The University of Queensland
Queensland 4072
Australia

ABSTRACT: In this paper necessary and sufficient conditions for a vector to be the fine structure of a balanced ternary design with block size 3, index 3 and $\rho_2 = 1$ and 2 are determined with one unresolved case.

1 Introduction and definitions

A balanced ternary design is a collection of multi-sets of size k, chosen from a v-set in such a way that each element occurs 0, 1 or 2 times in any one block, each pair of non-distinct elements, $\{x, x\}$, occurs in ρ_2 blocks of the design and each pair of distinct elements, $\{x, y\}$, occurs λ times throughout the design. We denote these parameters by $(v; \rho_2; k, \lambda)$ BTD. A BTD on the element set V is denoted by (V, B), where B is the collection of multi-subsets of V. It is easy to see that each element must occur singly in a constant number of blocks, say ρ_1 blocks, and so each element occurs altogether $r = \rho_1 + 2\rho_2$ times. Also if b is the number of blocks in the design, then

$$vr = bk$$
 and $\lambda(v-1) = r(k-1) - 2\rho_2$.

(For further information [3] should be consulted.) In this note we concentrate on the case $k = \lambda = 3$ and $\rho_2 = 1$ and 2. A necessary and sufficient

Research supported by Australian Research Council grant A49532750

condition for the existence of such a balanced ternary design is that $v \equiv 3 \pmod{6}$ and $v \ge 9$ when $\rho_2 = 2$. (See for example [3].)

A BTD with a hole, or a frame-BTD, is a collection of multi-sets (blocks) of size k chosen from a v-set V so that the following conditions hold:

- (i) $\{\infty_i \mid i=1,2,...,h\} = H$ is a subset of V called a hole;
- (ii) any element in $V \setminus H$ occurs 0, 1 or 2 times per block, and precisely twice in ρ_2 blocks;
- (iii) at most one (counting repetitions) element of each block is in H;
- (iv) any pair xy, where x and y are distinct elements, not both in H, occurs λ times throughout the design.

We write the parameters of a frame-BTD as $(v[h]; \rho_2; k, \lambda)$. Of course a BTD is a frame with h = 0.

Given a $(v; \rho_2; k, \lambda)$ BTD, the fine structure of the system is the vector $(c_1, c_2, ..., c_{\lambda})$, where c_i is the number of blocks repeated precisely i times. There are some works on the fine structure for designs (see for example, [2,6,7,8,9]).

In this paper we shall determine necessary and sufficient conditions for a vector to be the fine structure of a balanced ternary design with block size 3, index 3 and $\rho_2 = 1$ and 2. The case $\rho_2 = 0$ was settled in [6] and [7] and the case $\rho_2 = 3$ appeared in [8].

Since any two of $\{c_1, c_2, c_3\}$ determine the third, we use a more convenient notation for the fine structure: (t, s) is said to be the fine structure of a $(v; \rho_2; 3, 3)$ BTD, if $c_2 = t$ and $c_3 = v(v - 2\rho_2 - 1)/6 - s$, where $\rho_2 = 1, 2$. We first need to know the pairs (t, s) which can possibly arise as fine structures. We define

$$\begin{array}{lcl} \mathrm{Adm}_1(v) & = & \{(t,s)| \ 0 \leqslant t \leqslant s \leqslant v(v-3)/6\} \setminus \{(0,1),(0,2),(0,3)\}, \\ \mathrm{Adm}_2(v) & = & \{(t,s)| \ 0 \leqslant t \leqslant s \leqslant v(v-5)/6\} \end{array}$$

and use the notations $\operatorname{Fine}_1(v)$ and $\operatorname{Fine}_2(v)$ for the set of fine structures which actually arise in $(v; \rho_2; 3, 3)$ BTDs, where $\rho_2 = 1$ and 2 respectively. Our result is as follows.

MAIN THEOREM

- (i) $\operatorname{Fine}_1(v) = \operatorname{Adm}_1(v)$ for all $v \equiv 3 \pmod{6}$, $v \notin \{9, 15\}$, $\operatorname{Fine}_1(9) = \operatorname{Adm}_1(9) \setminus \{(0, 4), (1, 1)\}$, $\operatorname{Adm}_1(15) \setminus \{(0, 4)\} \subseteq \operatorname{Fine}_1(15)$ and $\operatorname{Fine}_1(15) \subseteq \operatorname{Adm}_1(15)$.
- (ii) Fine₂(v) = Adm₂(v) for all $v \equiv 3 \pmod{6}$, $v \ge 9$.

2 Necessary conditions

It is straightforward (see Lemma 1.1 of [8]) to prove:

Lemma 2.1

- (i) If $(t, s) \in \text{Fine}_1(v)$ then $0 \leqslant t \leqslant s \leqslant v(v-3)/6$;
- (ii) If $(t, s) \in \text{Fine}_2(v)$ then $0 \leqslant t \leqslant s \leqslant v(v-5)/6$.

Before proceeding, we require some notation and preliminary results. Let (V, \mathcal{B}) be a (v; 1; 3, 3)BTD with the fine structure (t, s), and let $T \subseteq \mathcal{B}$ be those blocks which are not triply repeated. We define

$$T_1 = \{\{a, a, b\} \mid \{a, a, b\} \in \mathcal{B}\}, \text{ and } T_2 = T \setminus T_1.$$

It is straightforward to verify that |T| = 4v/3 + 3s, $|T_1| = v$ and $|T_2| = v/3 + 3s$.

If $x, y \in V$ and $S \subseteq B$, then we denote by $r_x(S)$ the number of occurrences of x in S, and by $\lambda_{xy}(S)$ the number of occurrences of the pair xy in the blocks of S. Also, let $\alpha = |A|$, where $A = \{a_1, a_2, \ldots, a_{\alpha}\} = \{x \mid r_x(T) = 7\}$, let $\beta = |B|$, where $B = \{b_1, b_2, \ldots, b_{\beta}\} = \{x \mid r_x(T) \ge 10\}$, and let $\gamma = |C|$, where $C = \{xy \mid \lambda_{xy}(T_2) = 3\}$.

The following lemma contains several results which we will require later.

Lemma 2.2

- 1. For all $x \in V$, $r_x(T_1) \ge 2$, $r_x(T) \ge 4$ and $r_x(T) \equiv 1 \pmod{3}$;
- 2. for all distinct $x, y \in V$, $\lambda_{xy}(T) = 0$ or 3;
- $3. \sum_{x \in V} r_x(T) = 4v + 9s;$
- 4. $3\alpha + 6\beta \leq 9s$;
- 5. for all distinct $x, y \in V$, $\lambda_{xy}(T_1) \equiv 0 \pmod{2}$;
- 6. $\gamma = 3s$;
- 7. for all distinct $x, y \in V$, $\lambda_{xy}(T_2) \neq 2$; and
- 8. for all $x \in V$, $r_x(T_2) \ge 1$.

Proof: Note that $B \setminus T$ contains exactly the triply repeated blocks.

(1) It follows from the definition that $r_x(T_1) \geq 2$. A simple counting argument verifies that $r_x(\mathcal{B}) \equiv 1 \pmod{3}$ for all $x \in V$, and it is clear that

- $r_x(\mathcal{B}\setminus T)\equiv 0\pmod{3}$; hence $r_x(T)\equiv 1\pmod{3}$ for all $x\in V$. From $r_x(T_1)\geq 2$ and $r_x(T)\equiv 1\pmod{3}$, it follows that $r_x(T)\geq 4$.
- (2) Since $\lambda_{xy}(B \setminus T)$ must be either 0 or 3, it follows that $\lambda_{xy}(T) = 0$ or 3 for all distinct $x, y \in V$.
- (3) This is easily verified by counting the number of blocks which are not triply repeated.
- (4) Let $\delta = |\{x : r_x(T) = 4\}|$. Then from (3), we have

$$4\delta + 7\alpha + 10\beta < 4v + 9s$$
.

But $\delta + \alpha + \beta = v$, and so we have $3\alpha + 6\beta \le 9s$.

- (5) This is immediate since the triples in T_1 are all of the form xxy.
- (6) By (5), for distinct $x, y \in V$, we have $\lambda_{xy}(T_1) = 0$ or 2, and so there are exactly v pairs xy ($x \neq y$) with $\lambda_{xy}(T_1) = 2$. Hence there are exactly v pairs xy with $\lambda_{xy}(T_2) = 1$ (using (2)). Since $|T_2| = v/3 + 3s$, we must have $\sum \lambda_{xy}(T_2) = v + 9s$, and so it follows that $\gamma = 3s$.
- (7) This is a consequence of (2) and (5).
- (8) We have $xxy \in T_1$, for some y, and so the pair xy must occur in a triple in T_2 .

Lemma 2.3 If $\lambda_{xy}(T_2) = 3$ then $r_x(T) \geq 7$.

Proof: Clearly, $r_x(T_2) \geq 3$. Hence, since $r_x(T_1) \geq 2$, we must have $r_x(T) \geq 7$ (see (1) in Lemma 2.2).

Lemma 2.4 If (V, B) is a (v; 1; 3, 3)BTD with the fine structure (0, s) and there exist distinct x, y, z with $\lambda_{xy}(T_2) = \lambda_{xz}(T_2) = 3$ then $r_x(T) \ge 10$.

Proof: We make use of the fact that there are no repeated blocks in T. The blocks of T_2 which contain the pairs xy and xz must be either:

- (1) xya, xyb, xyc, xzd, xze, xzf, where $\{x, y, z\} \cap \{a, b, c, d, e, f\} = \emptyset$ and $a, b, c, d, e, f \in V$; or
- (2) xyz, xya, xyb, xzc, xzd, where $a, b, c, d \in V$, $\{x, y, z\} \cap \{a, b, c, d\} = \emptyset$, $a \neq b$ and $c \neq d$.

In case (1), $r_x(T_2) \ge 6$ and $r_x(T_1) \ge 2$, so $r_x(T) \ge 10$ (using Lemma 2.2 (1)). For case (2), suppose that xyz, xya, xyb, xzc, xzd and xxe are the only blocks in T which contain x. Then we must have e = a, since otherwise $\lambda_{xa}(T) \ne 3$, but similarly we must have e = b, which is not possible. Hence $r_x(T) > 7$, and so $r_x(T) \ge 10$.

Lemma 2.5 For a (v; 1; 3, 3)BTD with the fine structure (0, s), $\gamma \leq {\beta \choose 2} + \alpha$, and if $\beta = 0$ then $\gamma \leq \lfloor \alpha/2 \rfloor$.

Proof: By Lemma 2.3, if $\lambda_{xy}(T_2) = 3$ then $x, y \in A \cup B$. Moreover, by Lemma 2.4, for $i = 1, 2, ..., \alpha$ there is at most one pair xa_i containing a_i and having $\lambda_{xa_i}(T_2) = 3$. There are at most $\lfloor \alpha/2 \rfloor$ pairs a_ia_j , with no a_i occurring in more than one such pair, and so if $\beta = 0$, $\gamma \leq \lfloor \alpha/2 \rfloor$. Also, there are at most $\binom{\beta}{2}$ pairs b_ib_j with $\lambda_{b_ib_j}(T_2) = 3$, and so the result follows. \square

We are now ready to prove the following.

Lemma 2.6 $(0,1),(0,2),(0,3) \notin \text{Fine}_1(v)$.

Proof: Let (V, \mathcal{B}) be a (v; 1; 3, 3)BTD with the fine structure (0, s), and let α , A, β , B, γ and C be as defined above. If $\beta = 0$, then $3s \leq \lfloor \alpha/2 \rfloor \leq \alpha/2$ (from Lemma 2.2 (5) and Lemma 2.5), and $3\alpha \leq 9s$ (Lemma 2.2 (4)), which tells us that $\alpha \leq \alpha/2$, and so $\alpha = 0$ and s = 0. If $\beta \neq 0$, then by Lemma 2.2 (5) and Lemma 2.5 we have $3s \leq {\beta \choose 2} + \alpha$, and so using Lemma 2.2 (4) we see that $3\alpha + 6\beta \leq 3({\beta \choose 2} + \alpha)$, and so $\beta \geq 5$. Then Lemma 2.2 (4) tells us that $9s \geq 30$, and so $s \geq 4$. Hence $(0, 1), (0, 2), (0, 3) \notin \text{Fine}_1(v)$.

Lemma 2.7 $(1,1) \notin \text{Fine}_1(9)$.

Proof: Suppose (V, B) is a (9;1;3,3) BTD of type (1,1) with $V = \{1,2,\ldots,9\}$. Without loss of generality we can assume $\{123,123,124,135,236,789\} \subseteq T_2$ (see Lemma 2.2 (5),(7) and (8)). Now consider the pairs 16, 17, 18 and 19. These pairs must be in triply repeated triples; either 167 and 189, 168 and 179, or 169 and 178. This is impossible since each of the pairs 78. 79 and 89 have already occurred in the triple 789.

Lemma 2.8 If (V, B) is a BTD of type (0,4) then $(\alpha, \beta) = (0,6)$ or (2,5).

Proof: The result follows immediately from Lemma 2.2 (4) and Lemma 2.5.

Lemma 2.9 $(0,4) \notin Fine_1(9)$.

Proof: Suppose (V, B) is a (9; 1; 3, 2)BTD of type (0, 4) with $V = \{1, 2, \ldots, 9\}$ and let T, T_1, T_2, α and β be as defined earlier. By Lemma 2.8 we must have $(\alpha, \beta) = (0, 6)$ or (2, 5).

If $(\alpha, \beta) = (0, 6)$ then by Lemma 2.2 (3) we can assume without loss of generality that $r_1(T) = r_2(T) = \ldots = r_6(T) = 10$ and $r_7(T) = r_8(T) = r_9(T) = 4$.

Now, there are exactly five triply repeated triples in $B \setminus T$ and $r_7(B \setminus T) = r_8(B \setminus T) = r_9(B \setminus T) = 9$. Hence 7, 8 and 9 must each occur three times in these five triples but with no pair 78, 79 or 89 in more than one. This is impossible and so $(\alpha, \beta) \neq (0, 6)$.

If $(\alpha, \beta) = (2, 5)$ then by Lemma 2.2 (3) we can assume without loss of generality that $r_1(T) = r_2(T) = \ldots = r_5(T) = 10$, $r_6(T) = r_7(T) = 7$ and $r_8(T) = r_9(T) = 4$. Since $\binom{\beta}{2} + \alpha = 12$ (see Lemma 2.5) all of the pairs $\{i, j\}$ with $i, j \in \{1, 2, 3, 4, 5\}$ must occur exactly three times in T_2 . Hence 1, 2, 3, 4, 5 are in distinct triples in $B \setminus T$ and we can assume without loss of generality that the five triply repeated triples (in $B \setminus T$) are 189, 268, 378, 469, 579. Also (since $\binom{\beta}{2} + \alpha = 12$) the other two pairs which occur three times in T_2 must be $\{i, 6\}$ and $\{j, 7\}$ for some $i, j \in \{1, 2, 3, 4, 5\}$. Moreover, looking at the five triply repeated triples we see that $i \in \{1, 3, 5\}$ and $j \in \{1, 2, 4\}$.

If i=3 then $36x, 36y, 36z \in T_2$ for distinct x, y and z. But looking at the five triply repeated triples we see that $x, y, z \notin \{2, 4, 7, 8, 9\}$ which leaves only two possibilities (1 and 5) for x, y and z and so $i \neq 3$. It is straight forward to check, in a similar manner, that $i \neq 5, j \neq 2$ and $j \neq 4$. Hence we must have i=j=1, but this is also impossible as the triple $11x \in T_1$ forces $\lambda_{1x} > 3$ for any $x \in \{2, 3, \ldots, 9\}$.

Remark. Whether or not $(0,4) \in \text{Fine}_1(15)$ is unresolved.

We make use of group divisible designs in the next sections. A group divisible design, $(K, \lambda, M; v)$ GDD, is a collection of subsets of size $k \in K$, called blocks, chosen from a v-set, where the v-set is partitioned into disjoint subsets (called groups) of size $m \in M$ such that each block contains at most one element from each group, and any two elements from distinct groups occur together in λ blocks. If $M = \{m\}$ and $K = \{k\}$ we write $(k, \lambda, m; v)$ GDD.

3 The fine structure of small orders

In this section we deal with small cases which are needed for the recursive construction in Section 4 and those which are not covered by these constructions.

Lemma 3.1 (i)
$$Fine_1(9) = Adm_1(9) \setminus \{(0,4), (1,1)\};$$
 (ii) $Fine_2(9) = Adm_2(9).$

Proof. (i) By Lemmas 2.6, 2.7 and 2.9 we have that (0, 1), (0, 2), (0, 3), (0, 4), and (1, 1) are not in Fine₁(9). Now apply Lemmas 2.1 and 2.6 and see [1] for a (9; 1; 3, 3)BTD of type $(t, s) \in Adm_1(9) \setminus \{(0, 4), (1, 1)\}$. (ii) Apply Lemma 2.1 and see [1] for a (9; 2; 3, 3)BTD of type $(t, s) \in Adm_2(9)$.

Lemma 3.2 (i) There exists a (9[3]; 1; 3, 3) frame-BTD with c_2 doubly and c_3 triply repeated blocks where $(c_2, c_3) \in \{(a, b) | 0 \le a + b \le 9\} \setminus R$ and

$$R = \{(0,4), (1,4), (0,5), (1,5), (0,6), (3,6), (0,7), (0,8), (1,8)\};$$

(ii) There exists a (9[3]; 2; 3, 3) frame-BTD with c_2 doubly and c_3 triply repeated blocks where $(c_2, c_3) \in \{(a, b) | 0 \leq a + b \leq 7\}$.

Proof. See [1] for these designs.

Lemma 3.3 (i) $Adm_1(15) \setminus \{(0,4)\} \subseteq Fine_1(15)$; (ii) $Fine_2(15) = Adm_2(15)$.

Proof. (i) First apply Lemmas 2.1 and 2.6. Secondly, let $(V, \mathcal{B}_1, \mathcal{G})$ and $(V, \mathcal{B}_2, \mathcal{G})$ be two (3, 1, 3; 15) GDD with m blocks in common, where $m \in$ $\{0, 1, 2, ..., 30\} \setminus \{1, 2, 3, 5\}$ (see [4]). Form a (3; 1; 3, 3)BTD on the elements of each group $g \in \mathcal{G}$ and let \mathcal{B}_3 be the collection of these blocks. Then $\mathcal{B}_1 \cup \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$ yields a (15; 1; 3, 3)BTD of type (m,m). Finally, see [1] for the remaining types.

(ii) Apply Lemma 2.1 and see [1] for a (15; 2; 3, 3)BTD of type $(t, s) \in$ $Adm_2(15)$.

Lemma 3.4 (i) $(0,10), (1,1) \in \text{Fine}_1(v)$ for v = 21 and 27; (ii) $(0,4) \in \text{Fine}_1(v)$ for v = 21, 27, 33 and 39.

Proof. See [1] for these designs.

We also need the following well-known result.

Lemma 3.5 There exists a (3,3,3;9) GDD with c_2 doubly and c_3 triply repeated blocks where $(c_2, c_3) \in \{(0, 0), (9, 0), (0, 9)\}.$

Proof. For the type $(c_2, c_3) = (0, 9)$ we take three copies of a (3, 1, 3; 9)GDD which exists (see [5]). For the type $(c_2, c_3) = (9, 0)$ we proceed as follows. Let $(V, \mathcal{B}_1, \mathcal{G})$ and $(V, \mathcal{B}_2, \mathcal{G})$ be two (3, 1, 3; 9) GDD with zero blocks in common (see [4]). Then $(V, \mathcal{B}_1 \cup \mathcal{B}_1 \cup \mathcal{B}_2, \mathcal{G})$ is a (3, 3, 3, 9) GDD with the desired structure. Finally, the following blocks yield a (3, 3, 3; 9) GDD of type $(c_2, c_3) = (0, 0)$. Here the groups are $\{1, 2, 3\}, \{4, 5, 6\}$ and $\{7, 8, 9\}$. (The block $\{a, b, c\}$ is denoted by abc.)

159	357	147	267	168	258	348	249	369
359	257	347	167	368	158	248	149	269
259	157	247	367	268	358	148	349	169

4 Constructions

We start this section with the following two similar constructions.

Construction A Let $w \equiv 0$ or 1 (mod 3), $w \geq 3$, and $\rho_2 = 1$ or 2. Then there exists a $(6w + 3; \rho_2; 3, 3)BTD$.

Proof. Let (V, B, G) be a (3, 1, 2; 2w) GDD (see for example [5]). We form the desired design on the set $(V \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$. For each block $b \in B$ we take the blocks of a (3, 3, 3; 9) GDD on the set $b \times \{1, 2, 3\}$ with groups $b \times \{i\}$, i = 1, 2, 3. For each group $g \in G$ except one group, say g_w , we take the blocks of a $(9[3]; \rho_2; 3, 3)$ frame-BTD on the set $(g \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$ such that $\{\infty_1, \infty_2, \infty_3\}$ are the hole elements. Finally we take the blocks of a $(9; \rho_2; 3, 3)$ BTD on the set $(g_w \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$. The collection of these blocks yields a $(6w + 3; \rho_2; 3, 3)$ BTD on the set $(V \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$.

Construction B Let $w \equiv 2 \pmod{3}$, $w \geq 5$, and $\rho_2 = 1$ or 2. Then there exists a $(6w + 3; \rho_2; 3, 3)BTD$.

Proof. Let $(V, \mathcal{B}, \mathcal{G})$ be a $(3, 1, \{2, 4^*\}; 2w)$ GDD (see for example [5]). We form the desired design on the set $(V \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$. For each block $b \in \mathcal{B}$ we take the blocks of a (3, 3, 3; 9) GDD on the set $b \times \{1, 2, 3\}$ with groups $b \times \{i\}$, i = 1, 2, 3. For each group $g \in \mathcal{G}$ with |g| = 2, we take the blocks of a $(9[3]; \rho_2; 3, 3)$ frame-BTD on the set $(g \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$ such that $\{\infty_1, \infty_2, \infty_3\}$ are the hole elements. Finally for the group of size four, say g_{w-1} , we take the blocks of a $(15; \rho_2; 3, 3)$ BTD on the set $(g_{w-1} \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$. The collection of these blocks yields a $(6w + 3; \rho_2; 3, 3)$ BTD on the set $(V \times \{1, 2, 3\}) \cup \{\infty_1, \infty_2, \infty_3\}$. \square

Lemma 4.1 Let $v \equiv 3 \pmod{6}$. (i) If $v \geq 33$ then $(0,10),(1,1) \in Fine_1(v)$;

(ii) If $v \geq 45$ then $(0,4) \in Fine_1(v)$.

Proof. (i) First note that there exists a $(3, 1, \{6, 12^*\}; v - 3)$ GDD for all $v \equiv 3 \pmod{6}$, $v \ge 33$, (see [5]). Triplicate the blocks of this GDD and use a (9[3]; 1; 3, 3)BTD for groups of size 6 and a (15; 1; 3, 3)BTD for the group of size 12. Since $(0, 10), (1, 1) \in Fine_1(15)$ it follows that $(0, 10), (1, 1) \in Fine_1(v)$.

(ii) Triplicate the blocks of a $(3, 1, \{6, 18^*\}; v - 3)$ GDD which exists for all $v \equiv 3 \pmod{6}$, $v \ge 42$, (see [4]). Then use a (9[3]; 1; 3, 3)BTD for groups of size 6 and a (21; 1; 3, 3)BTD for the group of size 18. Since $(0, 4) \in Fine_1(21)$ it follows that $(0, 4) \in Fine_1(v)$.

Lemma 4.2 Let $w \equiv 0$ or 1 (mod 3), $w \geq 3$. Then Fine₁(6w + 3) = Adm₁(6w + 3).

Proof. Applying Construction A and using designs of different types for the ingredients we can find all the types $(t,s) \in Adm_1(6w+3)$ except $(t,s) \in \{(0,10),(0,4),(1,1)\}$. These types are covered by Lemmas 3.4 and 4.1. So $Adm_1(6w+3) \subseteq Fine_1(6w+3)$ and using Lemmas 2.1 and 2.6 we have the equality.

Lemma 4.3 Let $w \equiv 2 \pmod{3}$, $w \ge 5$. Then Fine₁ $(6w+3) = Adm_1(6w+3)$.

Proof. If we apply Construction B and use designs of different types for the ingredients we can find all the types $(t, s) \in Adm_1(6w + 3)$ except the type (0, 4). This type is covered by Lemmas 3.4 and 4.1. So $Adm_1(6w + 3) \subseteq Fine_1(6w + 3)$ and by Lemmas 2.1 and 2.6 we have the equality.

So far we have proved the following result which is part (i) of the main theorem.

Theorem 4.4 Let $v \equiv 3 \pmod{6}$, $v \ge 21$. Then $\operatorname{Fine}_1(v) = \operatorname{Adm}_1(v)$.

The second part of the Main theorem is proved in the following theorem.

Theorem 4.5 Let $v \equiv 3$, (mod 6), $v \ge 9$. Then $\operatorname{Fine}_2(v) = \operatorname{Adm}_2(v)$.

Proof. Let v = 6w + 3. If w = 1 or 2 apply Lemmas 3.1 and 3.3 part (ii). So let $w \ge 3$ and proceed as follows. If $w \equiv 0$ or 1 (mod 3) apply Construction A and if $w \equiv 2 \pmod{3}$ apply Construction B to construct a (v; 2; 3, 3)BTD. Now using designs of different types for the ingredients we find that $Fine_2(v) \subseteq Adm_2(v)$. So the result follows by Lemma 2.1.

References

- Peter Adams, Darryn E. Bryant and A. Khodkar, The fine structure of (v; ρ₂; 3, 3) balanced ternary designs with and without a hole for ρ₂ = 1, 2: v ∈ {9, 15, 21, 27, 33, 39}, Research Report, Department of Mathematics, University of Queensland, 1995.
 (See http://www.maths.uq.edu.au/~ak/report.html.)
- [2] Peter Adams, Darryn E. Bryant and A. Khodkar, The fine structure of (v, 3) directed triple systems: $v \equiv 2 \pmod{3}$, Ars Combinatoria, (to appear).

- [3] Elizabeth J. Billington, Designs with repeated elements in blocks: a survey and some recent results, Congressus Numerantium 68 (1989), 123-146.
- [4] R.A.R. Butler and D.G. Hoffman, Intersection of group divisible triple systems, Ars Combinatoria 34 (1992), 268-288.
- [5] C.J. Colbourn, D.G. Hoffman and R. Rees, A new class of group divisible designs with block size three, Journal of Combinatorial Theory, Series A 59, (1992), 73-89.
- [6] C.J. Colbourn, R.A. Mathon, A. Rosa and N. Shalaby, The fine structure of threefold triple systems: $v \equiv 1$ or 3 (mod 6), Discrete Mathematics 92 (1991), 49-64.
- [7] C.J. Colbourn, R.A. Mathon and N. Shalaby, The fine structure of threefold triple systems: $v \equiv 5 \pmod{6}$, Australasian Journal of Combinatorics 3 (1991), 75-92.
- [8] A. Khodkar, The fine structure of balanced ternary designs with block size three, Utilitas Mathematica 44 (1993), 197-230.
- [9] A. Khodkar, The fine structure of (v, 3) directed triple systems: $v \equiv 0$ or 1 (mod 3), Ars Combinatoria 43 (1996), 213-224.