Induced Graph Theorem on Magic Valuations

Hikoe Enomoto

Department of Mathematics, Faculty of Science and Technology Keio University Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Kayo Masuda

Infrastructure Information Systems Division Oki Electric Industry Co.,Ltd. Shibaura 4-10-3, Minato-ku, Tokyo 108-8551, Japan

Tomoki Nakamigawa

Department of Mathematics, Faculty of Science and Technology Keio University Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

ABSTRACT. Let G be a graph. A bijection f from $V(G) \cup E(G)$ to $\{1,2,\ldots,|V(G)|+|E(G)|\}$ is called a magic valuation if f(u)+f(v)+f(uv) is constant for any edge uv in G. A magic valuation f of G is called a supermagic valuation if $f(V(G)) = \{1,2,\ldots,|V(G)|\}$. The following theorem is proved. Theorem. For any graph H, there exists a connected graph G so that G contains H as an induced subgraph and G has a supermagic valuation.

1 Introduction

Throughout this paper, we only consider finite, undirected graphs without loops or multiple edges. For a graph G, let V(G) and E(G) denote the vertex set and the edge set of G, respectively. A labeling f of G is a bijection from $V(G) \cup E(G)$ to $\{1, 2, \ldots, |V(G)| + |E(G)|\}$.

In [6], Kotzig and Rosa introduced the notion of magic valuations. A labeling f of G is called a magic valuation (in short, M-valuation) if there exists a constant s such that f(u) + f(v) + f(uv) = s for any edge uv in G. We call this constant s the magic number of f. A magic valuation

f is called a supermagic valuation (in short, SM-valuation) if $f(V(G)) = \{1, 2, ..., |V(G)|\}$.

Kotzig and Rosa [6, 7] proved many results on M-valuations including the ones in the following list.

- All cycles, complete bipartite graphs and caterpillars have M-valuations.
- A complete graph K_n has an M-valuation if and only if $n \in \{1, 2, 3, 5, 6\}$.
- Let nK_2 denote a graph consisting of n independent edges. Then nK_2 has an M-valuation if and only if n is odd.

They actually showed that every caterpillar and nK_2 with n odd has an SM-valuation in their proof. It is proved in [1] that the following statements hold on SM-valuations.

- A complete graph K_n has an SM-valuation if and only if $n \in \{1, 2, 3\}$.
- A complete bipartite graph $K_{m,n}$ has an SM-valuation if and only if m=1 or n=1.
- A cycle C_n has an SM-valuation if and only if n is odd.

2 Main Results

It appears more difficult to find an M-valuation for a dense graph than to do so for a sparse one. Especially, from the fact that any complete graph with at least 7 vertices has no M-valuation, one might think that any graph containing a large complete graph has no M-valuation. The next theorem asserts that this intuitive feeling is not true.

Theorem 1. Let H be a graph with n vertices and m edges. Then there exists a connected graph G with $|V(G)| \leq 2m + 2n^2 + o(n^2)$ such that G contains H as an induced subgraph and G has an SM-valuation.

In Theorem 1, we can not take G such that |V(G)| is close to |V(H)| with no restriction. More precisely, the next theorem was proved in [7].

Theorem A. Let G be a graph containing a complete graph K_n for $n \geq 9$. If G has an M-valuation, then $|V(G)| + |E(G)| \geq n^2 - 5n + 14$.

We give an asymptotically better bound by using a result on Sidon set in [2].

Theorem 2. Let G be a graph containing a complete graph K_n . Then the following statements (i) and (ii) hold.

(i) If G has an M-valuation, then $|V(G)| + |E(G)| \ge 2n^2 - O(n^{3/2})$.

(ii) If G has an SM-valuation, then $|V(G)| \ge n^2 - O(n^{3/2})$.

Before closing this section, we fix a few notations. If a and b are two integers with a < b, we denote the set of all integers i with $a \le i \le b$ by [a,b]. Let G be a graph. Let X,Y be subsets of V(G). We denote the set of edges $\{xy \in E(G): x \in X \text{ and } y \in Y\}$ by E(X,Y). We simply write E(X) instead of E(X,X). Moreover, if H_1 and H_2 are induced subgraphs of G, we denote $E(V(H_1),V(H_2))$ by $E(H_1,H_2)$.

3 Proof of Theorem 1

We employ Singer's difference set [8] for the labeling of G.

Lemma 3. For any positive integer n, there exists a function ξ from [0, n] to the set of non-negative integers such that

(i)
$$0 = \xi(0) < \xi(1) < \xi(2) < \ldots < \xi(n)$$
,

(ii)
$$\xi(j) - \xi(i) \neq \xi(l) - \xi(k)$$
 for any $\{i, j\} \neq \{k, l\}$,

(iii)
$$\xi(n) \le n^2(1+o(1))$$
.

Proof: For a given n, let q be the minimum prime power not less than n. The existence of Singer's difference set implies that there exist $\{0 = x_0 < x_1 < \cdots < x_q\}$ in $[0, q^2 + q]$ so that any element of $\mathbf{Z}_{q^2 + q + 1} \setminus \{0\}$ is uniquely represented by $x_i - x_j$ for some $i, j \in [0, q]$. Define $\xi(i) = x_i$ for $0 \le i \le n$. Then ξ satisfies the conditions (i) and (ii). It is left to show that (iii) holds. Let p_m be the mth prime. It is known in number theory that $p_{m+1} - p_m \le O(m^{\frac{11}{20} + \varepsilon})$ for any $\varepsilon > 0$ [4]. Hence if $p_m \le n < p_{m+1}$ then it follows that $q - n \le p_{m+1} - p_m \le O(m^{\frac{11}{20} + \varepsilon}) \le o(n)$. Therefore, $\xi(n) = x_n \le q^2 + q \le n^2(1 + o(1))$, as claimed.

Proof of Theorem 1: For a given graph H, set n = |V(H)|, m = |E(H)| and $V(H) = \{u_1, u_2, \ldots, u_n\}$. Let ξ be a function guaranteed by Lemma 3 for n.

Step 1. Construct a connected graph G' containing H and an odd cycle C. Set

$$t = 2m + 2n + 1.$$

Let C be a cycle of order t with

$$V(C) = \{v_1, v_2, \ldots, v_t\}$$

so that the vertices are arranged as $v_1, v_{\frac{t+3}{2}}, v_2, v_{\frac{t+5}{2}}, v_3, \dots, v_t, v_{\frac{t+1}{2}}$ along the cycle. We define a graph G' such that

$$V(G') = V(H) \cup V(C),$$

$$E(G') = E(H) \cup E(C) \cup \{uv_t : u \in V(H)\}.$$

Step 2. Define a function f' on $V(G') \cup E(G')$.

First we define two integers s and M as

$$s = 3t + 2(\xi(n) + \xi(n-1)) + n + 1,$$

$$M = s - \frac{t+3}{2}.$$

Later in step 4, we shall show that s and M are the magic number and the maximum label of an SM-valuation of a required graph G, respectively.

We define a function f' from $V(G') \cup E(G')$ to the set of positive integers such that

$$f'(v_i) = i & \text{if } v_i \in V(C), \\ f'(u_i) = t + \xi(i) & \text{if } u_i \in V(H), \\ f'(u_i u_j) = s - 2t - \xi(i) - \xi(j) & \text{if } u_i u_j \in E(H), \\ f'(u_i v_t) = s - 2t - \xi(i) & \text{if } u_i \in V(H), \\ f'(v_i v_j) = s - i - j & \text{if } v_i v_j \in E(C). \end{cases}$$

Claim 2.1.
$$f'(V(C)) = [1, t]$$
 and $f'(E(C)) = [M - t + 1, M]$.

We only need to show the second equality. From the definition of C, the sums i+j for $v_iv_j \in E(C)$ cover the interval from $1+\frac{t+1}{2}=\frac{t+3}{2}$ to $\frac{t+1}{2}+t=\frac{t+3}{2}+t-1$, as claimed.

Claim 2.2. f' is an injection from $V(G') \cup E(G')$ to [1, M].

Claim 2.1 implies that $f'|_{V(C)}$ and $f'|_{E(C)}$ are injections. It is also easy to see that $\max f'(V(C)) < \min f'(V(H))$, and $\max f'(E(H) \cup E(H, \{v_t\})) < \min f'(E(C))$. Moreover, $f'|_{V(H)}$ and $f'|_{E(H) \cup E(H, \{v_t\})}$ are injections by the property of ξ . It only suffices to show that $\max f'(V(H)) < \min f'(E(H))$. Indeed,

$$\max f'(V(H)) = t + \xi(n)$$

$$= s - 2t - \xi(n) - 2\xi(n-1) - n - 1$$

$$< s - 2t - \xi(n) - \xi(n-1)$$

$$\leq \min f'(E(H)).$$

Hence, Claim 2.2 holds.

The proof of Claim 2.2 also implies the following claim.

Claim 2.3. $\max f'(V(G')) < \min f'(E(G'))$.

Claim 2.4. f'(x) + f'(y) + f'(xy) = s for any edge xy in G'.

If $xy = u_i u_j \in E(H)$, then $f'(u_i) + f'(u_j) + f'(u_i u_j) = t + \xi(i) + t + \xi(j) + s - 2t - \xi(i) - \xi(j) = s$. If $xy = u_i v_t \in E(H, \{v_t\})$, then $f'(u_i) + f'(v_t) + f'(u_i v_t) = t + \xi(i) + t + s - 2t - \xi(i) = s$. If $xy = v_i v_j \in E(C)$,

then $f'(v_i) + f'(v_j) + f'(v_iv_j) = i + j + s - i - j = s$. Hence, Claim 2.4 holds.

Step 3. Attach new pairs of a vertex and an edge to G' to complete a required graph G.

We denote $[1, M] \setminus f'(V(G') \cup E(G'))$ by P, which is the set of remaining labels. Then, we have

$$|P| = M - |f'(V(G') \cup E(G'))|$$

$$= s - \frac{t+3}{2} - (|V(H)| + |V(C)| + |E(H)| + |E(C)| + |E(H, \{v_t\})|)$$

$$= 3t + 2(\xi(n) + \xi(n-1)) + n + 1 - \frac{t+3}{2} - (n+t+m+t+n)$$

$$= 2(\xi(n) + \xi(n-1)).$$

Let

$$P = \{a_1 < a_2 < \ldots < a_k < b_k < b_{k-1} < \ldots < b_2 < b_1\},\$$

where

$$k = \xi(n) + \xi(n-1).$$

We build a graph G by adding k new pairs of a vertex and an edge to G' in order to dispose of 2k labels in P.

Claim 3.1. $\max f'(V(G')) < a_k < \min f'(E(G'))$. In particular, $a_k = n + t + k$.

Since $\max f'(V(G')) - |f'(V(G'))| = t + \xi(n) - (n+t) < k$, the first inequality holds. Similarly, since $\min f'(E(G')) - |f'(V(G'))| \ge s - 2t - \xi(n) - \xi(n-1) - (n+t) = k+1$, the second inequality holds. Thus $a_k = |f'(V(G'))| + k = n+t+k$.

Claim 3.2. $a_i \in [t+i, t+i+n]$ for $1 \le i \le k$ and $b_i \in [M-t+1-i-(m+n), M-t+1-i]$ for $1 \le i \le k$.

Note that Claim 2.1 implies $t+1 \le a_1$ and $b_1 \le M-t$. From Claim 3.1, it follows that $a_i \ge a_1 + (i-1) \ge t+i$ and $a_i \le a_k - (k-i) = t+i+n$. Similarly, $b_i \le b_1 - (i-1) \le M-t+1-i$ and $b_i \ge a_k + (k-i+1) = n+t+2k-i+1 = M-t+1-i-(m+n)$, as claimed.

Now, we are ready to define a graph G;

$$V(G) = V(G') \cup \{w_1, w_2, \dots, w_k\},\$$

$$E(G) = E(G') \cup \{w_i v_{s-a_i-b_i} : 1 \le i \le k\}.$$

This definition is consistent since $1 \le s - a_i - b_i \le t$ holds for any $1 \le i \le k$. Indeed, from Claim 3.2, we have

$$s - a_i - b_i \ge s - (t + i + n) - (M - t + 1 - i)$$

= $m + 1$
 ≥ 1 ,

and

$$s-a_i-b_i \le s-(t+i)-(M-t+1-i-m-n)$$

= t.

Note that G is connected and contains H as an induced subgraph. Step 4. Define an SM-valuation f on G.

We define a labeling f on G so that f is an extension of f';

$$f(x) = f'(x)$$
 if $x \in V(G')$,
 $f(xy) = f'(xy)$ if $xy \in E(G')$,
 $f(w_i) = a_i$ if $1 \le i \le k$,
 $f(w_i v_{s-a_i-b_i}) = b_i$ if $1 \le i \le k$.

Since f' is an injection from $V(G') \cup E(G')$ to $[1,M] \setminus P$, it follows that f is a bijection from $V(G) \cup E(G)$ to [1,M]. From Claim 2.4, we have f(x) + f(y) + f(xy) = s for any edge $xy \in E(G')$. Moreover, we have $f(w_i) + f(v_{s-a_i-b_i}) + f(w_iv_{s-a_i-b_i}) = a_i + s - a_i - b_i + b_i = s$ for $1 \le i \le k$. Hence, f is an M-valuation. Furthermore, Claim 2.3 and Claim 3.1 with the fact $a_i < b_j$ for any i and j imply that f is an SM-valuation. It is only left to estimate the number of vertices of G. Since $\xi(n-1) < \xi(n) \le n^2(1+o(1))$ holds from Lemma 3, we have

$$|V(G)| = |V(G')| + k$$

$$= n + t + \xi(n) + \xi(n-1)$$

$$= 2m + 3n + 1 + \xi(n) + \xi(n-1)$$

$$\leq 2m + 2n^2 + o(n^2).$$

This completes the proof.

4 Proof of Theorem 2

First we introduce some terminology according to [5]. Let $X = \{x_1 < \ldots < x_n\}$ be a set of positive integers. X is called a sequence for a well spread set of integers (in short, WS-sequence) if the sums $x_i + x_j$ for i < j are all different. We define the smallest span $\sigma^*(n)$ and the smallest span of pairwise sums $\rho^*(n)$ as follows.

$$\sigma^*(n) = \min\{x_n - x_1 + 1 : X \text{ is a WS-sequence of order } n\}$$

 $\rho^*(n) = \min\{x_n + x_{n-1} - x_2 - x_1 + 1 : X \text{ is a WS-sequence of order } n\}.$

The following four lemmas were proved in [5] and [7].

Lemma 4.
$$\sigma^*(2) = 2$$
, $\sigma^*(3) = 3$, $\sigma^*(4) = 5$, $\sigma^*(5) = 8$, $\sigma^*(6) = 13$, $\sigma^*(7) = 19$, $\sigma^*(8) = 25$, and $\sigma^*(n) \ge \frac{1}{2}n^2 - \frac{3}{2}n + 5$ for $n \ge 9$.

Lemma 5.
$$\rho^*(n) \ge 2\sigma^*(n-1)$$
 for $n \ge 4$.

Lemma 6.
$$\rho^*(2) = 1$$
, $\rho^*(3) = 3$, $\rho^*(4) = 6$, $\rho^*(5) = 11$, $\rho^*(6) = 19$, $\rho^*(7) = 30$, $\rho^*(8) = 43$, and $\rho^*(n) \ge n^2 - 5n + 14$ for $n \ge 9$.

Lemma 7. Let G be a graph containing a complete graph K_n . If G has an M-valuation, then $|V(G)| + |E(G)| \ge \rho^*(n)$.

Theorem A in Section 2 follows immediately from Lemma 6 and Lemma 7. A similar result to Lemma 7 holds on SM-valuations.

Lemma 8. Let G be a graph containing a complete graph K_n . If G has an SM-valuation, then $|V(G)| \ge \sigma^*(n)$.

Proof: Let f be an SM-valuation of G. Then $\{f(v): v \in V(K_n)\}$ is a well spread of integers, because for any two distinct edges xy and zw in $E(K_n)$, there holds $f(x) + f(y) = s - f(xy) \neq s - f(zw) = f(z) + f(w)$. Since any label at most max $f(V(K_n))$ is assigned to some vertex of G, it follows that $|V(G)| \geq \max f(V(K_n)) \geq \sigma^*(n)$.

We owe the lower bound of σ^* to the following result of Erdös and Turán [2].

Theorem B. Let $x_1 < x_2 < \ldots < x_n \le s$ be positive integers such that the sums $x_i + x_j$ for $i \le j$ are all different. Then $s \ge n^2 - O(n^{\frac{3}{2}})$.

We need to replace the condition " $i \leq j$ " in Theorem B to "i < j" for our purpose. Is the bound affected by this change? In fact, as shown in the proof of Lemma 6 in [3], a modification of the proof of Theorem B assures the same asymptotic bound for σ^* .

Theorem B'.
$$\sigma^*(n) \ge n^2 - O(n^{\frac{3}{2}})$$
.

Now we are ready to complete the proof of Theorem 2.

Proof of Theorem 2: (i) follows from Lemma 5, Lemma 7 and Theorem B'. (ii) follows from Lemma 8 and Theorem B', as required.

References

- [1] H. Enomoto, A.S. Llado, T. Nakamigawa and G. Ringel, Super edgemagic graphs, to appear in SUT. J. Math.
- [2] P. Erdös and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.

- [3] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM. J. Alg. Disc. Math. 1 (1980), 382-404.
- [4] D.R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Bull. Amer. Math. Soc. 1 (1979), 758-760.
- [5] A. Kotzig, On well spread sets of integers, Publications du Centre de Recherches Mathématiques Université de Montréal 161 (1972).
- [6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
- [7] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Publications du Centre de Recherches Mathématiques Université de Montréal 175 (1972).
- [8] J. Singer, A theorem in finite projective geometry and some applications to number theory, *Trans. Amer. Math. Soc.* 43 (1938), 377–385.