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ABSTRACT. Let G be a graph. A bijection f from V(G) U
E(G) to {1,2,... ,|[V(G)| +|E(G)|} is called a magic valuation
if f(u)+ f(v)+ f(uv) is constant for any edge uv in G. A magic
valuation f of G is called a supermagic valuation if f(V(G)) =
{1,2,...,|V(G)|}. The following theorem is proved.
Theorem. For any graph H, there exists a connected graph
G so that G contains H as an induced subgraph and G has a
supermagic valuation.

1 Introduction

Throughout this paper, we only consider finite, undirected graphs without
loops or multiple edges. For a graph G, let V(G) and E(G) denote the
vertex set and the edge set of G, respectively. A labeling f of G is a
bijection from V(G)U E(G) to {1,2,...,|V(G)| + |E(G)|}.

In [6], Kotzig and Rosa introduced the notion of magic valuations. A
labeling f of G is called a magic valuation (in short, M-valuation) if there
exists a constant s such that f(u)+ f(v) + f(uv) = s for any edge uv in
G. We call this constant s the magic number of f. A magic valuation
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f is called a supermagic valuation (in short, SM-valuation) if f(V(G)) =
{1,2,...,IV(G)I}-

Kotzig and Rosa [6, 7] proved many results on M-valuations including
the ones in the following list.

e All cycles, complete bipartite graphs and caterpillars have M-valuations.
e A complete graph K, has an M-valuation if and only ifn € {1,2,8,5,6}.

e Let nK, denote a graph consisting of n independent edges. Then
nK> has an M-valuation if and only if » is odd.

They actually showed that every caterpillar and nK; with n odd has an
SM-valuation in their proof. It is proved in [1] that the following statements
hold on SM-valuations.

e A complete graph K, has an SM-valuation if and only if n € {1,2,3}.

e A complete bipartite graph Ky, » has an SM-valuation if and only if
m=1lorn=1.

e A cycle Cy, has an SM-valuation if and only if » is odd.

2 Main Results

It appears more difficult to find an M-valuation for a dense graph than to
do so for a sparse one. Especially, from the fact that any complete graph
with at least 7 vertices has no M-valuation, one might think that any graph
containing a large complete graph has no M-valuation. The next theorem
asserts that this intuitive feeling is not true.

Theorem 1. Let H be a graph with n vertices and m edges. Then there
exists a connected graph G with [V(G)| < 2m + 2n? + o(n?) such that G
contains H as an induced subgraph and G has an SM-valuation.

In Theorem 1, we can not take G such that |V(G)| is close to |V (H)|
with no restriction. More precisely, the next theorem was proved in [7].

Theorem A. Let G be a graph containing a complete graph K, for n > 9.
If G has an M-valuation, then |V(G)| + |E(G)| 2 n® — 5n+ 14. ]

We give an asymptotically better bound by using a result on Sidon set
in [2].

Theorem 2. Let G be a graph containing a complete graph K,,. Then the
following statements (i) and (ii) hold.

(i) If G has an M-valuation, then |V (G)| + |E(G)| > 2n? — O(n®/?).
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(ii) If G has an SM-valuation, then [V(G)| > n? — O(n®*/?2).

Before closing this section, we fix a few notations. If a and b are two
integers with a < b, we denote the set of all integers i with a < i < b by
[a,5]. Let G be a graph. Let X,Y be subsets of V(G). We denote the set
of edges {zy € E(G):z € X and y € Y} by E(X,Y). We simply write
E(X) instead of E(X, X). Moreover, if H; and H, are induced subgraphs
of G, we denote E(V(H,),V(H3)) by E(H,, Hs).

3 Proof of Theorem 1
We employ Singer’s difference set [8] for the labeling of G.

Lemma 3. For any positive integer n, there exists a function £ from [0,7]
to the set of non-negative integers such that

() 0=¢€(0) <£(1) <&(2) <... < &(n),
(ii) €(45) — £(5) # (1) — £(k) for any {i,5} # {k,1},
(iii) &(n) < n2(1 + o(1)).

Proof: For a given n, let ¢ be the minimum prime power not less than
n. The existence of Singer’ s difference set implies that there exist {0 =
To < Z1 < -+- < zg} in [0,¢% + g] so that any element of Zga 141 \ {0} is
uniquely represented by z; — z; for some 2,5 € [0,q]. Define £(i) = z; for
0 < ¢ < n. Then € satisfies the conditions (i) and (ii). It is left to show
that (iii) holds. Let pn, be the mth prime. It is known in number theory

that pm+1 — pm < O(m®B+¢) for any € > 0 [4]. Hence if pm < 7 < Py
then it follows that ¢ — 1 < ppy1 — Pm < O(MmB+€) < o(n). Therefore,
£(n) =z, < g%+ ¢ < n2(1 + 0(1)), as claimed. m]

Proof of Theorem 1: For a given graph H, set n = |V (H)|, m = |E(H)|
and V(H) = {uj,ug,... ,un}. Let £ be a function guaranteed by Lemma
3 for n.

Step 1. Construct a connected graph G’ containing H and an odd cycle C.

Set
t=2m+2n+41.

Let C be a cycle of order ¢ with
V(C) = {v1,v2,... v}

so that the vertices are arranged as v;,v 443,02, V145,03, -+, Uy, Ve along
the cycle. We define a graph G’ such that

V(G = V(H)UV(C),
E(G') = E(H)U E(C) U {uv, : u € V(H)}.
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Step 2. Define a function f' on V(G')U E(G’).
First we define two integers s and M as

s=3t+2(¢(m)+€rn-1))+n+1,
t+3

M=s~- 2

Later in step 4, we shall show that s and M are the magic number and
the maximum label of an SM-valuation of a required graph G, respectively.

We define a function f from V(G’)U E(G’) to the set of positive integers
such that

fllw)=1 if v; € V(C),
f(us) =t +£G) if u; € V(H),
fusug) = s — 2 — €6) — €)1 wauy € E(H),

Fl(uive) = s — 2t — £(3) if u; € V(H),
fllowy)=s—i—7J if v;v; € E(C).

Claim 2.1. f/(V(C)) =[1,t] and f/(E(C))=[M -t+1,M].

We only need to show the second equality. From the definition of C,
the sums i + j for vv; € E(C) cover the interval from 1+ 3 = 43 to
Bl ¢=43 +t—1, as claimed.

Claim 2.2. f’is an injection from V(G’)U E(G’) to [1, M ].

Claim 2.1 implies that f’|y(c) and f'|g(c) are injections. It is also easy to
see that max f/(V(C)) < min f'(V(H)), and max f(E(H)U E(H, {v:})) <
min f’(E(C)). Moreover, f'|lv(x) and f'|g(#uE(H {v.}) are injections by
the property of £. It only suffices to show that max f'(V(H)) < min f'(E(H)).
Indeed,

max f'(V (H)) =t +£(n)
=s—2—€EMn)—26(n—1)—n-1
<s—2t—E&(n)—€&(n-1)
< min f'(E(H)).

Hence, Claim 2.2 holds.

The proof of Claim 2.2 also implies the following claim.
Claim 2.3. max f'(V(G')) < min f'(E(G")).
Claim 2.4. f'(z) + f'(y) + f'(zy) = s for any edge zy in G'.

If zy = win; € E(H), then f'(w) + f'(u5) + f'(wiy;) = ¢+ £@) +
t+ E() + s — 2t — £(i) — £(4) = s. U 2y = winy € E(H,{ve}), then
F/(u)+f () + ' (usve) = t4+E(3) +t+s—2t—£(5) = s. I zy = viv; € B(C),
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then f'(v)+ f'(v;) + f'(viv;) =i+ j+ s —i—j = s. Hence, Claim 2.4
holds.
Step 3. Attach new pairs of a vertex and an edge to G' to complete a
required graph G.

We denote [1, M ]\ f/(V(G’)U E(G")) by P, which is the set of remaining
labels. Then, we have

|P| =M ~|f"(V(G') U E(G"))]

== 22— (v@n) + IV(O)| + |B(H)| +1BO)] + |E(H, (v}
=38t+2(6(n)+£é(n—1))+n+1- # —(n+t+m+t+n)
=2(§(n) +£(n —-1)).
Let
P={a1<as<...<ap<bpg<bp-1<...<by<bh},
where

k=§(n) +£&(n-1).
We build a graph G by adding k new pairs of a vertex and an edge to G’
in order to dispose of 2k labels in P.
Claim 3.1. max f'(V(G’)) < ax < min f'(E(G’)). In particular, a; =
n+t+k.

Since max f'(V(G')) — |f/(V(G)| = t + €(n) — (n+ t) < k, the first
inequality holds. Similarly, since min f'(E(G’)) — |f'(V(G’))| > s — 2t —
€(n) — €(n—1) — (n+t) = k + 1, the second inequality holds. Thus
a=|f (V@) +k=n+t+k.

Claim 8.2. q; € [t+i,t+i+n]for1<i<kand b€ [M —-t+1—-i-
(m+n),M—t+1—dforl1<i<k.

Note that Claim 2.1 implies £+ 1 < a4 and b; < M - ¢t. From Claim 3.1,
it follows that a; > a; + (1 —1) >t+ianda; S apr—(k—i) =t+i+n.
Similarly, b < by — (i—1) S M —t+1—iand b; > ag+ (k—i+1) =
n+t+2k—-i+1=M-t+1—i— (m+mn), as claimed.

Now, we are ready to define a graph G ;

V(G) = V(GI) ) {w11 w2, ... 1wk},
E(G) = E(G")U {wjvy—qg,—p, : 1 <i < k}.

This definition is consistent since 1 < s—a; —b; < tholds forany 1 < i < k.
Indeed, from Claim 3.2, we have

s—ai—=bj>2s—(t+i+n)— (M —t+1-14)
=m+1
21,
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and

s—a;—b<s—(t+i)—-(M—-t+1—-i—m—n)
=1.

Note that G is connected and contains H as an induced subgraph.
Step 4. Define an SM-valuation f on G.
We define a labeling f on G so that f is an extension of f';

f(@) = f'(z) ifzeV(G),

flzy) = ['(zy) if zy € E(G),
flw;) = a; ifl<i<k,
F(wivg—a,—p) =b;i  if1<i<k.

Since f’ is an injection from V(G') U E(G’) to [1, M ]\ P, it follows that
f is a bijection from V(G) U E(G) to [1,M]. From Claim 2.4, we have
f(z) + f(y) + f(zy) = s for any edge zy € E(G’). Moreover, we have
)+ f(vo—a—b,) + f(Wivs—a,—b;) = @i +s—ai—bi+b=sfor1 <i< k.
Hence, f is an M-valuation. Furthermore, Claim 2.3 and Claim 3.1 with the
fact a; < b; for any i and j imply that f is an SM-valuation. It is only left to
estimate t.he number of vertices of G. Since £(n —1) < &(n) < n?(1+0(1))
holds from Lemma 3, we have

V(G = V(G +k
=n+t+E&n)+E&rn-1)
=2m+3n+1+£&n)+£&(n—1)
< 2m + 2n% + o(n?).

This completes the proof. ]

4 Proof of Theorem 2

First we introduce some terminology according to [5]. Let X = {z; < ... <
T} be a set of positive integers. X is called a sequence for a well spread
set of integers (in short, W S-sequence) if the sums z; + z; for ¢ < j are
all different. We define the smallest span o*(n) and the smallest span of
peirwise sums p*(n) as follows.

0*(n) = min{z, — z; + 1 : X is a WS-sequence of order n}
p*(n) = min{z, + Tn_1 — T2 —z1 +1 : X is a WS-sequence of order n}.

The following four lemmas were proved in [5] and [7].
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Lemma 4. 0*(2) = 2, ¢*(3) = 3, a"‘(4) = 5, 0*(5) = 8, c*(6) =

a*(7) =19, 0*(8) = 25, and o*(n) > 4n? ——n+5forn>9 D
Lemma 5. p*(n) > 20*(n —1) for n > 4. o
Lemma 6. p*(2) =1, p*(3) = 3, p*(4) = 6, p*(5) = 11, p*(6) =
p*(7) =30, p*(8) = 43, and p*(n) > n® —5n+ 14 for n > 9. o

Lemma 7. Let G be a graph containing a complete graph K,. If G has
an M-valuation, then |V(G)| + |E(G)| 2 p*(n). m]

Theorem A in Section 2 follows immediately from Lemma 6 and Lemma
7. A similar result to Lemma, 7 holds on SM-valuations.

Lemma 8. Let G be a graph containing a complete graph K,. If G has
an SM-valuation, then |V(G)| > o*(n).

Proof: Let f be an SM-valuation of G. Then {f(v) : v € V(K,)} is a well
spread of integers, because for any two distinct edges zy and 2w in E(K,),
there holds f(z) + f(y) = s — f(zy) # s — f(zw) = f(2) + f(w). Since any
label at most max f(V(K,)) is assigned to some vertex of G, it follows that
V()] 2 max f(V(Ky)) 2 0*(n). o
We owe the lower bound of o* to the following result of Erdds and Turdn
(2].
Theorem B. Let 1y < z3 < ... <z, < 5 be posmve mtegers such that
the sums z; + z; for i < j are all different. Then s > n? — O(nz) (m}

We need to replace the condition “i < j” in Theorem B to “i < 5" for
our purpose. Is the bound affected by this change? In fact, as shown in the
proof of Lemma 6 in [3], a modification of the proof of Theorem B assures
the same asymptotic bound for o*.

Theorem B’. 0*(n) > n? — O(n?).
Now we are ready to complete the proof of Theorem 2.

Proof of Theorem 2: (i) follows from Lemma 5, Lemma 7 and Theorem
B’. (ii) follows from Lemma 8 and Theorem B’, as required. O
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