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Abstract

We show that if, for any fixed r, the neighbourhood unions of all r-sets
of vertices are large enough, then G will have many edge-disjoint perfect
matchings. In particular, we show that given fixed positive integers r and ¢
and a graph G of even order n, if the minimum degree is at least 7 + ¢ — 1
and if the neighbourhood union of each r-set of vertices is at least n/2 +
(2|(c + 1)/2] — 1)r, then G has ¢ edge-disjoint perfect matchings, for n
large enough. This extends earlier work by Faudree, Gould and Lesniak on
neighbourhood unions of pairs of vertices.

1 Introduction

A graph is assumed to be finite with no multiple edges or loops. We use §(G) to
denote the minimum degree over all vertices in the graph G, and &'(G) to denote
the edge-connectivity of G. The neighbourhood of a vertex v, denoted Ng(v),
is the set of edges adjacent to v in G. If there is no possibility of ambiguity, the
subscript G will be omitted. Other notation not mentioned here can be found in

(1.

This paper addresses the problem of determining whether or not a graph has ¢
edge-disjoint perfect matchings, for any given c.

For ¢ > 2, this problem is N P-complete. Ian Holyer [3] has shown that de-
termining the edge-colourability of a 3-regular graph is N P-complete. Vizing’s
Theorem (proven in [1]) tells us that a 3-regular graph is either 3-edge-colourable
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or 4-edge-colourable. Since a 3-regular graph is 3-edge-colourable if and only if it
has 3 edge-disjoint perfect matchings, it follows that the problem of determining
whether or not a 3-regular graph has 3 (or equivalently 2) edge-disjoint perfect
matchings is N P-complete. Thus, in general, determining whether or not a graph
has ¢ > 2 edge-disjoint perfect matchings is N P-complete.

In this paper, we obtain a sufficient condition for a graph to have ¢ edge-disjoint
perfect matchings, based on the size of neighbourhood unions of r-sets of ver-
tices in the graph. This extends earlier work by Faudree, Gould and Lesniak on
neighbourhood unions of pairs of vertices.

2 Background Results

Tutte [1] characterized when a graph has a perfect matching:

Theorem 1 A graph G has a perfect matching if and only if
odd(G — S) <|S| vSCV,

where 0dd(G — S) is the number of odd-order components in G — S.

A path or cycle is hamiltonian if it passes through every vertex of G. A graph is
hamiltonian if it has a hamiltonian cycle. The following results on hamiltonicity,
which are due to Ore [1], will be useful:

Theorem 2 Let G be a graph of order n. If d(u) + d(v) > n for all non-adjacent
pairs of vertices u, v, then G is hamiltonian.

Theorem 3 Let G be a graph of order n. If d(u) + d(v) > n + 1 for all non-
adjacent pairs of vertices u, v, then G is hamiltonian connected, i.e. there is a
hamiltonian path joining any 2 vertices of G.

Faudree, Gould and Lesniak [2] have shown:

Theorem 4 If a graph G = (V, E) with even order n satisfies:

1. §G)>2c+1
2. £'(G)>2c
3. |N(u1) UN(ug)| > n/2 Vui, uz €V
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then G has c edge-disjoint perfect matchings, for n large enough.

They have also observed in their paper that each of these conditions is required
and is also sharp.

3 Main Results

InTheorem 4, it is shown that an even order graph with sufficiently high minimum
degree and edge-connectivity will have a large number of edge-disjoint perfect
matchings provided the neighbourhood union of all pairs of vertices is at least one
half the order of the graph. In the following result, we show that by demanding
neighbourhood unions which contain just one more vertex, we can avoid checking
the edge-connectedness condition altogether.

Corollary 5 Let c be a positive integer. Let G = (V,E) be a graph with even
order n satisfying:

1. §(G)>c+1
2. IN(ua) UN(uz)| > n/2+1

then G has c edge-disjoint perfect matchings, for n large enough,

Proof  Let G satisfy the conditions of the corollary. Note that G is connected
since each component having at least 2 vertices must have more than half the
vertices in the graph by the neighbourhood condition. Furthermore, the minimum
degree condition does not allow for an isolated vertex.

Suppose that £'(G) < c. Then there is a minimal set S of < ¢ edges for which
G — S is disconnected. Let C be a component of G — S. Let V' (S) be the
set of endpoints of the edges in S. If C' N V(S) were empty, then G would be
disconnected, so we can take w € CNV(S). Then, ds(u) = [N(u)NV(S)| < c.
To see this, note that u cannot be adjacent to vertices in any other component of
G — S except through edges of 3, so this gives at least | N (u) NV (S)N V(G-0)|
edges in S, all of which are incident with . Also, there is at least one edge in the
cut set for each vertex in C N V/(S) adjacent to u, so this gives [N (w) NV (S)NC|
edges in S, none of which is incident with u. These edges are all distinct since if
an edge of S has both endpoints in C, we can delete it from S and have a smaller
set leaving G — S disconnected. Thus,
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S|
IN() NV (S) V(G - C)| + IN@)NV(S)NC]
ds(u)

nNiviv

But dg(u) > ¢+ 1, so there exists a vertex x € C such that u is adjacent to
z,and z ¢ C NV(S). Since |C NV (S)| < |S| < cand the vertex z also has
d(z) > c + 1, there exists at least one other vertex y € C besides z and those in
C NV(S). But then |C| > |N(z) U N(y)| > n/2 + 1. Thus, every component
has more than half the vertices, so there is only one component, a contradiction.

Thus, &' (G) > cand Theorem 4 applies to show that G has c edge-disjoint perfect
matchings. a

Thus we do away with the edge-connectivity requirement and instead add a suit-

able constant to the neighbourhood union requirement to obtain many edge-disjoint
perfect matchings. It is worth mentioning that we cannot simply omit the edge-

connectivity condition in the above corollary without increasing the necessary

neighbourhood union size to n/2 + 1. Faudree, Gould and Lesniak mentioned in

[2] that the graph obtained by adding ¢ — 1 edges between two disjoint copies of
K, withn = 2(mod 4), satisfies (for n sufficiently large) conditions (1) and (3)

of Theorem 4, but does not have ¢ edge-disjoint perfect matchings.

In the remainder of this section, we consider neighbourhood unions of r vertices
for any fixed positive integer r instead of just pairs of vertices, and attempt to
generalize Corollary 5. The penalty we pay for using r-sets of vertices (rather
than pairs) is that while Corollary 5 only requires neighbourhood unions of size
n/2 + 1, the proof of our corresponding result for r-sets will require adding to
n/2 a constant depending both on ¢ and r, rather than just the fixed value 1.

We will need the following lemma:

Lemma 6 Let r be a positive integer. Let G be a graph of large enough even
order n satisfying:

1. §G)>r
2. [IN(w))UN(u2)U---UN(u,)| 2 n/2  Vui, ug,---,ur €V.

If there exists S such that 0dd(G — S) > |S|, then S = {.

Proof  Suppose thereexists an S # @ such that odd(G—S) > |S|. Then,G—S
has at least s + 2 components, where s = |S], since the parities of odd(G — S)
and | S| are the same.
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Let k be the number of components of G ~ S of order < r. Thens +2 — k <
the number of components of G — S of order at least r. Thus, n is at least & +
5+ (n/2 — s)(s + 2 — k) since the neighbourhood condition implies that any
component of order at least » also has order at least n/2 — s. This quadratic
equation in s reduces to

(s = (/2= 1))(s — k) > 0.

Thus, s < kors > n/2 — 1 (or both).

If s > nf2—1,thens+2 > n/2+ 1 and all components are singletons. If
n/2 41 > 7 (i.e. for n large enough), then the neighbourhood condition implies
that s > n/2. It follows that G — S has at least n/2 + 2 vertices, so the total
number of vertices in G is at least n + 2 > n, a contradiction. Thus we can
conclude that s < k.

Since S # 0, wehavel < s < k.

Suppose first that s > n/2 — r2. Let k; be the number of singleton components.
Note that k&1 < 7 — 1 since > r singleton components would imply that s > n/2
by the neighbourhood condition. Thus, the number of vertices in G is

s + ( the number of vertices in components of size < r)
nf2-r%+k +2(k— k)

n/2-r2+2k-k

nf2-r2+2k—(r—1)

nf2-12—r+1+2s because k > s
nf2—1r2—r+1+2(nf/2-r?%)
n+nf2-3r2-r+1

n

IVIVIV L IVIV

Thus, 3r2 + 7 > n/2 + 1, a contradiction for n large enough.

Thus we assume that s < n/2 — r2.

Let Cy, Cs,- - -, Cy, be the components of G — S which have size < r.

Case 1: [C| + |Co| + - + |Ci| > 7.

Letp = |Ci| + |C2| + - - - + |Ct| where t is the first integer with this sum > r.

Then, |Cy|+|Ca|+ -+ |Ci=1] £ r—1, |Ci] < r—1,s0thatp < 2(r —1). Also,
by the neighbourhood condition applied to r vertices from these ¢ components,
s>nf2-p>nj2-2r+2.

Thus,n/2 — 7% > s > n/2 — 2r +2,s0 (r — 1)®> + 1 < 0, a contradiction.
Case2: |Cy| +|Co| +--- +|Ck| < 7.
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Since k # 0, we have 1 < |Ci| +|Cs| + --- +|Ck| < 7 — L. Let i be the size of
the smallest component, 1 < i < r — 1. Then,

r—1 |Ci| +1C2| + - - +|Ck]
ik
i8

IVIVIV

Buts > r — i + 1 since §(G) > 7. Thus,

r—1 > i(r—i+1)
r—1 > ir—i®+i
2_ir+1l)+r-1 > 0.

Thus, 2 —i(r + 1) +r > 0,ie. (i —7)(E—1) > 0.

Thus, either ¢ > 7, or i < 1, a contradiction in either case. Thus, this case cannot
occur either, and so the result holds.

This completes the proof of the lemma. O

We are now in a position to prove the main result in this paper:

Theorem 7 Let r, c be fixed positive integers. Let G be a graph of even order n
satisfying:
1.L6G)2r+c—1
2. IN(u)UN(u2)U---UN(u)| 2n/2+ (2[(c+1)/2] - 1)r
Vauy,ug, o ,ur €V.

Then, G has c edge-dijoint perfect matchings, for n large enough.

Proof

Case 1: r=1. We use induction on |(c+ 1)/2]. If [(c+1)/2] = 1,ie.ifc=1or
2, then d(u) > n/2 + 1 for all u. It follows that G is hamiltonian, by Theorem 2,
and thus that G has 2 edge-disjoint perfect matchings, since G has even order.

If [(c+1)/2) =m > 2, thend(u) > n/2+2m —1forallu € V. Gis
hamiltonian, again by Theorem 2, so G has 2 edge-disjoint perfect matchings.
Delete a hamiltonian cycle and call the resulting graph H.

Then, dgr(u) > n/2 + 2(m — 1) — 1 for all u € V. By the induction hypothesis,
H has ¢ — 2 edge-disjoint perfect matchings since m —1 = | ((c—2) +1)/2]. But
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then H together with the hamiltonian cycle deleted from G forms ¢ edge-disjoint
perfect matchings of G.

This finishes the proof of case 1.
Case2:r > 2
We use induction on c.

If ¢ = 1, the hypothesis of the theorem tells us that (G) > 7, and |N(u;) U
N(uz)U---UN(u.)| > n/2 +rforall uy, usg,---,u, € V.If G does not have
a perfect matching, then there exists S C V such that odd(G — S) > |S|, by
Theorem 1. By the lemma, S = ), and G has at least 2 odd components C;, C.
But, since 6(G) > r, this implies that |C;| > r and thus |C;| > n/2 + r for all
i, by the neighbourhood condition. This gives a contradiction because C; and Cs
cannot both have more than half the vertices.

If ¢ = 2, we are given that 6(G) > 7+ 1, and [N (u ) UN(u2) U+ - - UN(u,)| >
n/2 + r for all u;, uz,---,u, € V. Now, G has a perfect matching M, by the
casec = 1. Let H = G — M. Then 6(H) > r, and [Ny (u1) U Ny (uz) U
.-+ U Ng(us)| > n/2 for all uy, ug, -+, u, € V(H). Thus, if there exists an
S C V(H) such that odd(H — S) > |S|, then S = @, by the lemma.

Now, 6(H) > r => |Ci| > r + 1 for C; a component of H. But this implies
|Ci] > n/2, by the neighbourhood condition. Thus, H must consist of 2 odd
components, C; and Cs, each of order n/2. Note that since 7 > 2, each C; has at
least 3 vertices, being of odd order.

Suppose that u,v are non-adjacent vertices in C,. If there are r vertices in C}
which are not adjacent to v, then v is not in the neighbourhood union of these r
vertices, so that these r vertices has a neighbourhood union of size at mostn/2—1,
a contradiction.

Thus, dg(v) > n/2 — (r — 1) and similarly, dg(u) > n/2 — (r — 1). Thus,
dy(u)+dg(@) >n-2(r—-1) > n/2+1

for n large enough. Thus, C} is hamiltonian connected, by Theorem 3. Similarly,
C, is hamiltonian connected. Also, for n large enough, n/2 > 7, and for any r
vertices in C}, their neighbourhcod union consists of at least n/2 + r vertices and
therefore at least  vertices from C5. Thus, in G, there are at least r edges of M
joining C; and C,. In particular, since 7 > 2, there are at least 2 edges of M
joining C; and Cs, say ujuz, v1v2 withuy,v; € Cy, uz,v2 € Ca.

Note that u; # vy, and up # v since M is a matching. Letting P, be a hamil-
tonian path in C; with u; and v, as endpoints and P> a hamiltonian path in C;
having u; and v, as endpoints, then P; U ujuz U P, Uvav, is a hamiltonian cycle
in G, so G has 2 edge-disjoint perfect matchings.
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Thus the base cases ¢ = 1, 2 are shown:

Nowletc =2¢+ 1, ¢ > 1. Then 6(G) > r + 2¢, and |[N(u1) U N(u2) U--- U
N(u,)| > n/2+ (2g + 1)r forall uy, ug,---,u, € V.

Then G has 2q edge-disjoint perfect matchings for n large enough, by the induc-
tion hypothesis. Then let H be the graph resulting from deleting these 2q edge-
disjoint perfect matchings. Then H satisfies 6 (H) > r, and |Ng(u1) U Ny (uz)U
---UNg(ur)| 2 n/2 +rforall uy, ug,---,u, € V(H). So if H doesn’t have
a perfect matching, we know from Theorem 1 that there exists a set S such that
odd(H — S) > |S| and from the lemma, that S = (. Thus, odd(H) > 2. But,
since each component of H has at least §(H) + 1 = r + 1 vertices, each compo-
nent of H will also have at least n/2 + r vertices, a contradiction. Thus, H has a
perfect matching and G has 2q + 1 edge-disjoint perfect matchings.

Nowletc=2¢+2, ¢ > 1. Thend(G) >r+2¢+1, {N(u)UN(uz2) U---U
N(uz)| > n/2+ (2¢+ D)rforall ug, ug,---,u, € V.

Then G has 2¢ + 1 edge-disjoint perfect matchings by the case ¢ = 2q + 1.
Then let H be the graph obtained from deleting these 2q+1 edge-disjoint perfect
matchings. Then H satisfies 6(H) > r, [N(u1) UN(up) U--- U N(u,)| > n/2
for all uy, ug,---,u, € V.

If H does not have a perfect matching, then H consists of 2 odd components, by
the lemma. Again |C;| > n/2, by the neighbourhood condition. Also, as before,
C1 and Cy are hamiltonian connected.

In G, there exist at least (2¢ + 1)r edges between C and Cs, since for any r
vertices in C1, there are at least (2g + 1)r vertices from C3 in their neighbourhood
union. So at least one of the 2¢g + 1 perfect matchings, say M, has at least r > 2
edges between C; and Ca. Then H U M has 2 edge-disjoint perfect matchings
since C; and C5 are hamiltonian connected.

Thus, the 2g edge-disjoint perfect matchings other than M together with H U M
has 2q + 2 edge-disjoint perfect matchings. Thus, G has 2q + 2 edge-disjoint
perfect matchings, and this completes the induction argument.

O
Note: for n to be large enough, it is enough for n to be at least 672 + 2r.

4 Conclusion

We have obtained a corollary of a result of Faudree, Gould, and Lesniak which
guarantees ¢ edge-disjoint perfect matchings in an even-order graph if the min-
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imun degree and the neighbourhood union of all pairs of vertices are large enough.
We show that this corollary can be extended so that large neighbourhood unions
are required for r-sets rather than pairs of vertices.

The advantage of this result is that by considering r-sets, our result may be applied
to graphs where the average degree is smaller. In particular, the neighbourhood
union requirement in Theorem 4 requires that at most 1 vertex can have degree
less than n/4. Our result may still apply as long as at most r — 1 vertices have
degree less than n/(2r) + k(c), for any fixed constant , where k(c) is a constant
depending only on ¢, the number of edge-disjoint perfect matching wanted.

The natural question then arises whether or not Theorem 4 can be extended to a
similar result using neighbourhood unions of r-sets of vertices, by keeping the
edge-connectivity and neighbourhood union conditions the same and only adding
to the minimum degree condition. Also, since Theorem 7 is not sharp forr = 2,
can it be improved for general 7?
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