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Abstract
In this note we characterize the members of the Ramsey set
R(2K2,tK>) of all (2A%, tK2)-minimal graphs using factor-critical
graphs. Moreover, the sets R(2K2, tK>) are determined for t < 5.

1 Introduction

For (simple) graphs I/, G and H we write F' — (G, H) to mean that in any
2-coloring of the edges of F* with green and red there is a green subgraph
isomorphic to G or a red subgraph isomorphic to H. F is said to be a
(G, H)-minimal graph if F — (G,H) and F' 4 (G, H) for every proper
subgraph F’ of F. The most general problem in graph Ramsey theory is
that of characterizing those F satisfying F — (G, H) for a given pair of
graphs (G, H). This problem is solved if the Ramsey set R(G, H) of all
(G, H)-minimal graphs (up to isomorphism) is determined. Various results
have been obtained concerning the question whether, for given (G, H),
R(G, H) is finite or infinite, but the complete determination of R(G, H) is
an extremely difficult problem which has been solved only for some very
special pairs (G, H).

In [1] Burr, Erdés, Faudree and Schelp proved that R(G, H) is finite if G
is a matching mK, and I an arbitrary graph. In [2] Burr, Erdés, Faudree,
Rousseau and Schelp studied the special case G = 2K, and H = tK,.
They showed how the members of R(2K2,{K7) with connectivity at most
one can be constructed using the sets R(2K3,t'K,) with t' < t. Moreover,
they described a large family of members of R(2K2,tK?2) and determined
the sets for small ¢.

In this paper we will extend the results from [2] and characterize the
members of R(2K»,¢R2). This characterization essentially uses factor-
critical graphs. Moreover, a well-known method for constructing factor-
critical graphs will be used to determine the sets R(2K3,tK3) for t <
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5. (The sets R(2K3,th3) for t < 4 were already given in (2], but one
member of R(2K,,4K,) is missing there.) Additionally, we will answer
some questions raised in [2] concerning the maximum order and size of the
members of R(2K2,tR2).

All notation and terminology not specifically mentioned will follow that in

[3].
2 Factor-critical graphs

Here we will present some properties of factor-critical graphs which will be
used later in connection with R(2K>,tK>).

As usual, V(G) and E(G) denote the vertex-set and the edge-set of a graph
G. A graph G is said to be a factor-critical graph if G —v contains a perfect
matching for every v € V(G). Thus, we obtain

Property 1. |V(G)| = 261(G) + 1 for any factor-critical graph G, where
B1(G) denotes the edge independence number of G. Moreover, 83 (G —v) =
B1(G) for every v € V(G).

The following properties 2 - 6 can be found in [4], pp. 196 - 204.

Property 2. A factor-critical graph G of order at least three can be
represented as G = PO 4+ P() 4 . 4 P() where P(9 is an odd cycle and,
for j =0,...,1 =1, PUtY is cither a path of odd length with both end-
vertices but no internal vertex in G; = PO+ P4, 4 PU) or an odd cycle
having exactly one vertex in common with G;. This representation is called
an ear decomposition of G with ears P(Y) ... P! All ear decompositions
of G must have the same number of ears, namely ! = |E(G)| — |V(G)|.
Moreover, it is easy to see that any graph permitting an ear decomposition
. is factor-critical.

Property 3. A factor-critical graph is connected and bridgeless.

Property 4. A 2-connected factor-critical graph G of order at least three
has an ear decomposition G = PO 4+ P() 4 4 PO where PV, ..., PO
are paths of odd lengths. G; = P(® 4 P() 4 . 4 PU) is a 2-connected
factor-critical graph for j=0,...,1 - 1.

A factor-critical graph G is said to be minimal factor-critical if G — e is not
factor-critical for every e € E(G).



Property 5. A graph is minimal factor-critical if and only if it is connected
and each of is blocks is minimal factor-critical.

Property 6. A minimal factor-critical graph contains no subgraph Cj.
Every subgraph A3 of a minimal factor-critical graph G has to be a block
of G.

From propertics 4 and 6 we can deduce

Property 7. A 2-connected minimal factor-critical graph G of order at
least three has an ear decomposition G = P(® 4+ p(1) 4 4 P() where
P .., PW are paths of odd lengths at least three. For j =0,...,{~1,
the graph Gj = P® 4 pM 4 . 4 PY) js 2-connected and minimal factor-
critical, and ’the end-vertices of PU+!) are non-adjacent in Gj if PU+1) has
length three.

3 General results on R(2K;,tK5)

It is easy to see that R(2K2, K2) = {2K2} and (¢t + 1)K; € R(2K., tK?).
We define R/(2K 2, tK2) = R(2K2,tK2) \ {(t + 1)K2}. First we will derive
a simple but useful characterization of the members of R’(2K2,tK>).

Lemma 1. Let F be a graph and let Sy, ...,S; be the components of
F. Then F € R'(2K.,tR?) if and only if the following conditions hold for
1<i<k.

(i) S; # K.

(ii) Tizy Bu(S:) = ¢.

(iii) A1(Si = v) = A1 (S:) for every v € V(S;).

(iv) B1(S; = E(K3)) = Bi(S;) for every K3 C S;.

(v) For every e € E(S;) there exists a v € V(S;) such that 8, ((Si—e)—v) <
B1(S:) or a subgraph K3 C S; such that 8,((S; —e)— E(K3)) < £1(S:).

Proof. Suppose first that F € R/(2K2,tK;). Then the minimality of
F implies (i). Using that ({ + 1)Kz € R(2K2,tK;) and the minimality
of F we obtain that 2 1 B1(Si) = Bi(F) £ l. Equality must hold since
otherwise a coloring of t.hc edges of F only with red would imply that
F 4 (2K4,tK»). This proves (ii). Moreover, in any 2-coloring of F' where
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the green subgraph is either a K3 or a star there must be ¢ independent
red edges. This yields (iii) and (iv). The minimality of F implies that
F —e /4 (2K,,tK3) for every ¢ € E(F). This means that ' — e can be
colored with green and red such that the green edges form either a star or a
K3 and at most {— 1 independent red edges occur. This implies (v) because
of (ii) - (iv). Similarly it can be seen that F belongs to R'(2R, LK) if (i)
- (v) are fulfilled. ®

Next we will derive an additional much more restrictive property of the
components of the members of R'(2R’2, tK2).

Lemma 2. Any component S of a graph F € R/(2R2,tK>) must be a
R3-free minimal factor-critical graph with 8,(S) > 2.

Proof. Lemma 1(iii) and Gallai’s Lemma (see [4], p. 89) imply that S
has to be factor-critical.

Suppose first that S contains a subgraph K3. Then one of the following
two cases must occur.

Case I: S contains a block K3. Let V(K3) = {v1,v2,v3},andlet S;,1 <i <
3, be the component of S — E(K3) containing v;. Since S is factor-critical,
we can find a perfect matching in S — v;, and this must contain a perfect
matching of S; — v; for 1 < i < 3. Thus, the number of vertices in S; has
to be odd. But this implies that 8,(S — E(K3)) < A1(S) in contradiction
to Lemma 1(iv).

Case II: S contains a subgraph {3 but no block of S is a K3. In view of
property 6 of factor-critical graphs, S cannot be minimal factor-critical.
Thus we can find a spanning minimal factor-critical proper subgraph S’
of S. Notc that S’ has to contain a subgraph K3: Otherwise replace S
by S’. This yields a proper subgraph of F belonging to R/(2K2,tK;) by
Lemma 1, a contradiction to the minimality of I'. Choose now a minimal
factor-critical spanning subgraph S’ with minitnum number of edges and,
in addition, with minimum number of subgraphs K3 among all spanning
minimal factor-critical subgraphs with |E(S’)| cdges. Consider a subgraph
K3 of S'. As mentioned above, it has to be a block of $’. Again let
V(K3) = {v1,v2,v3},and let S}, 1 < i < 3, be the component of ' — E(K73)
containing v;. As in case I, it can be proved that thc number of vertices in
S; is odd for 1 < i < 3. This implies a perfect matching in S} — w for every
w € V(S!). Since the K3 = [v,v2,v3] is not a block in S, we can find an
edge uv € E(S)\ £(3') with u € 5] and v € S} where i # j, say u € S} and
v € S). Delete the edge vyva from S’ and add the edge uv. Let S” be the
resulting spanning subgraph of S. Then S” — w has a perfect matching for
every w € V(S"): If w € V(S}), take perfect matchings of S5 —w, S| — u
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and S} — v and add uv. If w € V(S}), take perfect matchings of S| —
S5 — v2 and S — v3 and add vavs. The case that w € V(S3) is equivalent.
Thus, S$” is factor-critical. Moreover, it has to be minimal factor-critical
since |E(S")] = |E(S')|]. But S” contains a smaller number of subgraphs
K3 than &', a contradiction to the choice of §'.

It remains that S is factor-critical and A3-free. Then Lemma 1(v) and
property 1 of factor-critical graphs imply that S is minimal factor-critical.
Moreover, 3;(S) # 0 by Lemma 1(i), and $;,(S) # 1 since K3 is the only
factor-critical graph with edge independence number 1. This completes the
proof of Lemma 2. ®

The following theorem characterizes the graphs in R'(2K3,tK2) using fac-
tor-critical graphs.

Theorem 1. Let S, be the class of Kj-free minimal factor-critical
graphs with edge independence number n. Then F € R'(?Kg, tK,) if and
only if F = U‘=,S. withk > 1,5; € S, t1,...,te > 2, Z‘— t; =t and
V(SN V(S;) = 0if i # j.

Proof. Lemma 1 and Lemma 2 imply that every F € R'(2K3,tK;) must
have the structure given in Theorem 1. Furthermore, the connectivity of
factor-critical graphs and Lemma 1 imply that every graph of this structure
belongs to R'(2K,,tK2). B

By Theorem 1, R'(2K;,tK?) is determined if S,, is known forn = 2,...,1.
The following lemma shows that the 2-connected graphs from S3,...,8,
are cssential for the construction of Sy.

Lemma 3. Let S be a graph with blocks By, ..., B; and let S;, be the
subclass of the 2-connected members of Sy, Then S belongs to 8, if and
only if it is connected and, for i = 1,...,{, B; € S;,, where m; > 2 and

Z"=l m; = n.

Proof. Using properties 1 and 5 of factor-critical graphs and taking into
account that |V(S)] = 1 = I+ i, [V(B;:)| if S is connected, the assertion
of the lemma is obtained. ®

In the proof of Theorem 3 we will describe a method to construct S;, from

-
),...,

».—1- Thus, in view of Theorem 1 and Lemma 3, we will obtain a method
to determine R'(2K,,tK,). Moreover, Lemma 3 produces a fairly large
class of members of R'(2K,,tK) if suitable odd cycles of lengths at least
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five are taken as blocks (trivially, Canm41 € S;,,)- This class has been given
already in [2]. It can be enlarged considerably by using the 2-connected
minimal factor-critical graphs given in the following lemma instead of odd
cycles.

Lemma 4. Let m > 2 and Moy = {(i1,.-, %) 1 k£ 22, 4§ =
1 (mod 2), i 21, dz,..., s =0(mod 2), 2 < i < ... < i and 7) +
...+ i =2m —1}. Let P, i, be the graph consisting of two vertices a
and b joined by k internal-vertex-disjoint paths P; 42,..., Pi,42 and Py =
{Hx,...,ik : (il) .. -)ik) € ﬂzm-l}‘ Then P C Sv.n'

Proof. It is easy to see that every G € Py, is 2-connected. Trivially, G
permits an ear decomposition and property 2 from Section 2 implies G to
be factor-critical. Moreover, G — e contains a bridge for every e € E(G).
Thus, property 3 of factor-critical graphs yields the minimality. @

Obviously, [Pn|=2-m+ 2;':,1 p(j), where p(j) denotes the number of

unordered partitions of j into natural numbers (notc that P, ;; = Com41
for every (i1,i2) € llam—-1). Because of p(j) ~ e*V2i/3/(4j+/3) Lemma 4
describes a large class of 2-connected minimal factor-critical graphs for m
large.

Next we will answer the questions concerning the number of vertices and
edges of a graph F € R(2K2,tK?2).

Lemma 5. Let t > 2, F € R'(2K,tK2) and let w(F) denote the number
of components of F. Then

IV(F)| = 2t +w(F), 1 <w(F) < [t/2], 2t +w(F) < |E(F)| < 3t — w(F).

Proof. Let Si,...,S:, k = w(F), be the components of F'. Theorem 1
and property 1 of factor-critical graphs yield that |V(5;)| = 261(S;) + 1,
Bi(S;) > 2 and Y5, Bi(S:) = t. This implies [V(F)| = Ti=, IV(Si)| =
2t +k and k < [t/2].

To prove the bounds on |E(F)| we will make use of property 2 of factor-
critical graphs. Thus, for i = 1,...,k, |E(S:)| = [V(S)| + i where
{; denotes the number of ears in an car decomposition of S;. The lower
bound on |E(F)| follows immediately. To obtain the upper bound, note
that the minimality of S; implies that every ear has to contain at least two
internal vertices. Moreover, no subgraph K3 in S; forces the odd cycle P©
to have length at least five. This gives i < (|V(S;)| — 5)/2 implying the
desired upper bound on |E(F)|. ®
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Theorem 2. Let pmax(t) be the maximum order and let gmax(t) be
the maximum size of a graph F € R(2K2,tK;). Let the sets of graphs
F € R(2K2,tK3) of order pmax(t) and size gmax(t) respectively be denoted
by }'pm_(t) and F,_ “(t) For t > 4 put F'(t) = {{Cs)} for ¢ even and
F()= {32 3CsUCy, —-CsuP, 2, 2} for t odd. l'\nrthermore, let Py (n-1)x2
denote the graph P, i, whereiy=1land i =... =i, =2. Then
204+2 if1<t<3,
Pmax(?) ={ 15¢/2] ift3> 4,

{(t + 1)Kz2) if1<t<3,
Fpault) = { {(¢t+ DRJUF'(Y) f4<t <5,
- F(t) ift > 6,

gmax(t) =3t —1fort > 1,

() = {2K2} ift =1,
T=ael™ = L {Pr-x2}  ift>2.

Proof. The case t = 1 is trivial since R(2K32, K3) = {2K2}. In the
following let ¢ > 2.

Lemma 5 yields that |V(F)] < |5t/2] for every F € R'(2K3,tK2), and
[5¢/2] vertices occur if and only ifw(F) = |¢/2]. Theorem 1 implies that in
case of t even w(F) = |t/2] is attained if and only if every component of F
belongs to S3. Using the ear decomposition we see that S2 = {Cs} yielding
that F = £C5. In case of t odd and w(F) = |t/2] one component of F must
belong to S3 and all others to S». Again using the ear decomposition we see
that S3 = {C7, Pl'z,z} yielding that F= 52—305UC7 or F= ‘—;:105UP1,2,2.
Taking into account that R(2K>,tK2) = R'(2K3,tK2) U {(t + 1)Kz} we
obtain the desired results on pmax(t) and Fp__.(2).

Using Lemma 5, we see that gmax(t) < 3t — 1 for ¢t > 2. The upper bound
is attained by the graph Py (;—1)x2 which belongs to §§ C R(2K3,tK2) by
Lemma 4. It remains to show that for ¢ > 2 no further graph of size 3t — 1
occurs in R(2K,,tR,).

Let F € R(2K3,LK,) of size 3t — 1 and ¢t > 2. Then F € R'(2K>,tK3) and
Lemma 5 yields w(F) = 1. This implies that F is a minimal factor-critical
K3-free graph. We obtain that |V(F)| = 2t+1and |E(F)|—|V(F)| =1-2.
Thus, F must have an ear-decomposition F = P(® 4 p(1) 4 4 p(t-2)
where P(®) is an odd cycle of length at least five. Moreover, the mlmmallty
of F implies that for 1 < j < t — 2 the car PU) has length at least three.
In view of |V(F)| = 2t + 1 we see that P(9) = C5 and that every ear has
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length exactly three.

To show that F = Py (;_1)x2 we apply induction on ¢. The assertion
holds for t = 2 since Cs = Pj,1x2. Now let ¢ > 3 and suppose that
Fonalt = 1) = {Pys=2)x2}. Let F = PO 4 p) 4 4 plt=2) be ap ear
decomposition of F and G = PO+ PV 4. 4 P(*=3). G has to be a factor-
critical K'3-free graph of order 2(t — 1)+ 1 and size 3(—1) ~ 1. In addition,
the minimality of F implies the minimality of G. Thus, G € F,_..(t - 1)
by Theorem 1 and G = Py (;-2)x2 by the induction hypothesis. Morcover,
F can be obtained from G by adding a path of length 3 as an ear. It can
be checked that (up to isomorphism) Pj ((—1)x2 is the only minimal factor-
critical graph obtained in this way. This completes the proof of Theorem
2. m

4 The sets R(2K,,tK;) for t <5

Here we will use the results from Section 3 to determine R(2K2,tK>)
explicitly for some small ¢.

Theorem 3. Let Fi,..., Fio be the graphs given in Figure 1 and let
Pm be defined as in Lemma 4, i.e., Py = {Cs}, P3 = {C7, P1 22}, Psa =
{Co, Pr2,4, Pr,2,2,2, P32,2}, and P5 = {C11, Pr2,6, P1,2,2,4, P1,2,2,2,2, Proaa,
P32.4,P332.2,Ps322}. Then

{2K) ift=1,
P, U {3K2} ift =2,
R(2K3,tKy) = { P3U {4K>) ift =3,
P4 U{5K2,2Cs, Fi} ift =4,

Ps U {6K2,05UC7,C5U P|'2.2,F2,. ..,Flo} ift =5.

Proof. We know already that (t+1)K; € R(2K2,tK>) and R(2K, K2) =
{2K}. It remains to determine R'(2K2,tK2) = R(2K2,tK2)\ {(t+1)K2}
for t > 2. This can be done as follows: First construct the sets S3,...,St,
then So,...,S; with Lemma 3, and then R’(2K3,tK,) with Theorem 1.

To construct S3,...,8; we can make use of property 7 of factor-critical
graphs. It implies that any 2-connected minimal factor-critical graph G is
either an odd cycle or can be obtained by taking a suitable 2-connected
minimal factor-critical graph G’ of order at least five and adding a path
P of odd length at least three such that V(P)N V(G') = {a,b}, where a
and b are the end-vertices of P. Moreover, the vertices a and b must be
non-adjacent in G’ if P has length three.
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FIGURE 1

Thus, S3 = {Cs},and if S3, ..., Sy, are constructed, then S}, withm > 3
can be obtained as follows: Take, for k = 2,...,m — 1, the members of S}
and add, as described above, a path of length 2m — 2k + 1 in all possible
ways. Then the resulting graphs are all 2-connected, factor-critical (since
they permit an ear decomposition) and K3z—free. lence, Sy, consists of
Cam+1 and those (nonisomorphic) of the obtained graphs which are, in
addition, minimal factor-critical.

This procedure yields S5, = Py, for2 < m < 4 and 8§ = PsU{Fs, ..., Fio}
(For these m, the minimality or non-minimality of the graphs constructed to
determine S, is easy to check: Those graphs yiclding a graph containing
a bridge after deletion of any cdge are minimal in view of property 3 of
factor-critical graphs. Additionally, the graph Ig is minimal. All remaining
graphs contain one of these graphs or one of the (factor-critical) graphs
Fy, Cy in case of m = 4 and Fa, F4,C)1 in case of m = 5 as a proper
spanning subgraph and arc non-minimal.) With these Sy,, the desired sets
R!(2K4,tK3) can be obtained for 2 <t < 5 using Lemma 3 and Theorem
1. m

Using the same method, R(2K2,¢K2) could be determined explicitly for
other small t. Of course it would be more interesting to solve the problem
of characterizing the graphs in R(sK2,tKa2) for 5,¢ > 3. But this seems to
be very difficult.
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