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Abstract

The nonexistence of digraphs with order equal to the Moore bound
May = 14d+...4d* for d, k > 1 haslead to the study of the problem
of the existence of ‘almost’ Moore digraphs, namely digraphs with
order close to the Moore bound. In [1], it was shown that almost
Moore digraphs of order My — 1, degree d, diameter & (d, k > 3)
contain either no cycle of length k of exactly one such cycle. In
this paper we shall derive some further necessary conditions for the
existence of almost Moore digraphs for degree and diameter greater
than 1. As a consequence, for diameter k¥ = 2 and degree d, 2 <
d < 12, we show that there are no almost Moore digraphs of order
M4z — 1 with one vertex in a 2-cycle C> except the digraphs with

every vertex in Cj.
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1 Introduction

By a digraph we mean a structure G = (V, A) where V(G) is a nonempty
set of distinct elements called vertices; and A(G) is a set of ordered pairs

(u,v) of distinct vertices u,v € V called arcs.

A digraph H is a subdigraph of G if V(H) C V(G) and A(H) C A(G).
Let V! C V(G). The subdigraph of G whose vertex set is V/ and whose
arc set is the set of all those arcs of G which have ends in V' is called the
induced subdigraph of G by V' and is denoted by G[V'].

The order of a digraph G is the number of vertices in G, i.e., |[V(G)|. An
in-neighbour of a vertex v in a digraph G is a vertex u such that (u,v) € G.
Similarly, an out-neighbour of a vertex v is a vertex w such that (v, w) €
A(G). For S C V(G) denote by N~(S) (respectively N*(S)) the set of
all in-neighbours (respectively out-neighbours) of elements of S. The in-
degree (respectively oui-degree) of a vertex v € V(G) is the number of its
in-neighbours (respectively out-neighbours) in G. If in a digraph G, the
in-degree equals the out-degree (=d) for every vertex, then G is called a

direqular digraph of degree d.

A walk W of length k in G is an alternating sequence (voa v as...axvy)
of vertices and arcs in G such that a; = (v;_1,v;) for each 7. If only the
endpoints vg, v of a walk are known we use the shorter notation walk vg—vy
to denote a walk from vy to vg. Vertices other than vy and v; are called
internal vertices. A closed walk has vy = v. If the arcs ay,as,...,a; of
a walk W are distinct, W is called a trail. If, in addition, the vertices
vo, V1, ..., v are also distinct, W is called a path. A cycle C, of length k is
a closed trail of length k£ > 0 with all vertices distinct (except the first and
the last).

The distance from vertex u to vertex v in G, denoted by §(u,v), is



defined as the length of the shortest path from vertex u to vertex v. Note
that in general é(u, v) is not necessarily equal to 8(v, u). The diameter k of

a digraph G is the maximum distance between any two vertices in G.

Let one vertex be distinguished in a digraph of maximum out-degree d
and diameter k, having n vertices. Let n;, ¢ = 0,1,..., k be the number of

vertices at distance ¢ from the distinguished vertex. Then,

n <d fori=0,1,..., k. (1)
Hence,
k
n=)Y n<l+d+d>+..+d (2)
i=0

If the equality sign holds in (2) then such a digraph is called a Moore
digraph. The right-hand side of (2) is called the Moore bound My .

Digraphs with the maximum possible number of vertices are required in
the construction of optimal networks [6},[9],(12],[17]. It is well known that
except for trivial cases (for d = 1 or k = 1) Moore digraphs do not exist
(see [16] or [6]). The trivial cases are the cycles Ci41 of length k£ + 1 and
the complete (symmetric) digraphs Ka41 on d+ 1 vertices.

Since Moore digraphs do not exist for £ # 1 and d # 1, the problem of
the existence of almost Moore digraphs, i.e., digraphs of diameter & > 2,
maximum out-degree d > 2 and the number of vertices Mg —Agx (Aay is
called the defect) becomes an interesting problem. If Ay < Mg r_1 then
such an almost Moore digraph G is always regular of out-degree d [10].
This can be easily seen since if there exists a vertex v € G with out-degree

d; < d, then the order of G must satisfy:

n<l4di+did+..+did" ' =1+di(1+d+..+d1)

=Mgr —(d—dy)(1+d+...+ dk_l) <My — Mar- (3)
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< Mgy — Qg

which is impossible.

Next, let d be the maximum in-degree in the digraph and suppose there
exists a vertex v € G with in-degree d; < d. Then, once again, the order of
G must satisfy (3). Thus, if Agr < Mgx—1 then G is diregular of degree d.
Consequently, we need consider only diregular digraphs of degree d. The
first result in this problem was due to [8] which showed that almost Moore
digraphs of diameter 2, degree d and A4 = 1 do exist; interestingly, one
such digraph is the line digraph of K44;. In particular, for degree 2 there
are exactly three non-isomorphic digraphs of order My —1 [13] (see Figure
1) while for degree 3 there is exactly one such digraph, i.e., the line digraph
of K4 [3]. The problem of finding all non-isomorphic almost Moore digraphs
of order My — 1 is rather difficult for an arbitrary degree greater than 3.
Nevertheless, a number of necessary conditions for the existence of such

digraphs was given in [1],[2],[3].

In [14], Miller and Fris proved that almost Moore digraphs of diameter
k>3 and Agi =1 do not exist for degree 2. Subsequently we proved that
for degree 3 such digraphs do not exist if k is odd or £ + 1 does not divide
2(3*F — 1) [2]. For Ay > 1, the only result known to us is that almost
Moore digraphs of degree 2, diameter k£ > 3 and A4 = 2 do not exist for
most values of k [15]. For other recent related results see also [7], [9] and
[18].

From now on we shall consider only almost Moore digraphs of degree
d > 2, diameter k > 2 and Ay = 1. Such digraphs will be called (d, k)-
digraphs. Every (d, k)-digraph G has the characteristic property that for
every vertex v € G there is a unique vertex y € G such that there are two
walks of lengths < & from v to y in G [2]. Such a vertex y is called the repeat
of z, denoted by r(z). If r(z) = y then r~!(y) = z. In the case of r(z) = z,
z is called a selfrepeat of G. For S C V(G) we define r(S) = (J,¢57(v) and
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similarly, r~!(S) = U,es 7~ !(v). The function r can be considered as a
permutation on the vertex set of G. Figure 1 illustrates the notion of repeat
for the three existing (2, 2)-digraphs [3]. Each permutation is expressed as
a set of permutation cycles. The cycle (v1vavs - - -v;) is a permutation cycle
of length tin a (d, k)-digraph if r(v,) = va,7(v2) = v3,---,7(v:) = v1. Note
that the digraph of Figure 1(b) was already considered in [10].

SR

r: (1)(2)(3)(4)(5)(6) r: (123)(456) r: (12)(3456)
(@ (b) ©

Figure 1: The permutation cycles of the three (2, 2)-digraphs

We study the existence of (d, k)-digraphs and in the case that they do
exist, we would like to know something about their structures. However,
in general to decide whether such a digraph exists or not is very difficult.
We may divide (d, k)-digraphs into two classes according to whether or not
they contain selfrepeat vertices. For example, in Figure 1 the first (2,2)-
digraph has every vertex a selfrepeat while the other two (2,2)-digraphs

are without selfrepeats.

In [1], we have shown a necessary condition for the existence of a (d, k)-
digraph for £ > 3: such digraphs contain either no selfrepeat or exactly
k selfrepeats. In this paper we derive some further necessary conditions
for the existence of (d, k)-digraphs of general degree and diameter greater
than 1. In Section 2, we show that the existence of a (d, k)—digraphs with
a selfrepeat requires the existence of one or more (d’, k)-digraphs with 1 <

d’ < d. The interesting cases are those with one or more d’ such that
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d' # 1,d. In such a case we are often able to make use of known results
and further necessary conditions for the (smaller) (d’, k)-subdigraph. To
illustrate this approach, we show that a (d, 2)-digraph contains either all

selfrepeats or none for small degrees up to 12 (Section 3).

2 Further necessary conditions

In [1] we gave a necessary condition for the existence of a (d, k)-digraph G
for k > 3, namely, that G may contain at most one k-cycle. In this section a
further necessary condition will be presented. To do this, let us begin with
several definitions and some previous results which will be used to derive

further necessary conditions.

As in [1], iterated repeats and neighbourhoods are defined in the follow-
ing way.
For S C V(G)
rP(S) =r(rP71(S))  ifp>0,
rP(S) = r~(rP+(S)) ifp < 0.
NP(8) = U,es NP(v)
where 7%(S) = S and r!(S) = #(S); N! = N* and N~! = N-. The

following theorem was proved in [1].

Theorem A Given a (d, k)-digraph G and any integers p,q:

(a) (commutability) S C V(G) : rP(N4(S)) = N9(r?(S));

(b) (automorphism) u,v € V(G) : (u,v) € A(G) <= (rP(u),7?(v)) €
A(G).

For every vertex v of a (d, k)-digraph there exists a smallest natural
number w(v) called the order of v, such that r“(*)(v) = v (that is, w(v)
is the length of the permutation cycle containing v). For instance, in the
third (2, 2)-digraph of Figure 1, the order of vertex 1 is 2 and the order of
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vertex 5 is 4, i.e., w(1) = 2 and w(5) = 4.

We say that a sequence of positive integers aj, ay, ..., ag is monotonically
divisible if it is monotonic and for any two elements a;, a; of the sequence
a; divides a; or a; divides a;. The following three results have been proved
in [1].

Lemma A (monotonic divisibility). Let (vo, vy, oy Up) be a walk of length
p<k in a(d,k)-digraph G. If vy or Yp is a selfrepeat then the sequence of

orders w(v),w(v1), ..., w(vp) is monotonically divisible.

Lemma B The permutation r(N*(v)) has the same cycle structure for

every selfrepeat v of a (d, k)-digraph.

Lemma C For any selfrepeat v of a (d, k)-digraph G, the permutation

r(N*(v)) has the same cycle structure as the permutation r(N~(v)).

Lemma 1 Let G be a (d, k)-digraph with a selfrepeat, d, k > 2. Let o be
an order of some vertez in G. Let Vo = { z € V(G) | 7%(z) =z }. Then

each vertez of V, has the same number of out-neigbours whick are in V,.

Proof For d = 2, the only (2, k)-digraph with a selfrepeat is the one with
k =2, i.e., the line digraph of K3. Such a digraph has selfrepeat vertices
only and so @ = 1 and V; = V(G). From now on we assume that d >3 It
is obvious that all selfrepeat vertices of G are in V.

If @ = 1, by [1, Theorem 3] the induced subdigraph G[V1] is either a k-cycle
or a (dy, k)-digraph with 2 < d; < d. Then each vertex of V; has the same
number of out-neigbours which are in V;.

Assume a # 1. By Lemma B, each selfrepeat of G has the same number
of out-neighbours which are in V,. Let v € V,, and r(v) # v. Let y and
z be two selfrepeats which lie in the same cycle of length k£ in G. Then
we can not have both v € N~(y) and v € N~(z2), since otherwise v has

more than one repeat, namely y and z. We can assume v & N=(z). Since
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the permutation cycle structures of #(N*+(z)) and r(N~(z)) are the same
(Lemma C), then to finish the proof we shall show that both N*(v) and

N~(z) contain the same number of vertices of V.

Let N=(2) = {z,z1,...,24-1}. Since v € N7(z) then r(v) ¢ N~(2).
Thus to reach all vertices of N~(z) from v there exists a system of d in-
ternally disjoint walks from v to N~(z) (one walk (v,s,...,z) of length
at most k — 1 and (d — 1) walks of form (v, s;,...,z;) of length k). By
Lemma A, z together with s must be in V,. Now, consider one of the
walks (v,s;,...,%i,z) of length k¥ + 1. If z; ¢ V, then we claim that
s;i ¢ Vo. Assume s; € V,. This means r%(s;) = s;. Thus, we have
two walks (s;, ..., i, z) and (s; = r%(s;),...,r%(z:),r%(z) = z) of lengths
less than or equal k. Therefore, r(s;) = z which contradicts z being
a selfrepeat. If z; € V, then we shall show that s; € V,. Assume
8; € V. This means r*(s;) # s;. Thus, we have two walks (v, 54, ..., z;) and
(v = r*(v), r%(si), ...r*(z;) = ;) of lengths less than or equals k. There-
fore, r(v) = z; € N~(z) which contradicts the fact that v ¢ N=(z) and z is
a selfrepeat. Therefore both N*(v) and N~(z) contain the same number

of vertices of V,. (w}

Lemma 2 Let G be a (d,k)-digraph with selfrepeats, k > 2. Let a be
a selfrepeat and v be a vertez of G such that 6(a,v) < k—1. Ifz €
N=(a) and (v,v1,...,z) is a walk of length < k from v to z, then w(v1) =
lem(w(v), w(x)).

Proof Since 6(a,v) < k—1 we have a walk (a, ...,v,v1) of length < k. By
Lemma A, w(v)|w(v:1). On the other hand, by using the same argument
on walk (vy,...,z,a) we get w(z)|w(vy). Let p = lem(w(v),w(z)). Assume
that w(v;) # p. Then r(v) = z as there are two walks (v,v1,...,z) and
(v = rP(v),rP(v1),...,rP(z) = z) of lengths < k. As a is a selfrepeat and
z € N~(a), then by Theorem A there must be an arc (v, a) in G. Therefore,
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(a,...,v,a) form a cycle of length < k. This implies that v is a selfrepeat
which is a contradiction with 7(v) = z. Therefore, w(v;) = lem(w(v), w(z)).
O

Corollary 1 Let G be a (d,k)-digraph with selfrepeats, k > 2. Let a be
a selfrepeat and v be a vertez of G such that 8(a,v) < k — 1. Then the
multiset of orders of N*(v) is equal to { lem(w(v),w(z)) | Vz € N~ (a) }.

Theorem 1 Let G be a (d,k)-digraph with selfrepeats, k > 2. Let 2 be a
selfrepeat of G. Let a be the order of some verter in G. Then the induced
subdigraph G[V,] is either a cycle of length k or a (d', k)-digraph, where
Va={2z€V(G)|r*(z) =z} and d' = | {v € N*(2) | r*(v) = v} |.

Proof By [1, Theorem 3] we can assume that & > 2. Consider the induced
subdigraph G[V,]. G[V4] has the same out-degree d’ for every vertex guar-
anteed by Lemma 1. Let z be a vertex of G[V,]. Consider all the vertices

of G[V,] at distance < k from z as depicted in Figure 2.

k

P B A A
[+ e 0 o ©0 @ O ]

Figure 2: All the vertices at distance < k from vertex z.

We shall show that G[V,] has order Mg x — 1, diameter k£ and the same

in-degree d’ for every vertex. Take z = z which is a selfrepeat of G[V,].
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Then, by Lemma A, every vertex of G[V,] can be reached from z by a
path of length < k involving vertices of G[V,] only. Since z is a selfrepeat
then one of the vertices in the bottom level of Figure 2 must be z and the
remaining vertices must be all distinct. Therefore the order of G[V,] is
Mg g — 1. It is obvious that the diameter of G[V,] is at least k. From the
above reasoning we note that all the vertices of G[V,] are reachable from any
selfrepeat by using paths of lengths < k in G[Va]. Now, consider z which
is not a selfrepeat of G[V,). Since the order of G[V,] is My x — 1 then
among the vertices of distance < k from z there are exactly two vertices
which are the same (otherwise z has more than one repeat). This means
that all vertices of G[V,] are reachable within k steps from z. Therefore the
diameter of G[V,] is exactly k. Moreover, this implies that the in-degree of

every vertex of G[V,] must be also d’. o

In this section, we have shown a necessary condition for the existence of
(d, k)-digraphs with selfrepeats, £ > 2. This condition is quite significant
and useful for constructions since it gives us an insight to the structures of

such digraphs (if they exist).

To conclude this section, we list some open problems:

Problem 1 Characterize (d,2)-digraphs with all selfrepeat vertices for a

given degree d.

We note that for k& > 3 there are no (d, k)-digraphs with every vertex a
selfrepeat [4], [2].

Problem 2 Give necessary (and sufficient) conditions for the existence of
(d, k)-digraphs without selfrepeats, k > 2.
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3 Diameter 2

In this section we shall apply the results of Section 2 to (d, 2)-digraphs for
d > 2, i.e., digraphs of degree d, diameter 2 and d+ d? vertices. The line di-
graph of the complete digraph K4, is one example of (d, 2)-digraphs. (It is

worthwhile to notice that each such line digraph consists of all selfrepeats.)

There are two significant results from [3] regarding the structure of the
permutation cycles of (d, 2)-digraphs. Since those results will be used fre-
quently in this section, we state them in the following theorems. Let my
denote the number of permutation cycles of length I ({ = 1,2, .,n)in a
(d, 2)-digraph.

Theorem B For the numbers my (I > 2) of the permutation cycles of even
length of a (d,2)-digraph, Z my is even.

l even
Theorem C For the numbers m; of the permutation cycles of length I,
l'=1,2,..,n, of a (d,2)-digraph there are nonnegative inlegers u and vy,
fulfilling the following equalities for ¢ =1, ..., [';—IJ

(-1)/2

d—u+ Z Z [=2(mu — vig) + 2(2u1g — my)re{z(l, q)}]

35

H-1
+ > Z [=2(m1 — vig) + 2(2v1g — mu)re{z(l, q)}] — > z m =0 (4)
l even ¢g=1 Ieuen
(i-1)/2
d+u+ Z —my + Z (—=2v1g + 2(my ~ 2vy9)re{z(l,¢)})
llidsd g=1
LN
+ Z Z [=2v1q + 2(m; — 2v)re{z(l, q)}]— 5 Z my=m; (5)
l even g=1 Ieuen
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where i, = cos 2 and re{z(l, q)} = —%+21W [\/\/25 —24c, +4c, -3 ] .

Theorem 2 Ford > 2 there is no (d, 2)-digraph with selfrepeats containing

a vertez of order either 2 or 3.

Proof Assume such a (d,2)-digraph G exists. Let & = 2 or 3. By Theorem
1, the induced subdigraph G[V,] is a (d’, 2)-digraph with d' = do + d; and
the number of vertices n = (d')? + d’, where d, and d; are the number of
vertices of N*(z) of orders o and 1 respectively for any selfrepeat z. Since
the subdigraph G[V1] induced by the set of all selfrepeats has d?+d; vertices,
then the number of vertices of G[Va] of order a is (d')? + d' — (d} + di)
=(d - dl)(d’.+ dy + 1). Therefore, the number of permutation cycles of
length a in G[Va), ma = L(d' —di)(d' +d1 +1).

Let a = 2. Since G[V;] exists, then by Theorem C there exists nonneg-

ative integer u such that

d’—u—%mz=0

o u=d - (@ - )@ +di+1)

1
— u= d - Zdz(d2+2dl + 1)

with ds > 2 and d; even. However, this is not possible since if d3 = 2 then
u is always a fraction and if d > 4 then u is always negative. Therefore G

can not contain a vertex of order 2.
Let o = 3. By a similar argument, we have
d' —u—2(ma —vs;1) + 2(2v3;1 — m3) re{z(3,1)} = 0.

But, re{z(3,1)} is irrational, and so we must have 2vs,, — ms = 0. This
implies

d’—u—m3=0
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— u=d- -sl-(di— d)(d +dy +1)

- u=d’—%d3(d'+d1+1)

with d3 > 3. Then u is always negative which is a contradiction. Therefore

G can not contain a vertex of order 3. 0

Lemma 3 There is no (d, 2)-digraph with a selfrepeat v such that r(N*(v))
contains odd number of permutation cycles of length o, where « is the

smallest length of the cycles with order > 1, and o even.

Proof Suppose such a digraph G exists. Consider the induced subdigraph
G|Va). In this subdigraph, the vertices are all of orders either 1 or . From
the proof of Theorem 2 we have the number of permutation cycles of length
a, mg = Lda(de + 2d; + 1). Since there is odd number of permutation
cycles of length o in N*(v) then -};da is always odd. Therefore, m, is odd
too, which is not possible by Theorem B. (]

Lemma 4 Let G be a (d,2)-digraph (d > 2) which has only selfrepeat ver-
lices. If ¢ and y have the same d — 1 out- (resp. in-) neighbours then
N*(z) = N*(y) (resp. N=(z) = N~ (y)).

Proof Suppose N*(z) = SU{n1} and N*(y) = SU {w,}, S| = d - 1.
For a contradiction assume v; # w; (as depicted in Figure 3). Clearly,
vy, wy € N*(S). To reach v; and w; from y and z respectively we should
have (v1,w;) and (w;,v,) € G. Now it is impossible to reach other vertices

of N*(w,;) from 2. The proof for in-neighbours is similar. m]
Lemma 5 Let G be a (d,2)-digraph (d > 3) which has only selfrepeat ver-

tices. If z and y have the same d — 2 out- (resp. in-) neighbours then
N*(z) = N*(y) (resp. N=(z) = N~ (y)).
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Figure 3: The out-neighbours of = and y differ in exactly one vertex.

Proof Suppose N*(z) = SU {vi,v2} and N*(y) = SU {w, w2}, |S]| =
d — 2. For a contradiction assume v; # wj, i,j € {1,2} (as depicted in
Figure 4). It is clear that vy, vs, w; and w, are not in N*(S). Without
loss of generality we can assume (vy,w;) € G to have w; reachable from
z. To have ws reachable from = we will show that (v2,w2) must be in
G. Assume this is not the case. Then (v;,w2) € G. Now, we will have a
problem trying to reach all vertices of N*(w;) and N+ (w2) from z. There
are exactly 2(d — 1) vertices of N*+(w;) U N*(wz) which differ from v, and
vy. We cannot reach them all through vs, so there is at least one of them,
say z, which is reachable from z through v;. This leads to 2 being another
repeat of vy. Therefore (v2, w2) must be in G in order to reach wy from
z (as in Figure 4). There is no arc from v; to N *(w,), since otherwise
there will be a second repeat of v;. Hence all the remaining out-neighbours
of v; must be from N*(wz). This implies that v; and ws have only one
different out-neighbour which is a contradiction by Lemma 4. The proof of

the lemma for in-neighbourhouds is similar. o

Lemma 6 Let G be a (d,2)-digraph (d > 4) which has only selfrepeat ver-
tices. If = and y have the same d — 3 out- (resp. in-) neighbours then
N*(z) = N*(y) (resp. N™(z) = N™(9))-

Suppose N*(z) = SU{v1,v2,v3} and N*(y) = SU{w1, w2, w3}, |S| = d-3.

For a contradiction assume v; # wj, %,j € {1,2,3}. If (vi, wj) € G for some

fixed i and j € {1,2, 3} then it is not possible to have (vi, w) € G for k #3.
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Figure 4: The out-neighbours of z and y differ in exactly two vertices.

This can be proved as follows. Since d > 4, let p € N*(v;), and p # w;,
©=1,2,3. As (vi,w;) and (v;,w;) are in G then p ¢ N*t(w;) U N+ (wy).
This means that p € N+(w;), where I # j, k. This implies that G contains
two vertices v; and w; with exactly d — 2 common out-neighbours, which
is a contradiction by Lemma 5. Therefore, without loss of generality we

assume: (v1,w;), (va, ws) and (v, w3) € G. Now, we shall show that arcs

" W, w3 Viagi Vb V36
Figure 5: The out-neighbours of z and y differ in exactly three vertices.

(wi,vi), i = 1,2,3 are in G too. Since vi, ¢ = 1,2,3 must be reachable
by y and each v; ¢ N+(S), it suffices to show that arc (wi,vj) € G for
i # j. Suppose (w;,v;) € G fori # j. Let p € N*t(v;), p # wj. It is
obvious that p ¢ N *+(w;). Moreover, p € N*(w;) since otherwise p will
be a second repeat of w;. Therefore, p € Nt(wg), k # 4,j. This holds

for each p € N*(v;), p # w;. Hence we have two vertices v; and wg with
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exactly d — 1 common out-neighbours, which is not possible by Lemma 4
(see Figure 5). Denote the remaining (d — 1) out-neighbours of wy, wp and
ws by a;, b;, and ¢; (i = 1,2,...d— 1) respectively. By Lemmas 4 and 5 and
bearing in mind that all vertices in G are selfrepeats, we can show that the

remaining (d — 1) out-neighbours of vy, v2 and vs are as follows.

N+(’01)\{’U]1} = {b], cany bm, Cm+1ly ey Cd_l}
Nt (w)\{ws2} = {c1, -, cm) @mp1, - d-1}
N*(va)\{ws} = {a1, ..., 8m, bmt1, ---r ba-1}

where 2<m <d-3.

Now let us yiew the digraph G from the two vertices vy and wq. To reach
a; from wy we should go through by for some k, ke {m+1,..,d—1}. This

implies that a;(# va) is a second repeat of vz, which is a contradiction.
]

Next we shall apply Lemmas 4, 5 and 6 to (d,2)-digraphs with only
selfrepeat vertices for d = 2,3 and 4 respectively. In these digraphs, if
N*(z) "\ N*(y) # 0 for some  and y in G then N¥(z) = N*(y). This is
exactly the characterization of a line digraph [11]. Therefore, ford = 2,3
and 4 if G is a (d, 2)-digraph with only selfrepeat vertices then G must be
the line digraph of K441. (Note that for d = 2 the proof is straighforward;
for the case d = 3 this has been proved previously in [3], but it is quite a

long proof.)

Lemma 7 If G is a (5,2)-digraph with only selfrepeat vertices then G is
the line digreph of Ks.

Proof By Lemmas 4, 5 and 6, it suffices to show that there are no two

vertices z and y in G such that |[N*(z) N N*(y)| = 1. For a contradiction

assume we have such vertices  and y. Denote all different out-neighbours
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of z and y by v; and w; (i = 1,2, 3, 4) respectively. By Lemma 6, we have
arcs (v;,w;) € G for ¢ = 1,2, 3,4. Clearly, every out-neighbour (other than
w;) of v; must be not in N*(w;). Therefore, if a € N*(v;) and a # w,
then a € N*({wz,ws, ws}). Then there exists j # 1 such that there are
two vertices of N*(w;) which are both out-neighbours of v;. This is a

contradiction by Lemma 6. 0

If we apply Theorem 2, Lemma 3 and consider the above results then

we get

Theorem 3 Ford = 2,3,4 and 5 there are no (d,2)-digraphs with a self-
repeat other than the line digraphs of Kay1.

Let us consider a (d,2)-digraph G with selfrepeats but not only self-
repeats, 6 < d < 12. Using Theorems 1 and 2, and Lemma 3, the only
possible permutation cycle structures of N*(v) for a fixed selfrepeat v of
G are listed in Table 1.

By checking the condition (3) of Theorem C using a computer, we found

that none of these structures are possible. Thus we have

Theorem 4 Ford=2,3,...,12, if a (d, 2)-digraph G coniains a selfrepeat

then all the vertices of G are selfrepeats.

In this section, we have seen the characterization of (d, 2)-digraphs with
selfrepeats for small degrees, namely that such digraphs contain only selfre-
peat vertices. One of the digraphs with this characterization (for any d) is
the line digraph of K44,. However, we do not know whether such digraphs
are the only ones fulfilling this condition. For degrees 2,3,4 and 5 we have

shown that the line digraph of K441 is the only such (d, 2)-digraph.

In conclusion, let us give some open problems:

59



Degree | Permutation cycle

structures

(12345)6)

(12345)6)7)

(123 45)(6)(7)(8)
(1234567)(8)

9 (1234)(5678)9)

(1234 5)(6)(7)(8)(9)
(1234567)(8)(9)

10 (1234)(5678)(9)(10)

(123 45)(6)(7)(8)(9)(10)
(123456 7)(8)(9)(10)
(123456789)(10)

11 (123 4)5678)(9)(10)(11)
(12345)678910)(11)
(123 45)(6)(7)(8)(9)(10)(11)
(123456 7)(8)(9)(10)(11)
(123456789)(10)(11)

12 (123 4)567 8)(9)(10)(11)(12)
(12345)(678910)(11)(12)
(1234 5)(6)(7)(8)(9)(10)(11)(12)
(123456 7)(8)(9)(10)(11)(12)
(123456789)(10)(11)(12)
(1234567891011)(12)

Table 1: The possible permutation cycle structures of N*(v)



Problem 3 Is it true that a (d,2)-digraph G with every verter a selfrepeat
(1., every vertez lies on a cycle Cy) implies G is the line digraph of Ky, ?

We know that in the line digraph of Kg4 for any d > 2 every vertex is a
selfrepeat. On the other hand, for k > 3 there are no (d, k)-digraphs with

every vertex on a Cy [2]). Alternatively,

Problem 4 Find (d, 2)-digraphs with every vertez a selfrepeat other than
the line digraph of Kgyi.

Problem 5 Ford > 13, are there any (d, 2)-digraphs with selfrepeats other

than those with every verter a selfrepeat?

In this section, we have shown that the answer is ‘No’ for degree up to 12.

Finally,

Problem 6 Ford > 4 are there any (d,2)-digraphs without selfrepeats?
We note that there are two non-isomorphic (2, 2)-digraphs without selfre-
peats and no (3, 2)-digraph without selfrepeats [3)].

Acknowledgement. We wish to thank the referee for his/her thoughtful

suggestions which improved the readability of the paper.
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