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Abstract

We consider reconstruction problems involving square-celled an-
imals and other, similar, problems. Our main results, Corollary 3.2
and Theorem 3.3, give positive answers to the problems raised at the
end of [4] by Harary and Manvel.

1 Introduction

A square-celled animal is a finite set of rookwise-connected squares (called
cells) which form a simply connected region in the plane. Here we mean
connected in the usual sense, for example the animal in figure 1 is rookwise
connected but does not form a simply connected region in the plane. The
deletion of a single cell from an animal leaves a collection of cells which are
agreed to be called a sub-animal, even though the collection itself may not
form an animal but may consist of as many as four separate animals. Two
animals will be considered isomorphic if one can be superimposed on the
other by a suitable translation and rotation but reflections are not allowed.
To keep our notation standard we have substituted the word isomorphic
for what is termed same in [4]. An animal which does not form a simply
connected region in the plane is referred to as a holey animal.

The multiset of all sub-animals, given up to isomorphism, of an animal
is called its deck. An animal is reconstructible if there is no non-isomorphic
animal sharing exactly the same deck. The main result of [4] was the
following theorem.
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Figure 1: The smallest holey square-celled animal has 7 cells.

Theorem 1.1 (Harary and Manvel [4]) Every square-celled animal A
is reconstructible from its multiset of cell-deleted sub-animals.

The paper of Harary and Manvel concluded with the following open
problem for which they expected an affirmative answer to the first part.

Problem 1.2 (Harary and Manvel [4]) Are animals which are not sim-
ply connected, (i.e. holey), reconstructible? Further, determine the mini-
mum number of cell-deleted animals which enable the reconstruction of A.

2 Main tools

Throughout G denotes a permutation group on a finite or infinite set Q.
Our notation for permutation groups is that of Wielandt [10]. Two Q-
subsets A; and A, are said to be G-isomorphic, Ay =g Aq, if 3g € G such
that A9 = As. A G-hypomorphism between two {-subsets Ay and Aj is a
bijection h : A; — Ay such that for every a € Ay we have

Ar\{a} me A2\ {R()},

see [3] and also (1], [2] and [9] for equivalent definitions. Two Q-subsets
A, and A, are said to be G-hypomorphic, Ay ~g Az, if there exists a
G-hypomorphism between them. Thus, two Q-subsets A and A; are G-
hypomorphic if and only if the multiset of G-isomorphism classes of point-
deleted subsets of A; and Ay are the same.

An Q-subset A is G-reconstructible if every set G-hypomorphic to
it is G-isomorphic to it, i.e. Ay ~g Ay = A =g Da.

When the group G in question is clear we omit the prefix G and refer
simply to the concepts isomorphic, hypomorphic, hypomorphism and recon-
structible.

More generally we consider k-deck reconstruction. Let A be an £2-subset
of cardinality m and k an integer satisfying 1 < k < m. The k-deck of Ais
the multiset of all A-subsets of cardinality m — k given up to isomorphism.
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Then A is reconstructible from its k-deck if any other Q-subset with the
same k-deck is isomorphic to A. The following theorem which generalizes
a result of Nash-Williams from graph theory can be found in [1].

Theorem 2.1 (Alon et al. [1]) Let G be a permutation group on a pos-
sibly infinite set Q. Let A be an Q-subset of cardinality m which is not
reconstructible from its k-deck. Suppose, further, that there is a A-subset
S of cardinality |S} = t with finite stabilizer |Gs| < co where m — k > t.
Then there is a set T of cardinality |T| > m —k + 1 satisfying S CT C A,
and there is an € € {0,1} such that for every set K satisfying SCK CT
and |K|=¢ (mod 2), thereisag€ G withTNAI = K.

For k =1 the following theorem is the analogue of a theorem of Lovész
for graphs, (for details see Corollary 7.2 in 2] by Babai).

Theorem 2.2 Let G be a permutation group on a possibly infinite set Q.
Let A be a finite Q-subset which is not k-reconstructible. Then for every
I' C A with |T'| < |A| — k it follows that

l{g € G:T9 C A} > 2lAl-ITI-k

Proof: Set |A| = m. Clearly we can assume that |Gr| < oo otherwise the
result is clear. By Theorem 2.1 there exists T satisfying |[T| > m —k + 1
and I' C T C A. Further, there exists € € {0,1} such that for every K
satisfying ' C K C T and |K|=¢ (mod 2) there is a g € G with

TNA?Y =K.
Clearly correspondir_lg to each such K the g € G in the above is distinct.

Further, T9"' C K9~ C A. Hence,
{g€G:T9CA}>{K:TCKCT;|K|=¢ (mod2)}|

Since || < m —k and |T'| > m — k + 1 it follows that the number on the

right is at least 1/2 . 2m—k+1-I| = gm-IT|-k a5 claimed. O

3 Results and theorems

In this section we shall look at a more general reconstruction problem than
the one considered in the introduction. Let G be the following group of
permutations of the infinite square grid in the plane: G translates the grid
arbitrarily and also rotates it through multiples of 90 degrees around the
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centre of any square. For brevity, we refer to configurations of m squares in
the plane as m-figs. Deleting a square from an m-fig results in an (m — 1)-
fig also referred to as a sub-fig. It is a simple matter to check that the
concept of reconstruction in the permutation group sense introduced in
section 2 agrees with that of the first section for animals. That is to say,
two animals A and B are non-reconstructible as animals if and only if they
are non-reconstructible under G when considered as m-figs.

We need the following definition. Let A be an m-fig. We define the
dimension of A, denoted dim(A), to be the pair (a, 8) with o > 8, where
the smallest rectangle enclosing A in the plane is of size a X # or 8 X a.
Clearly the dimension is a G-orbit invariant, i.e. isomorphic configurations
have the same dimension.

Theorem 3.1 Let m and k be given integers. If m —k > 7 then all m-figs
are reconstructible from their k-decks.

Proof: Assume for a contradiction that m—k > 7 and A is an m-fig which
is not k-reconstructible. Let A have dimension (o, 8), then A sits inside
some o X 3 or B X « rectangle. Let a,b,c,d be any points of A which lie
on the 4 outside edges, (not necessarily distinct, e.g. if A has “corners”).
Then put T' := {a,b,c,d}, so |T'| < 4. We now invoke Theorem 2.2 which
states that

[{g e G:T?9 C A} >2m-ITI=k,

Now clearly, |{g € G : T9 C A}| < 4. Also m —|I'| — k > 3, a contradiction.
The result follows. ]

Corollary 3.2 Let A be any m-fig. Then A is reconstructible from its
multiset of T-figs. Thus an m-fig is reconstructible if m > 8. In particular,
all holey animals are reconstructible.

Proof: The first two parts are clear. It follows that any holey animal of
size m is reconstructible if m > 8. There is only one holey animal with 7
cells and none with fewer cells. (]

Remarks: We note that Theorem 1.1 can be deduced from Corollary 3.2:
1t follows immediately from Corollary 3.2 that any animal with more than
7 cells is reconstructible. The remaining cases are easily checked by hand.

The above Corollary establishes an affirmative answer to the first part
of Problem 1.2 as conjectured in [4]. For consideration of the second part
of Problem 1.2 we need more specific arguments.



If A and B are m-figs define (A, B) to be the cardinality of the inter-
section of the decks of A and B. (A similar definition was given for graphs
in [6]). That is, the number of common sub-figs (up to isomorphism) of A
and B. Then the second part of Problem 1.2 is to establish r(A, B) for any

two m-figs A and B with m arbitrary. We have the following bound for
(A, B).

Theorem 3.3 Letm be any natural number. If A and B are non-isomorphic
m-figs then

r(A, B) < 8.

Proof: Let Y be an arbitrary m-fig. It is easy to note that at most 4
sub-figs have dimension different to that of Y and all others have the same
dimension as Y. Thus, if dim(A) # dim(B) then (4, B) < 4. Henceforth
we assume that dim(A) = dim(B).

Define X4 = [{A\{a} : a € I}] to be a maximal (w.r.t. size) multiset of
sub-figs of A which B shares up to isomorphism. (Note, I C A is just an
index set and is not necessarily unique). So for example, |Xa| =r(A, B).
Then we note the following: Let a and a’ be distinct elements of I. If for
some b,b’ € B and g,h € G we have

A\{a} = (B\{b})*

and

A\{a'} = (B\{t'})"

then h # g. Since otherwise, assuming g = h, we have

B = (B\{b})9 Ub® = A\{a}Ub?®
and

B? = (B\{t'})9 ub? = A\{a'}Ub".

This implies that the two sets {a’,69} and {a,b"?} are equal. Then a = b?
since we are assuming that a’ # a. But this implies that BY = A4, a
contradiction. So corresponding to each element of X4 we get a distinct
element of the group G.

Then we note, in the same way as at the beginning of the proof, {C e
X4 : dim(C) # dim(A)}| < 4. Hence we now assume that dim(C) =
dim(A), for some C € X 4. It follows that for some g € G both A and B¢
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sit inside the same rectangle of size a x 8 or 8 x a for some integers a and
8.

If @ # B then there are only two distinct elements of G fixing this
rectangle, namely the identity and rotation by 180 degrees (if both a and
B are odd) or the identity and rotation by 180 degrees followed by a unique
translation (otherwise). Thus it follows that there are at most two C € X4
with dim(C) = dim(A). Hence we have |X4| < 6 when o # ( and the
result follows in this case.

We now consider the case when o = 8. Assume that C € X4 has the
same dimension as A. The elements of G taking distinct elements of the
deck of B9 to such C of the same dimension as A must be either rotations
or rotations plus unique translations. In particular, there are at most four
such group elements. Thus, |{C € X4 : dim(C) = dim(A)}| < 4 and so
|X 4| < 8. This completes the proof. 0

Remarks: Let A be an m-fig. Theorem 3.3 says that given any 9 or
more sub-figs of A we can uniquely reconstruct A. With more elaborate
arguments it seems possible to reduce the bound of Theorem 3.3 to 6.
Experimental evidence would suggest that r(A, B) could be as small as 2.
However, the precise value is still open. Similarly, it is not clear if the
bound of Theorem 3.1 could be improved. As pointed out to me by Frank
Harary, Theorem 3.3 (proved from first principles) essentially gives a new
proof of Corollary 3.2 (derived from Theorem 3.1, proved with some serious
machinery).

It should also be noted that a continuous version of the problems just
considered was considered in both [1] and [7]. Specifically they examined
the following problem.

Problem 3.4 ([1] and [7]) Is e finite set A of points in R™ or on the
unit sphere S™, given up to isometry, reconstructible from all its subsets of
cardinality |A| — k, the k-deck of A 7

For R™ and k = 1 the question is settled positively but for other values
of k the question is less clear, for more details see [1). Unfortunately it
seems that the methods used here are not applicable to this continuous
case.

Closing remarks: There are many obvious variants on the reconstruction
of square-celled animals. Instead of using squares one may consider equi-
lateral triangles or hexagons, (see e.g. [5]). It is clear than the methods
used here are applicable to these problems also. For instance we can show
that any triangular celled animal is reconstructible.
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