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Abstract

Cographs—complement-reducible graphs—can be viewed as intersec-
tion graphs (of k-dimensional boxes), as intersections of graphs (of Py, C;-
free graphs), and as common tieset graphs of two-terminal graphs. This ap-
proach connects cographs with other topics such as chordal, interval, and
series-parallel graphs, and it provides a natural dimension for cographs.

The frequently-studied family of cographs was introduced by Corneil, Ler-
chs and Stewart-Burlingham [2] as the family of complement-reducible graphs:
graphs that can be reduced to edgeless graphs by repeatedly taking complements
within components. The following are among the many characterizations of a
graph G being a cograph in [1, 2, 3, 8]:

¢ G is Py-free (meaning that no induced subgraph of G is isomorphic to Pj,

the 4-vertex path).

¢ Inevery induced sugraph of G, every maximal complete subgraph and every

maximal independent set of G have exactly one vertex in common.

¢ Every nontrivial (meaning # K, ) induced subgraph of G contains vertices

u, w that have exactly the same neighbors (except possibly for u and w
themselves).

o For every nontrivial induced subgraph G’ of G, either G’ or its complement

G is not connected.

¢ Every connected induced subgraph of G has diameter at most two.

¢ G can be generated from trivial graphs by a sequence of disjoint-unions-

and-joins.

The graph G shown in Figure 1 is a cograph: G| and G, are the two compo-
nents of G; G| = K; UK, and G} = K, U Ps; and so on.

From the point of view of the present paper, Py, Cys-free graphs (meaning
graphs with no induced subgraph isomorphic to Py or Cy) are the most primitive
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Figure 1: A cograph G and the components G| and G of its complement.
1 2

cographs. Such graphs, introduced by Wolk in 1961 {15, 16], have a multitude
of other names—including ‘trivially perfect, ‘quasi-threshold,’ ‘nested interval,’
‘domination reducible, and ‘hereditary upper bound’ graphs (see [11])—each
with a corresponding characterization. Py, Cy-free graphs are easily seen to be
chordal graphs, meaning that they are C-free for all k > 4; indeed, Py, Cy-free
graphs are precisely the chordal cographs.

A graph G is the intersection of graphs G4, . . ., Gy if each V(G;) = V(G)
and E(G) is the intersection of E(G1), . . .. E(Gy)- In[13], a graph G is defined to
be k-chordal if it is the intersection of k chordal graphs; thus chordal graphs are
precisely the 1-chordal graphs. Let Ky denote the d-dimensional generalized
octahedron, meaning the complete d-partite graph K . 2 withd > 2.

Theorem 1 The following are equivalent for any cograph G:
(1) G is the intersection of at most k Py, Cys-free graphs.
(2) G is k-chordal.
(3) G is K(k41)[2)free.

Proof. Implications (1) = (2) and (2) = (3) hold for all graphs: the first since
P4, C4-free graphs are chordal, and the second since [13] shows that K(x41)[2] is
not k-chordal (it is (k + 1)-chordal).
To show that (3) implies (1), suppose G is a K(x41)p2)-free cograph. Let
", G4, ... be the nontrivial components of G. For each G, let Giy, G, - - -
be the nontrivial components of the complements of the components of Gj, not-
ing that each GY; will be an induced subgraph of G}. Similarly, let Gij1,Gijas- -+
be the nontrivial components of the complements of the components of G';, each
an induced subgraph of Gi;, and so on. Let G’ be the collection of all these sub-
graphs G}, Glj, .., and let G{y, .. -, G{s) be the minimal members of G’. Then
£ < k since taking one edge from each of the G{;,’s would correspond to a Ky[z]
back in G. For each i < £, define G; to be the union of G with the edgeset of all
members of G’ that are incomparable to G'(,.). Clearly G = G1N---NG and each
G; is Py-free. If any G; were to contain an induced cycle a, b, ¢, d, a, then edges
ac and bd would be in incomparable G/ ,’s, and so at least one of them would be
in G;, a contradiction. Thus each G; is Py, Cy-free. a
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There are non-cographs that satisfy (2) but not (1): e.g., P4 fork = 1 and Cs
for k = 2. (For the latter, if G is the cycle a, b, ¢, d, ¢, a, then G is 2-chordal since
itis the intersection of the chordal graphs G with E(G,) = E(G)U{ac, ad} and
G, with E(G,) = E(G) U {bd, be}; but inserting edges into G to make Py, Cy-
free graphs graphs G, G2 would require three new edges for each, and so one of
the five edges of G will have to be used in both G; and G2, making G1NG2 # G.)
Similarly, there are non-cographs that satisfy (3) but not (2): e.g., Cs fork = 1
and Figure 1 of [13] for k = 2.

Since every graph is Ky 11)(2)-free for some k, Theorem 1 provides a concept
of ‘dimension’ for cographs. As a corollary, every cograph is the intersection of
P4, Cy-free graphs. The converse fails since P4 can easily be formed from the
intersection of two Py, C4-free graphs.

A nested interval representation is a family of intervals of the real line such
that two intervals in the family have a nonempty intersection only when one of the
two is contained in the other. Skrien [14] characterized P;, Cy-free graphs as the
intersection graphs of nested interval representations. A k-dimensional box is the
cartesian product of intervals [a;, b;] for 1 < ¢ < k.

Corollary 2 For any cograph G, conditions (1)~(3) above are equivalent to the
Jollowing:

(4) G is the intersection graph of k-dimensional boxes in R* where the pro-
Jection of the boxes onto each of the k axes is a nested interval representation.

Proof. The equivalence (1) < (4) holds for all graphs by the nested interval char-
acterization of P4, Cy4-free graphs of [14]. a

Figure 2 shows a 2-dimensional box representation for the cograph G from _
Figure 1, along with its nested interval representation projections,

The complements-within-components definition of cographs provides a pars-
ing of a cograph into smaller cographs. Figure 3 shows the parse tree T" that results
from the cograph G of Figure 1; the root is labeled s if G is connected p if G is dis-
connected, and then $’s and p’s alternate in lower levels. This also corresponds to
the disjoint unions-and-joins characterization of cographs, with the p-vertices of
the tree corresponding to unions and the s-vertices to joins. The s and p notation
reflects that such a tree also corresponds to a two-terminal Series-parallel graph,
as we describe next. This sort of graph is well-known to be intimately related to
cographs—see for instance [1, 7]—but with a significantly different feel.

A two-terminal graph N is a multigraph (without loops) with two distin-
guished vertices (terminals—the vertices drawn as black disks in Figure 3). A
tieset of N is a path connecting the terminals (for instance abe or de in Figure 3),
and a cutset of N is a minimal set of edges whose removal would disconnect the
terminals (for instance {a,c,d} or {b,d} in Figure 3). Alternatively, N can be
viewed as a multigraph with a distinguished edge (typically not drawn) joining
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Figure 2: A 2-dimensional box representation for G from Figure 1.

the terminals, and then the tiesets and cutsets of N correspond, respectively, to
cycles and cutsets containing that distinguished edge.
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Figure 3: A two-terminal series-parallel graph N corresponding to the cograph G
from Figure 1, its tree T', and its dual graph N*.

A two-terminal graph N is series-parallel if it can be built up by, alternately,
connecting smaller two-terminal graphs Ny, Ny, ... in ‘series’ (i # j implying
that each edge of N; will be in a common tieset with each edge of N;) and in
‘parallel’ (i # j implying that each edge of N; will be in a common cutset with
each edge of N;). In Figure 3 for instance, IV consists of two subgraphs connected
in series, with the larger of these consisting of two subgraphs (one consisting
of edges a, b and ¢, and the other consisting of edge d) connected in parallel.
Among various characterizations, [4] shows that N is series-parallel if and only if
a new edge can be inserted to join the terminals without there being any subgraph
homeomorphic to K4, and [6] shows this is equivalent to each cutset of N meeting
each tieset at exactly one edge.
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This relationship between cographs and two-terminal series-parallel graphs is
known to correspond to a cograph G being the common tieset graph of a two-
terminal series-parallel graph N, meaning that V(G) = E(N) with two vertices
are adjacent in G if and only if the corresponding edges are in a common tieset
of N. For instance, the cograph G of Figure 1 is the common tieset graph of the
series-parallel graph N of Figure 3. Indeed, the maximal complete subgraphs of
G correspond to the tiesets of N, and the maximal independent subgraphs of G
correspond to the cutsets of N.

Since it is easy to see that the common tieset graph of any two-terminal graph
must be Py-free, the following simplier (but apparently unnoticed) result actually
holds.

Proposition A graph is a cograph if and only if it is the common tieset graph of a
two-terminal graph. ]

Figure 4 shows how a two-terminal graph that is not series-parallel can corre-
spond to the same cograph as a two-terminal series-parallel graph.

Figure 4: A two-terminal, non-series-parallel graph, the cograph that is its com-
mon tieset graph, and a two-terminal series-parallel graph with the same common
tieset graph.

Define the p-width of such a parse tree T as above to be the maximum number
of noncomparable p-vertices (two, for the tree in Figure 3). Every such two-
terminal series-parallel N has a dual graph N*, also series-parallel, in which
the tiesets of N become the cutsets of N* and vice versa. Therefore if G is the
common tieset graph of a series-parallel graph N, then the complement of G is the
common tieset graph of N*. Notice that N in Figure 3 has a tieset that contains
every vertex, while N* requires two tiesets to cover its vertices.

Corollary 3 For any cograph G with corresponding two-terminal series-parallel
graph N, the following are equivalent to conditions (1)~(4) above:

(5) The tree T corresponding to N has p-width at most k.

(6) The vertices of the dual graph N* can be covered with k tiesets.
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Proof. Both (5) and (6) can be viewed as analogous to (3): Suppose G1, .. ., Gk
are the k subgraphs that correspond to £ noncomparable p-vertices of T'. For each
i € {1,...,k}, let v; and w; be vertices of G; from different children of the ith
p-vertex. Then {v1,wy, ..., vk, wi} will induce a subgraph of G isomorphic to
Ky [2) and each pair v;, w; wﬂl correspond to edges connected in series in N* that
will require a separate tieset in the vertex cover. Conversely, each subgraph of G
isomorphic to K[z will correspond to vertices vy, wy, . . ., Uk, Wk below k non-
comparable p-vertices in T'. (u}

Because the concepts of series-parallel and duality are naturally developed
within matroid theory, the appearance of vertices in condition (6) is somewhat
unexpected. Perhaps this is why the special series-parallel graphs in the k¥ = 1
case—what might be called ‘hamiltonian’ two-terminal series-parallel graphs—
do not seem to have been studied, while the correspondingly special cographs—
the Py, Cy-free graphs—have been studied from so many directions.

Corollary 4 is included for completeness; those unfamiliar with ‘dimension-k
chordal graphs’ can omit the rest of this paper. In [12], a graph is defined to be
dimension-k chordal if every induced subgraph of G has the kth Betti number
of the simplicial complex of its maximal complete subgraphs equal to zero. Re-
latedly, [10] characterizes dimension-k chordal graphs as intersection graphs of
subgraphs of certain ‘clique representations’ (a greedy generalization of the well-
known clique trees of chordal graphs) that involve no polyhedra of dimension
greater than k; [9] discusses the k = 2 case in detail.

Corollary 4 For any cograph G, conditions (1)~(6) above are equivalent to the
Jollowing:
(7) G is dimension-k chordal.

Proof. The proof of [10, Theorem 2] shows that (2) = (7) for all graphs, and [12
Theorem 4b] shows that (7) = (3) for all graphs.

There are examples of non-cographs that satisfy (7) but not (2) (e.g., Figure 1
of [13] for ¥ = 2; when k = 1, the conditions are both equivalent to G being
chordal) and examples of non-cographs that satisfy (3) but not (7) (e.g., Cs for
k = 1 and the isocahedron for k = 2).
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