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Abstract

This game is a mixture of Searching and Cops and Robber. The
Cops have partial information provided by sensing devices called
photo radar. The Robber has perfect information. We give bounds
on the number of photo radar units required by one Cop to capture
a Robber on a tree and, with less tight bounds, on a copwin graph.
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The game of Cops and Robber is played on a reflexive graph, that is a
graph with loops at every vertex. The Cops choose vertices to occupy then
the Robber chooses a vertex. The two sides then move alternately where a
move is to slide along an edge. There is perfect information, that is each
side is always aware of the position of the other. The loops are a technical
device which allows any subset of the Cops and the Robber to pass. The
Cops win if any of the Cops and the Robber occupy the same vertex at
the same time. Graphs in which one Cop suffices to win are called copwin
graphs and are characterized in [3] and [5].

In this paper, a variation of the game of Cops and Robber is introduced.
The Cops no longer have perfect information, but rather can only get in-
formation about the Robber’s position through the use of sensing devices
known as photo radar. As in the original game, it is assumed that the
Robber has perfect information.

Suppose the game is being played on a graph G. Photo radar units are
placed on the edges of G. These units alert the Cops if the Robber moves
along an edge equipped with a photo radar unit. The units also indicate
the direction in which the Robber is moving. The minimum number of
photo radar units required by a single Cop to guarantee the capture of the
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Robber on G will be referred to as the photo radar number of G, and will
be denoted pr(G). In general, one can ask for the least number of photo
radar units needed if there are k£ Cops.

A graph H is a retract of a graph G if there is an edge-preserving map
f:G — H such that f(z) = z for all z € H. We use a ~ b to indicate that
vertex a is adjacent to vertex b and a ~ b if a is adjacent or equal to b.

O

Figure 1: The tree T3.

Lemma 1 Let T, be the tree shown in Figure 1. A single Cop playing
without photo radar cannot guarantee the capture of a Robber on Tj.

Proof. The tree T}, given in Figure 1, has three branches. The Cop having
searched down a branch and returned to the root has a choice of taking
one of two branches. In the four moves that it takes to search this branch
and return to the root the Robber has the time to move between the other
two branches. The Cop is now faced with having to decide which of two
branches to search. Thus there is no guaranteed win by the Cop. 0

Theorem 2 For all finite, positive integers n, there exists a graph G such
that pr(G) > n.

Proof. Consider a tree similar to T} shown in Figure 1 with n + 3 branches
rather than 3. Regardless of how n photo radar units are placed there is still
a subgraph with three branches. The Robber restricts himself to playing on
this subgraph and by Lemma 1 the Cop does not have a winning strategy.

0

Consider a tree T’ with n vertices. Now pr(T") < n — 1 since the photo
radar units can be placed one to an edge. If the Robber doesn’t move then
visiting all the vertices ensures a Cop win. If the Robber moves, the game is
equivalent to Cop and Robber since the Cop will always know the location
of the Robber. This bound can be improved.
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Let G be a graph. An edge is free if it has no photo radar and a path
P of G is said to be a freepath if every edge of P is free.

Let T be a tree. Let T, be the tree T rooted at vertex a. An a-
branch of T, is a path of T with a as one end vertex. We define k(T3)
as the minimum number of edges having photo radar such that the free
edges form freepaths and each maximal freepath is on an a-branch. Let
T"=T\{a € V(T):ais aleaf} and set kr = min{k(T}) : a € V(T")}.

Theorem 3 Let T be a finite tree. Then pr(T) < kr.

Proof. Let T be a tree and let a be a vertex for which k(T,) = kr. Draw
a planar representation of T with a as the root vertex at the top and all
edges directed downward. Also, since every vertex is incident with at most
two edges of a freepath in T/ we can assume that any edge of a freepath
of T' emanating from a vertex is the leftmost edge. We can also place any
leaves so as to be the next edges (in a counterclockwise direction). We refer
to a freepath together with adjacent leaves as a free area.

There are two phases to the strategy.

Firstly, the Cop does a depth first search of 77 except when he comes
to a stem v, he visits any leaves adjacent to v. The Robber cannot move to
v without being caught on the Cop’s next move. The Cop always enters at
one end of a freepath (never in the middle) and exits at the bottom without
leaving the freepath, except for leaves. The Robber can never move past
the Cop, thus once a free area has been searched by the Cop, he is assured
that the only way a Robber could be on that free area is if he has used an
edge with a photo radar unit. Thus if the Robber stays on the free area
then he will be caught in this phase. If he does move off then he will be
detected by a photo radar unit and the Cop will always know the free area
in which the Robber is located.

The second phase starts when the Robber is detected by a photo radar
unit. The Cop moves up the tree until he is on a vertex which lies above
the free area on which the Robber is currently located. Assuming that the
Robber is not caught in this maneuver, the Cop then starts down the a-
branch that contains the Robber until he enters the same free area as the
Robber. (Note that the Robber can move to a different free area but this
move will be detected by the photo radar units and the Cop will always
move so as to be above the Robber.) By moving down the freepath and
visiting adjacent leaves, the Cop will either catch the Robber or force him to
leave the free path moving down the tree and below the Cop. The Robber
will eventually be caught on a leaf if not sooner. o

Consider the graph T, shown in Figure 2. If there is only one photo radar
unit and it is not on the dashed edge then there will be a tree isomorphic
to T so one Cop will not suffice. If the unit is on the dashed edge then
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the Cop can force the Robber to move across this edge. So the Cop knows
in which portion of T the Robber is located. However, the Cop still has a
choice of two branches to search. In the four moves it takes to search one
branch, the Robber has time to move to the other side of T" along the edge
with a photo radar unit. This can continue indefinitely with the result that
the Robber is not caught. So pr(G) > 1. Note: k(T}) = 2, and k(T}) = 3,
and therefore kr = 2; so indeed pr(T) = 2.

Figure 2: The graph T5.

We wish to extend this strategy so that it can be used on a copwin
graph. This is the subject of Theorem 8. However, we first need the
characterization of copwin graphs the proof of which can be found in (3, 5.

Theorem 4 A finite graph is copwin if and only if there is an ordering
(v1,V2, ... ,vn) of the vertices of G such that for each v; € V(G), there
exists a vertex u € {vi,Vit1,. .. ,Vn} such that N[v;] C N[u] in the subgraph
induced by {vi,Vit1,... ,Un}-

This ordering is known as a copwin ordering. The vertex v, is referred
to as the start verter of the ordering.

Consider a finite copwin graph G. Define the induced subgraphs G; ;1 =
G;\ {v;} where G = G, and let f; : G; — Gi41 be the retraction map
from G; to Giy1. We note that f; is a one-point retraction. We define
F;=fiofi-10---0 f1.

Fix a copwin ordering of G, and construct a spanning tree S of G such
that the root of the spanning tree is the start vertex of the copwin ordering.
This spanning tree shall be referred to as a copwin spanning tree. Let
z1,z2 € V(G). We say that z; > z if Fi(z2) = z; for some i and =1 > z2
if £1 # z2. (See Figure 3.)
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Figure 3: A copwin ordering with corresponding copwin spanning tree Sy.

We would like to mimic the proof of the tree result, the problem that
arises here is that the Robber can move from one a-branch to another by
using an edge not in the tree. The next two lemmas allow us to deal with
that problem when it arises in Theorem 8.

Let A and B be two v-branches of a copwin spanning tree S,. Suppose
a € A and a is adjacent to some vertices of B. We take b € B to be the
lowest vertex in B that is adjacent to ¢ and write a — b. Under most
circumstances, the Cop will move from a to b.

Lemma 5 Let G be a copwin graph with copwin spanning tree S,, and let
A and B be two v-branches of S,. If there exists verticesx € A andy € B,
T =~ y then for all a = x there erists b = y such that a ~ b.

Proof. For every f;, a vertex and its image lie on the same v-branch. Let
J be the least index such that Fj(z) = a, note that F;(y) is still on B and
so @ = Fj(x) ~ F;(y), proving the lemma. 0

Lemma 6 Let G be a copwin graph with copwin spanning tree S,, and let
A and B be two v-branches of S,. Let a,x € A and b,y € B withz < a,
z~7y and a — b, then eithery <b ory~a.

Proof. If y < b then we are finished. Suppose now y > b. Let @’ € A
such that ¢’ ~ @ and @’ < a. Let k be the greatest index such that
Fi(z) = o/, then Fiyi1(z) = a. If Frpa(b) X y then Fryi(y) = y and
so y = Fry1(y) ~ Fryi(z) = a, that is y ~ a. If Fryq1(b) > y, then since
Fey1(a) =a,a~ Fi(b)i=1,2,... ,k+1. Thatis,a ~y = F;(b), 7 < k+1.

D
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Corollary 7 Let G be a copwin graph with copwin spanning tree S,. If
both the Cop and the Robber are on a v-branch A with the Cop above the
Robber, and the Robber moves to another v-branch then the Cop can move
to the same v-branch still above or on the same vertex as the Robber.

Proof: Suppose that the Cop is above the Robber on the same v-branch.
Lemma 5 shows that if the Robber moves from one v-branch to another the
Cop can also move to the same v-branch. Lemma 6 shows that the Cop
will either capture the Robber when moving from v-branch to v-branch or
stay above him on the new v-branch. 0

Hence we need only consider the Robber moving from z to y with the
Cop on a where @ > z, b > y and a — b. Let G be a copwin graph. We
define K¢ = ming, {k(S,) : Sy is a copwin spanning tree with root v}.

Theorem 8 Let G be a finite copwin graph. Then
pr(G) < |E(G)| - [(n — 1) — Kg].

Proof. Let S, be a copwin spanning tree at which K¢ is attained. The Cop
begins on the start vertex v. Draw the tree as in Theorem 3, however we
do not worry about the leaves.

The Cop traverses the tree in a depth first search so as to visit all
vertices of G as in the proof of Theorem 3. If the Robber never moves off a
freepath then he will be caught during this phase. If the Robber moves off
a freepath, he will be detected by a photo radar unit. The Cop moves to
the lowest vertex in S, which is above the freepath containing the Robber.
(Since the Robber can still move off this freepath, the Cop may end up at
v.)

The Cop descends the v-branch leading to the freepath containing the
Robber. If the Robber does not leave this path, he will be caught. If he
does leave, then either he descends down the tree and the Cop continues his
descent toward the Robber, or the Robber moves to another v-branch and
the Cop, by Corollary 7, can always move to the same v-branch. Lemma
6 shows that the Robber can never get above the Cop so it remains to
show that the Robber can not force repetitions of positions. Note that
Fi(z) = Fi41(z) except for that vertex v; € G; \ Giy1.

Let A;, 72 =1,2,...,n be v-branches of S,. Assume that the Cop has
moved above the Robber and the Cop knows which freepath the Robber
is on. Consider the consecutive corresponding moves x;,x2,...ZTp+1 and
€1,C€2,.--, Cnt+1 Dy the Robber and Cop respectively where ¢;,z; € A; and
¢; = z; for all i. Also note that ¢; — ¢;4y and z; ~ ;43,1 = 1,2,...7n.
(See Figure 4.) Since z; < ¢; then there exists ¢ ~ ¢; with ¢} < ¢; for all 4.
Let j; be the least index such that Fj;(z;) = ¢]. Since ¢; — ¢;y it follows
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that Fj, (zir1) = ciy1 since Fj,11(z:) = ¢;. Thus Fj41(2i41) = Fj,(Tig1).
Consequently j; > ji41 50 jn < j1. (Recall z, < ¢, by Lemma 5.)

C1 0] 62 [ Cno
7D > @ 70
cl c2 cn

5”1 (0] 3;2 ) ;z;n(:-

Figure 4: The consecutive moves.

Suppose Tn41 < ¢|. Then Fj, (zn41) =X Fj,(z1) = ¢,. But then
F}'n+1($n) = Cpn by the definition of jn, Fj"+1($n+1) = F}n(xn.g.]) = Cll
and Fj_ (Tn41) ~ cn. This contradicts ¢, — cpy1-

The one remaining case is ¢1 X Tn41 =X a1 (If Tner > cny1, the
Robber will be caught on the next move by Lemma 6.) Since Fj,(z;) =
c; it follows that F; (Tn4+1) = Tn41. But we have Fi 41{zz) = ¢n and
Fi +1(zn41) = Fi, (Tns1) ~ Fi, +1(zn) = cn. This contradicts ¢, — cny1.

So whenever the Cop moves to a v-branch, he is on the same v-branch as
the Robber, but he is strictly lower than his last position on the v-branch.
Therefore since the graph is finite, the Robber is eventually caught. g
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