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ABSTRACT: The fine structure of a directed triple system of
index A is the vector (cy,c,---,cs), where ¢; is the number of
directed triples appearing precisely i times in the system. We
determine necessary and sufficient conditions for a vector to be
the fine structure of a directed triple system of index 3 for v = 2
(mod 3).

1 Introduction and definitions

Let a, b and c be three distinct elements. A transitive or directed triple
(a,b,c) is a set of three ordered pairs of the form {(a,b), (b,c), (a,c)}. A
directed triple system of order v and indez A, or (v, \)DTS, is a pair (V, D)
where V' is a v-set of elements, and D is a collection of directed triples
(called blocks) on V, with the property that every ordered pair (z,y) of
elements of V' appears in precisely A of the directed triples. Directed triple
systems have been studied extensively, often under the name “transitive
triple systems”. The necessary condition for a (v, A\)DTS to exist is simply
that the number of ordered pairs Av(v — 1) occurring in blocks be divisible
by three. Hence, we require v =0, 1 (mod 3) for A = 1, 2 (mod 3), and we
require only v # 2 for A = 0 (mod 3). It is well-known that these conditions
are also sufficient for the existence of (v, \)DTSs (see Colbourn and Rosa
[5] for a recent survey).

The fine structure of a dirccted triple system of index A is the vector
(e1,¢2,--+,cp), where ¢; is the number of directed triples appearing pre-
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cisely i times in the system. Colbourn, Mathon, Rosa and Shalaby (3]
determined the fine structure of threefold triple systems ((v,3,3)BIBDs)
for v = 1 or 3 (mod 6), and Colbourn, Mathon and Shalaby [4] determined
the fine structure of threefold triple systems for v = 5 (mod 6). In [6] the
third author found the fine structure of balanced ternary designs with block
size 3, index 3 and p2 = 3. The necessary and sufficient conditions for the
vector (c,ca,¢3) to be the fine structure of a (v,3)DTS with v =0 or 1
(mod 3) was settled by the third author in 7.

In this paper we study the fine structure of (v,3)DTSs for v = 2 (mod
3). Indeed, we determine the necessary and sufficient conditions for a
vector to be the fine structure of a directed triple system of index 3 for
v = 2 (mod 3). Since any two of {c1,c2,c3} determine the third, we use
a more convenient notation for the fine structure: (¢,s) is said to be the
fine structure of a (v,3)DTS if ¢, = t and ¢3 = |v(v — 1)/3] — 5. We first
need to know the pairs (, s) which can possibly arise as fine structures. We
define Adm(v) = {(t,5)| 0< ¢t < s < [v(v—1)/3), s € {0,1,2,3,4, 5}} and
use the notation Fine(v) for the set of fine structures which actually arise
in (v,3)DTSs. We prove the following result:

Main Theorem Fine(v) =Adm(v) for all v = 2 (mod 3).

We make use of group divisible designs and directed triple systems with
holes in the next sections. A group divisible design, GDD(K, A, M;v), is
a collection of subsets of size k € K, called blocks, chosen from a v-set,
where the v-set is partitioned into disjoint subsets (called groups) of size
m € M such that each block contains at most one element from each group,
and any two elements from distinct groups occur together in A blocks. If
M = {m} and K = {k}, for convenience we write GDD(k,\,m;v). A
(v+ h, \) DTS with a hole of size h is a pair (VUH,D), where V is a v-set,
H is a h-set, VNH =0, and D is a collection of directed triples on VU H,
with the property that no ordered pair (z,y) with z,y € H appears in
the directed triples and every other ordered pair (z,y) with z,y € VUH
appears in precisely A of the directed triples.

We will use the well-known construction outlined in the following theo-
rem:

Theorem 1.1 If there exists a GDD(k, 1,m;v), a (u,3)DTS, u € {k,m +
h}, and an (m + h,3)DTS with a hole h, then there exists a (v + h,3)DTS.

2 Necessary conditions

In this section we show that for every v = 2 (mod 3), Fine(v) CAdm(v).



Lemma 2.1 If (¢,s) € Fine(v) then 0 <t < s < [v(v —1)/3].

Proof: Toseet < s, note that any ordered pair of elements which appears
in doubly repeated triples cannot appear in triply repeated triples, and
hence appears in non-repeated triples. So there must be at least £ non-
repeated triples. It follows that 3t < ¢; +2c; = v(v—1) —3¢c3 =2+ 3s, or
t £ s. The other two inequalities are trivial. 0

Before we show that if (¢,s) € Fine(v) then s ¢ {0,1,2,3,4,5} we need
some more notation and a few results. If T is a set of triples with elements
chosen from S, let 7, be the number of triples of T which contain = and
let Az, be the number of triples of T' which contain both z and y (in any
order). Now suppose T is the set of triples which are not triply repeated
in a (v,3)DTS, with v = 2 (mod 3) and elements chosen from a set S, then
it follows that
(1) r, =0 (mod 3) for all z € S;

(2) Aey =0,30r6 forall z,y € S.

Also, the following elementary results hold in any collection T of triples:

(8) X = =3|T|;

z€S

(4) X dey =3IT;
z,yeS

(5) Z Ta;. SIT|4+ 3 Az, for any distinct z1, 29, ..., 2% € S (using
1<i<ji<k
the mclusmn and exclusion principle);

(6) Foreach z € S, ) Agy = 2r,.
y€S

Lemma 2.2 If T satisfies (1)-(6) then for dlstmct T1,T2,...,Tk € S, with
Aee; =0foralli£j, 5 1 #|T|—
2

i€{1,2,...,k}

Proof: If Y. 7z, =|T|— 2 then by (1) and (2) any element which
i€{1,2,....k}

occurs in the two triples which do not contain any of the z; must occur 0

(mod 3) times in these two triples which is impossible. O

Lemma 2.3 If T satisfies (1)-(6) and r; = 3 for some x then there is a set
T' of triples satisfying (1)-(6) with |T'| = |T| -

Proof: By (2), the three triples containing z must contain exactly the
same elements and so the remaining |T'| — 3 triples will satisfy (1)-(6). O



Lemma 2.4 If T satisfies (1)-(6), r, = 6 and A;, = 6 for some z,y then
there is a set T of triples satisfying (1)-(6) with |T"| = |T| — 6.

Proof: The other elements in the six triples containing z and y must be
u,u,u,v,v,v for some u,v € S (u,v not necessarily distinct). Hence it is
easy to see that the remaining |T'| — 6 triples will satisfy (1)-(6). O

Lemma 2.5 If (¢,5) € Fine(v) then s ¢ {0,1,2,3,4,5}.

Proof: The result follows if we show that when T satisfies (1)-(6) then
IT| # 2,5,8,11,14,17.

It is obvious that |T| # 2 and if |T'| = 5 then we must have r, = 3 for
all z which is impossible (by Lemma 2.3). Also, |T'| # 8 since by Lemma
2.3 we cannot have r;, = 3 and by Lemma 2.2 we cannot have r; = 6. If
|T| = 11 then by Lemma 2.2 we cannot have r; = 9 and by Lemma 2.3 we

cannot have r, = 3. Hence, r, = 6 for all z. But we need ) r, =33, a
z€S
contradiction.

If |T| = 14 then by Lemma 2.2 we cannot have r, = 12. Also, by
Lemma 2.3 we cannot have r; = 3. Hence, for all z, r, = 6 or 9. By (5),
if there exist z,y with r, = r, = 9 then Az, = 6. If there exist z,y with
Ty = ry = 6 then Az, = 3; since by Lemma 2.4 we cannot have A\;y, = 6
and by Lemma 2.2 we cannot have Az, = 0. Similarly if there exist z,y
with 7, = 6 and r, = 9 then A, = 3; since by Lemma 2.4 we cannot have
Azy = 6 and by (3) we cannot have Ay = 0.

By (3) there are three possibilities to consider:

o Iy, =Ty, =Tz = Tg, =9 and oy = 6, which is impossible by (4),
since 6-6 +4 -3 # 42;

® 1, =Tz, =9 and rgy =74, = Tz, = Tz, = 6, which is impossible by
(4), since 6+ 6-3 + 83 # 42;

® Iy, =Tz, = ... =1y, = 6, which is impossible by (4), since 21-3 # 42.

If |T| = 17 then by Lemma 2.2 we cannot have r, = 15. Also, by Lemma
2.3 we cannot have r, = 3. Hence, for all z, 7, = 6,9 or 12. By (5), there
can be at most one z with r, = 12 and if there exist z,y with r, = 12
and 7, = 9 then \;, = 6. If there exist z,y with r, = 12 and r, = 6 then
by (5) and Lemma 2.4, A;, = 3. If there exist z,y with r, =7, =9 then
by (5) Azy # 0 and so Azy = 3 or 6. If there exist z,y with r; = 9 and
ry = 6 then by Lemma 2.2 and Lemma 2.4, A;y = 3. If there exist z,y
with r, = r, = 6 then by Lemma 2.4 A,y # 6 and so A, =0 or 3.

By (3) there are five possibilities to consider:



o1y, =12,r;, =1, =75, =9 and rz; =74, =6, which is impossible
since (6) tells us that 3+ 3+ 3 + 3+ Az;,zs = 12 and 50 Az; 26 = 0,
but (5) tells us that 7o, + 755 + 726 = 12+ 6+6 < 3+ 3+ Ag5 25 + 17,
and S0 Agg,z¢ = 3;

o1, =121, =%andry, =75, = ... =Ty, = 6, which is impossible
by (6), since 6 +3+3+3+ 3+ 3 # 24;

o1y =Tz =... =715 =9 and ry; = 6, which is impossible by (6),
since 5 - 3 # 12;

® Ty =Ty =Ty, = Qand rg, = Ty = ... = Tz, = 6, which is
impossible since (6) tells us that Az, z, + Az, 05 +3+3+3+3 =18,
and 0 Azy 20 = Azye; = 3 (and by symmetry A;, ., = 3 also). But
then (5) tells us that 74, + 7z, + 72, =9+9+9<17+3+3+3.

o r,, =9 and ry, =y, = ... = rz, = 6, which is impossible by (6),
since 73 # 18.

]
Combining Lemmas 2.1 and 2.5, we have the main result of this section:

Lemma 2.6 For all v = 2 (mod 3), Fine(v) C Adm(v).

3 Small cases

In this section we show that Fine(v) =Adm(v) for v = 5, 8, 11, 14 and
17. The necessary small designs were obtained computationally, using a
variation of a hill-climbing algorithm.

Lemma 3.1 Fine(v) =Adm(v) for v = 5 and 8.

Proof: See [1] for a (v,3)DTS of type (t,s) € Adm(v), v =5 and 8. Now
the result follows by Lemma 2.6. O

Lemma 3.2 There exist

1. (5,3)DTSs with a hole of size 2 of types (¢, s), where (¢,s) € {(a,d) :
0<a<b<6}\{(0,1),(1,1),(0,2),(1,2),(1,3),(3,3),(0,4)}.

2. (8,3)DTSs with a hole of size 2 of types (0,0), (18,0) and (0, 18).
3. (11,3)DTSs with a hole of size 5 of types (0,0), (30,0) and (0, 30).

Proof: See [1] for these designs. O



Lemma 3.3 If (¢,s) € Fine(v) then (¢,s) € Fine(2v 4+ 1) and (t,s) €
Fine(2v + 4).

Proof: Apply Lemmas 1.1 and 1.2 of [5]. O
Lemma 3.4 Fine(v) =Adm(v) for v = 11, 14 and 17.

Proof: For v =11 (v = 17) we apply Theorem 1.1 with the following in-
gredients: a GDD(3,1,3;9) (a GDD(3,1,3;15)), a (3,3)DTS, a (5,3)DTS
and a (5,3)DTS with a hole of size two. The result is a (11,3)DTS
(or (17,3)DTS). Using different types for the ingredients we can find a
(11,3)DTS (a (15, 3)DTS) for all types (¢, s) € Adm(11) ((t,s) € Adm(17)),
except for (t,s) € {(0,7),(1,7),-++,(7,7),(9,9)} (for Fine(3), see [7]). For
these remaining cases, if v = 11 see (1] and if v = 17 apply Lemma 3.3 with
v = 8. So Fine(11) =Adm(11) (Fine(17) =Adm(17), respectively).

For v = 14 we apply Theorem 1.1 with a GDD(4,1, 3;12), a (4,3)DTS,
a (5,3)DTS and a (5,3)DTS with a hole of size two. Using different types
for the ingredients we can find a (14, 3)DTS for all types (t,s) € Adm(14),
except for (t,s) € {(0,7), (1,7),--+,(7,7),(0,8),(1,8)} (for Fine(4), see
[7]). For the remaining cases see {1]. So Fine(14) =Adm(14), by Lemma
2 a

4 Recursive construction

In this section we show that Fine(v) = Adm(v) for all v = 2 (mod 3),
v 2> 20. First we need two lemmas which are used to show that we have
enough different types of ingredient designs available for use in recursive
constructions. Lemma 4.1 is for the v = 2 (mod 6) case and Lemma 4.2 is
for the v = 5 (mod 6) case.

Lemma 4.1 Let u, ¢; and c3 be three non-negative integers such that
u>3,0<c+c3 <aandes € {a,a—1,-+,a—>5}, where a = 12u? + 6u.
Then there exist non-negative integer vectors (a1, az,as3), (b1,b2,b3) and
(ch,c}) such that:

(1) a1 +az+as = 6u(u — 1);
(2) by +bs+bz=u—-1,
(3) 0< ¢y +c3 <18, ¢3 ¢ {13,14,---,18}; and

(4) (c2,c3) = a1(0,0)+a2(2,0) +asz(0,2)+b1(0,0)+b2(18,0) +b5(0, 18) +
(ca:C5)-



Proof: The proof is by induction. If (cz, c3) = (0,0) we take the vectors
(6u(u — 1),0,0), (u —1,0,0) and (0,0). Now suppose that the statement
is true for the vector (cz,c3). So there exist vectors (a;, az,as), (b1, b2, b3)
and (ch, ¢§) which satisfy (1), (2), (3) and (4). We prove that the statement
is true for the vector (cz +1,¢3), c2 + 1+ ¢3 < @, and the vector (co, c3 +1),
c2c+cs+1l1<aandez+1¢ {a,a—1,---,a —5}. Table 4.1 takes care
of the vector (c2 + 1,c3) and Table 4.2 takes care of the vector (cz,c3 + 1)
if ¢y + ¢ < 18. When ¢ + ¢j = 18 first we find the vectors (a}, a5, a}),
(b1, b5, b3) and (¢4, c§) which satisfy (1), (2), (3) and (4), moreover ¢j +c¢§ <
18. Then we use Table 4.2. Let ¢, + ¢§ = 18. If a; # 0 we take the vectors
(a1 —1,a2 +1,as3), (b1, b2,b3) and (ch —2,c3). If a; =0, b, #0 and az > 8
we take the vectors (a; + 8,a2 — 8,a3), (by — 1,b2 + 1,b3) and (¢} — 2, c}).
If a; =0, by # 0 and a; < 8 we take the vectors (a; + 8,a2 + 1,a3 — 9),
(by —1,b2,b3 + 1) and (c) — 2,c5). Finally, if ¢ +c5 =18 and a; = b, =0

thenco +¢c3 +1=2(6u(u—1)) +18(u—-1)+18+1> a. O
If we take
C'2 + C:’; < 18 (alva'ZaaS)) (blﬁbZ,bZi) a.nd (cl2 + 1)62’.)

Cé +C{3 = 18, a1 75 0 (0.1 - 1,0,2 + 1,(13), (bl,bz,b;;) and (C.'z - l,Cé)
6'2 +C§ =18,a, =0, | (a1 +8,a2 + 1,a3 —9), (b ~ 1,b,,b3 + 1)

by #0, a5 > 9 and (¢} — 1,¢})
ca+cy=18,a; =0, | (a1 +8,a2 — 8,a3), (b1 —1,b2 + 1, b3)
b1 #0,a3 <9 and (¢, — 1,¢})
¢y +c5 =18, cotez3+1=206u(u—-1))+18u—-1)+18+1
ay=b=0 >«
Table 4.1
If we take
cp+c3 <18, <11 (ai,a2,0a3), (b1,b2,b3) and (c5,c3 +1)
¢y +c3 <18, c3 =12, (a1 —1,a2,a3 + 1), (b1, b2, b3)
a1 £0 and (ch,ch — 1)
ch +ch <18, ¢ =12, (a1 + 3,az2,a3 —3), (b — 1,bs,b3 + 1)
a;=0,b#0,a3 >3 and (ch, 1)
ch+ch <18, ¢ =12, (a1 + 3,82 — 9,a3 +6), (by — 1,bs + 1,b3)

a;=0,b #0,a3 <3 and (ch,1)
612 +C:'3 <18, cg! =12, (@1,a2 — 1,a3 + 1), (b, b2, b3)
a=b1=0,a2#0 and (ch +2,¢5 — 1)
c'2+c’3 <18, c5 =12, (a1,a2 + 8,a3 — 8), (b1,b2 — 1,03 +1)
a1 =by=a;=0,by#0 | and (ch +2,¢5 — 1)
ch+ch <18, ¢f =12, c3+1=2(6u(u-1))+18(u—-1)+12+1
a1=b1=a2=b2=0 =a-95
Table 4.2




Using a method of proof similar to that of Lemma 4.1 we also have the
following.

Lemma 4.2 Let u, ¢; and c3 be three non-negative integers such that u >
3,0<co+cs <aandes & {a,a—1,---,a—5}, where a = 12u® +18u +6.
Then there exist non-negative integer vectors (a1,az,as), (b1,b2,b3) and
(ch,c5) such that:

(1) a) + a2 + a3 = 6u(u - 1);
(2) by +by+b3=u—-1;
(3) 0 < cy+c3 <36andcs & {31,32,---,36}; and

(4) (c2,c3) = a1(0,0)+a2(2,0)+a3(0,2)+b1 (0,0)+b2(30,0) +b3(0,30) +
(ch, ¢3)-

Lemma 4.3 If v = 6u + 2 (mod 6), u > 3, then Fine(v) =Adm(v).

Proof: Apply Theorem 1.1 with a GDD(3, 1, 6;6u) which exists (see for
example [2]), a (3,3)DTS, an (8,3)DTS and an (8,3)DTS with a hole of
size two. The result is a (6u+ 2, 3)DTS. Using different types for the ingre-
dients and applying Lemma 4.1 we find that Adm(v) C Fine(v). Therefore
Fine(v) = Adm(v) by Lemma 2.6. O

Lemma 4.4 If v = 6u + 5 (mod 6), u > 3, then Fine(v) =Adm(v).

Proof: Apply Theorem 1.1 with a GDD(3,1,6;6u), a (3,3)DTS, an
(11,3)DTS and an (11,3)DTS with a hole of size five. The result is a (6u +
5,3)DTS. Using different types for the ingredients and applying Lemma 4.2
we find that Adm(v) C Fine(v). Therefore Fine(v) = Adm(v) by Lemma
2.6. 0
Combining the results of this and the previous section, we have:

Theorem 4.5 Fine(v) =Adm(v) for all v = 2 (mod 3). O
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