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Abstract

For a graph G = (V,E), a set S C V is a dominating set if
every vertex in V — S is adjacent to at least one vertex in S. A
dominating set S C V is a paired-dominating set if the induced
subgraph (S) has a perfect matching. We introduce a variant of
paired-domination where an additional restriction is placed on the
induced subgraph (S). A paired-dominating set S is an induced-
paired dominating set if the edges of the matching are the induced
edges of (S), that is, (S) is a set of independent edges. The minimum
cardinality of an induced-paired dominating set of G is the induced-
paired domination number %;,(G). Every graph without isolates has
a paired-dominating set, but not all these graphs have an induced-
paired dominating set. We show that the decision problem associated
with induced-paired domination is NP-complete even when restricted
to bipartite graphs and give bounds on 7;,(G). A characterization
of those triples (a,b,c) of positive integers @ < b < ¢ for which a
graph has domination number @, paired-domination number b, and
induced-paired domination ¢ is given. In addition, we characterize
the cycles and trees that have induced-paired dominating sets.

Key words: Domination, paired-domination number, paired-domination.

1 Introduction

Let G = (V,E) be a graph with order n. The open neighborhood of a
vertex v € V is N(») = {u € V|ur € E(G)} and the closed neigh-
borhood N[v] = N(v) U {w}. For a sct §. let its closed necighborhood
N[S] = U,es N[v]. A sct S is a dominating set if N[S] = V. The domi-
nation number v(G) is the miniinun cardinality of a dominating sct of G.
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We call a dominating sct with minimum cardinality a y-set. The indepen-
dent domination number i(G) is the minimum cardinality of a dominating
set of G that is independent; and we call an independent dominating set
with minimumn cardinality an i-set. For a complete review on the topic of
domination, sce [6, 7).

For an application of domination where security is a concern, we let a
vertex represent a location to be guarded or protected and an edge rep-
resent a viewing path. In this sample application, a y-sct represents a
minimun number of gnards necessary to insure that every vertex (loca-
tion) in the system is guarded. Adding an additional constraint that cach
guard have a partner led Haynes and Slater (8] to introduce the concept
of paired-domination. A set § C V is a paired-dominating set if S is a
dominating set and the induced subgraph (S) has a perfect matching. The
paired-domination number v,(G) is the minimum cardinality of a paircd-
dominating sct of G and a paired-dominating sct with minimum cardinality
is called a yp-set. Note that v,(G) is an even number. Paired-domination
is also studied in [2, 5, 9].

In the guard application, we can think of a paired-dominating set as a sct
of guards able to secure each location and satisfy the requirement that cach
guard be assigned an adjacent guard as a designated backup. Note that
in a paired-dominating set, a guard may be adjacent to guards other than
his/her designated backup. Hence communication (signals) between part-
nered guards is not necessarily private, that is, a signal between partnered
guards may be received by another adjacent guard.

Motivated by the potential for problems with interference in communi-
cation between a guard and its designated backup, we introduce induced-
paired domination. A set S C V is an induced-paired domninating set if it
is a dominating set and the induced subgraph (S} is a set of independent
edges, that is, |§| = 2t and (S) = tKz. The minimumn cardinality of an
induced-paired dominating set of G is the induced-paired domination num-
ber 7ip(G) and an induced-paired dominating sct with minimum cardinality
is called a 7ip-set. In our guard cxample, an induced-paired dominating set
represents a configuration of security guards in which each guard is assigned
one other as a designated backup (as in a paired-dominating sct), but to
avoid conflicts (such as radio interference) between a guard and his/her
backup, we require that the backup for each guard be unique. Since among
the guards only designated partners are adjacent to cach other, we reduce
the possibility of conflicts in communication.

Clearly, a graph with an induced-paired dominating set has no isolated
vertices. Haynes and Slater [8] observed that any graph without isolated
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vertices has a paired-dominating set. However, not all isolate-free graphs
have an induced-paired dominating set. For example, the cycle Cs has
a paired-dominating set but no induced-paired dominating set since four
vertices are necessary in any paired-dominating set and every set of four
vertices indnuces a Py.

Our observations follow dircectly from the definitions.
Observation 1 For every graph G with a yip-set, ¥(G) < 15(G) < %ip(G).
A support verter is a vertex that is adjacent to an endvertex.

Observation 2 If v is a support vertex of G, then v is in every yip-set of
G.

In Scction 2 we show that the decision problem associated with induced-
paired domination is NP-complete and give bounds on 7;,. In Scction 3 we
characterize those triples (a,b,¢) of positive integers a < b < ¢ for which
there is a graph G having 7(G) = a, 7,(G) = b, and 7;,(G) = ¢. In Section
4 those cycles, paths, and trees that have vip-scts are characterized and
additional bounds on 7;p are given.

2 Induced-paired Domination Number

2.1 Complexity Results

It was shown in (8] that the paired-domination problem is NP-complete.
As expected, the induced-paired domination problem is also NP-complete.
In fact, using a technique similar to methods of McRac {10], we show that
INDUCED-PAIRED DOMINATING SET (IPDS) is NP-complcte even when
restricted to bipartite graphs.

We use the following well-known NP-complete problem (see [3]).
EXACT COVER BY 3 SETS (X3C)

INSTANCE: A finite set X with |X| = 3¢ and a collection of 3-clement
subsets of X.
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QUESTION: Docs C contain an exact cover for X, that is, a subcollection
C’ C C such that every clement of X oceurs in exactly one member
of C"? (Note that if C' exists, then its cardinality is precisely q.)

Next woe define IPDS and give a polynomial tiine reduction of X3C to
IPDS.

INDUCED-PAIRED DOMINATING SET (IPDS)

INSTANCE: Graph G = (V, E) and (even) positive integer & < |V].
QUESTION: Is vip(G) < k?

Theorem 3 The induced-paired dominating set problem IPDS is NP-complete,
even when restricted to bipartite graphs.

Proof. IPDS is obviously in NP. We will construct a bipartite graph G =
(V,E) and a positive integer A from an instance of X3C, such that the
X3C instance will have an exact cover if and only if G has an induced-
paired dominating set of cardinality at most k. Let X = {z1,22,...,734}
and C = {C}, Ca,...,Ct} be an arbitrary instance of X3C. Construct G by
creating a vertex z; for cach z; € X and a Py = ¢;,dj, e;, f; for each subsct
Cj € C. Add communication cdges

E' = Ui {¢milm: € Cj}.
Let k=dq+2(t —q) =29 + 2t.

First assume that C’ is an cxact cover for C. Let 8y = {¢;z|C; € C'
and z; is selected from C; to be paired with ¢;} U {e; f;|C; € C'} and
So = {d;e;|C; € C'}. Then it is easy to verify that § = S; U Sy is an
induced-paired dominating set for G with |S| = 4q + 2(t — q). Note that
t > g since C’ is an exact cover.

Now assume that S with |S| < 2¢ + 2f is an induced-paired dominating
set for G. In cach Py, either {d;,e;} € S or {e;, f;} € S to dominate f; for
1 < j < t. Therefore at lcast two vertices from cach Py — {¢;} must be in S,
that is, 2t vertices of S come from these Py’s. Note that if ¢; € S, it must
be paired with some z; € C;. Since |S| < 2q + 2¢, we can have at most g
of these pairs. Furthermore, these pairs {¢;, 7;} must dominate all the z;’s
since S is an induced-paired dominating set. Let C' = {Cjle¢; € S}. Since
each ¢; is adjacent to exactly three z; vertices in G and we have at most g
of these ¢; in S, each vertex z; is adjacent to exactly one ¢; € S. Thus €'
is an exact cover for C. O
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2.2 Bounds on 7;,(G)

We now turn our attention to bounds on yp(G) for those graphs G that
have a y;p-set. Our first, two propositions are straightforward and the proofs
arc omitted.

Proposition 4 If a graph G has a vip-set, then

2< 'Yip(G) <n
and these bounds are sharp.
Proposition 5 For any graph G, vip(G) = n if and only if G = mK,.

Haynes and Slater (8] showed that v,(G) > A—(n_G_) which yiclds a lower

bound on (G} also.

Proposition 6 If a graph G has a vip-set, then

n
Yip(G) 2 m

Let G’ be the graph shown in Figure 1.

Theorem 7 If G is a connected graph with a v;,-set and order n > 3, then
Yip(G) < n = 1 with equality if and only if G € {P,,C3, P5, G'}.

Proof. Since G is connected, Proposition § gives that v,(G) < n—1. It is
easy to see that if G is one of the graphs in the theorem, then v;,(G) = n-1.
For the sufficiency, let S be a yip-set such that v;,(G) = n—1. If v;,(G) = 2,
then G is either a P; or C3 and if 4ip(G) = 4, then G = P5;. Assume
¥ip(G) = 6 and let z be the vertex not in S. Let S, = {{us, i }|us, v; are
the vertices paired in S}. Again the conncectivity of G and the restriction
that S induces a set of independent cdges imply that for each pair {u;, v;},
at least one of u; and v; is adjacent to z. Hence, G must be the graph G’
shown in Figure 1. If s = 0, then ¢ 2 3 and {w;,z} is an induced-paired
dominating set for G’, a contradiction. If s = 1, then £ > 2 and again
{u1,z} is an induced-paired dominating set for G’, a contradiction. Thus,
s2>2.0
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Figure 1: Graph G'.

Corollary 8 For any graph G, vip(G) =n—1 if and only if G = HUTK,
fOT‘ He {P3, Ca, P5,G'}.

We note that this upper bound holds and is sharp for paired-domination
also. Haynes and Slater [8] added a restriction on minimum degrece and
showed that for any graph G with 6(G) 2 2, 7,(G) < 2n/3. However, this
bound will not suffice for ¥ip(G). In fact, it can be shown that even with
the restriction on minimum degree, ¥ip(G) can be made arbitrarily larger
than v,(G) and larger than 2n/3. Consider the graph in Figure 2. The
vertices in a ;p-set are shaded. Note that w is not in any viy-set since if
it were, then some a; would not be dominated. But then a;, 1 < j < s,
must be paired with cither b; or ¢; and u;,v;, for 1 £ 7 < ¢, must be in
every 7vip-set of G. Therefore, 7:p(G) = 25+ 2t, n = 35+ 1 + 2¢, and
2n/3 = (65 + 2+ 4t)/3 < 2s + 2t if t > 1. Moreover, 7,(G) = 2s where a
Yp-set is {ai, bi|2 < i < s}U{by,w}. Therefore, 7;,(G) can made arbitrarily
larger than 7,(G) by increasing ?.
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Figure 2: Graph G with v;(G) > %.

3 Existence Results

Here we characterize those triples (a, b, ¢) of positive integers ¢ < b < ¢
for which there is a graph G with ¥(G) = a, 7,(G) = b, and 7%;,(G) = .
Haynes and Slater (8] showed that if ¥(G) = a and v,(G) = b, then b < 2a.
We consider now the possibilities in two cases b £ 2a — 2 and b = 2a.

31 b<L2a-2

First we show that there is a graph G having ¥(G) = a, 7,(G) = b, and
7%ip(G) = ¢ for any triple of positive integers (a,b,¢) where a < b < ¢, b is
even, and b < 2a — 2.

Theorem 9 For any triple (a,b, ) of positive integers such thata < b <,
b is even, and b < 2a—2, there exists a graph G having v(G) = a, v,(G) = b,
and 7;,(G) = c.

Proof. Let a,b, and ¢ be integers where e < b < ¢, biseven, and b < 2a—2.
Fora < b < cora = b = ¢, we show that the graph G in Figure 3 has v(G) =
a, 15(G) = b, and 9;p(G) = ¢. Let S be a set containing z, all the support
vertices of G, and one additional vertex from each C4 subgraph. Since each
Cj subgraph requires at least two vertices to dominate it and each endvertex
or its neighbor must be in any dominating set, it is straightforward to see
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that S is a y-set for G and |S] = 1+b—a+1+2(2a—Hh—2)/2 = a. Next we
form a y,-set for G as follows. Begin with S and pair the adjacent support
vertices. Then pair ¢ with a neighbor in some Cy subgraph. Now since =
can only be paired with one vertex, we must add to S an additional vertex
from cach of the remaining Cy subgraphs in order to pair the vertices. Thus
we have a yp-set and 7,(G) = ¥(G) + (b —a +1-1) = b. Notice that x
cannot be in any vip-set. Hence to form an indnced-paired dominating
set 87, the support vertices paired as above, two adjacent vertices (paired)
from cach of the Cy — 2 subgraphs, and the remaining two vertices (paired)
from cach of the A3 subgraphs containing = must be in S’ implying that
18] = 7ip(G) = ¥p(G) + 2(¢ — b)/2 = ¢. This construction has restrictions
that cithera=b=cor b >a+ 1.

To complete the proof, let a = b < . Using a similar argument, it is
straightforward to show that the graph H shown in Figure 4 has y(H) =
Yp(H) =2(a—2)/2) +2=a and v;p(H) =a—-2+2+c—a=c for any
triple of positive integers (a,b,¢) wherca = b < ¢, bis even, and b < 22 - 2.
a

% —b—2

Figure 3: Graph G with v(G) = a, v,(G) = b, and 7ip(G) = ¢.
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Figure 4: Graph H with y(H) = a = v,(H), and vip(H) = .

3.2 b=2a

First we give some more terminology and a couple of known results that
will be useful. The private neighborhood of a vertex » with respect to a
set S is N[v] — N[S — {v}]. A vertex in the private neighborhood of v is
called a private neighbor of v with respect to S. Bollobéds and Cockayne [1]
established the following property of minimum dominating sects.

Theorem 10 (1] If G is a graph with no isolated vertices, then G has a
v-set S such that each vertex of S has a private neighbor in V — S.

Here we are concerned with graphs G for which 4(G) = a and v,(G) =
b = 2a. Haynes and Slater [8] determined a property of these graphs.

Theorem 11 [8] If a graph G has vp(G) = 2v(G), then every v-set of G
is an i-set of G.

Using these results, we prove the following.

Theorem 12 If G has no induced Cs and vp,(G) = 2v(G), then G has a
Yip-set and vip(G) = 1p(G) = 27(G).
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Proof. Let G be a graph with no induced Cs subgraph and v,(G) = 2v(G).
If any vp-sct is a ¥;p-set, then we are finished. Thus, suppose no y,-set is an
induced matching. From Theorem 11, we have that every y-set is a an -sct.
Furthermore, from Theorem 10 we know that at least one of these y-scts,
say S. is a private dominating set, that is, cach vertex in S has a private
neighbor in V — S. Let § = {uy,u2,...,1y} and choose a private neighbor
v; € V =8 for cach u; € S snch that the number of edges in ({v,va, ..., 04 })
is minimized. Let S’ be this set of private neighbors. Now P=SU S is a
¥p-set of G. If there are no edges in (87), then P s also a vip-set and the
theorem holds, so assume myvs € E(G). If Q@ = P —{uy, 11,12, va}U{vy, 02}
dominates G, then Q is a paired-dominating set with cardinality less that
7p(G), a contradiction. Hence there exists w € N(up) U N(up) that is
not. dominated by P — {uy,ua}. If w is adjacent to both w; and ua, then
(1y.w, 1a,v1,v2}) is an induced Cs, contradicting our assumption that G is
Cs-free. Therefore, without loss of generality, let w be a private neighbor of
ay with respect to S. But then (8" — {m }U{w})US is a paired-dominating
set of G formed from S and a private neighbor for cach vertex in S such
that (S’ — {v1})U{w}) has fewer edges than (S’), contradicting our choice
of §. O

Let G be a graph with 4(G) = a and 7,(G) = 2a. If G has no induced Cs,
then Theorem 12 holds implying that G has an induced-paired dominating
set and 7ip(G) = ¢ = 1(G) = b = 29(G) = 2a. If G has an induced Cj,
then we must consider the following possibilitics:

(1) G with no v;p-set,
(2) G has a vip-set and ¥ip(G) > 7p(G), or
(3) G has a vip-sct and Yip(G) = 7p(G).

The cycle Cs is an example of (1). For an example of graphs satisfying
(2) and (3), see Figure 5.

4 Characterizations of Graphs with v;,-sets

The paired-domination number for paths P, and cycles Cn, 7(Pn) =
75(Cn) = 2[n/4], is given in [8]. This result can be extended to induced:
paired domination for all cycles except Cs and all paths as shown below.
The straightforward proofs are omitted.
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2t

Figure 5: A graph G with v,(G) = 27(G) =4 < 7ip(G) =2 + 2t.

Theorem 13 (1) Every cycle Cp, n # 5, has an induced-paired domi-
nating set and v;p(Cn) = 2[n/4].

(2) Every nontrivial path P, has an induced-paired dominating set and
Yip(Pn) = 2[n/4].

4.1 Trees

From Observation 2, it is apparent that not all trees have ;p-sets. For
example, the trce in Figure 6 has no ~;p-set, since cach support vertex
must be in every 7ip-set and the graph induced by these three vertices is a
P3. We proceed, in a manner similar to that of Gavlas and Schultz [4], to
constructively characterize the trees T which have a v;p-set.

Figurc 6: A trec with no induced-paired dominating set.
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Theorem 14 A nontrivial tree T has an induced-paired dominating set
S if and only if T can be recursively obtained from Pa, that is Py =
. Ta,.... T, = T wheve each T; has an induced-paired dominating S;, and
T.+1 is obtained from T; using one of the following operations:

1. Add a new vertex adjacent to a vertex in S; C V(T1;) and let Si., = S;.

2. Identify verter u of a path Py = u,w,x with a vertez v’ € S; and let
Sic1 = S; U {w,x}.

4. Identify verter v of a path Py = u,v,w,x with a verter v’ € S; and
let Sivy =S U {mw,z}.

Proof. Assumne T is a tree obtained recursively from P = T4, T, ..., T = T
where cach T; has an induced-paired dominating set S; and Ti4 is obtained
from T, nsing operation 1, 2, or 3. It is casy to sce that Sy is an induced-
paired dominating sct for T

Next we proceed by induction on the order of T. If T is a tree of order
n =2, then T = Ps and can be obtained from Py using the given operations.
Assume that any tree 77 of order n’ < n, with an induced-paired dominating
set. 87, can be obtained recursively from Ps using the three operations. Let,
T be a tree with order n > 3 and an induced -paired dominating set S.

Case 1: The tree T has an endvertex @ € S. Then z must be adjacent
to a vertex in S. Thus 7" = T — {z} is a trce of order n’ < n, which
has an induced-paired dominating sct §* = S, and 77 can be recursively
obtained from P,. Therefore, T can be reenrsively obtained from Pa by
using operation 1 on T7.

Case 2. All endvertices of T arc in S. This implics that any suppport
vertex is adjacent to exactly one endvertex and is paired with it in S.
Furthermore, any longest path in T must have at least five verticos. Now
consider a longest path P in T, where P = zwvumvs...vpz as shown in
Figure 7. Necessarily, z € S, w € S, and v € S. Suppose deg w > 2. Then
any vertex a adjacent to w must be an endvertex of T or P is not a longest
path. But this contradicts that w is adjacent to exactly onc endvertex.
Hence deg w = 2. Ifdeg v =2 and v € S, then T = T — {w,z} is a
tree with §' = § — {w,x} that can be recursively obtained from Py using
the given operations. Thus T can be recursively obtained from P» using
operation 2 on T”. Otherwise, if u € S, then T/ = T — {v,w,z} is a tree
with §* = § — {w,z} that can be recursively obtained from Ps using the
given operations and T can be recursively obtained from T” using operation
3. If deg » > 2, then any vertex b adjacent to v cannot be an endvertex
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since v € S, and henee cannot be paired with b, Then since P is a longest
path, ¢ € N(b) must be an endvertex. Thus {b,¢} € §. So once again the
tree T = T — {b,¢} is a tree with §&' = § — {b,¢} that can be recursively
obtained from Py using the three operations. Furthermore, the tree T can
be obtained vecursively from Py by using operation 2 on 7. Hence, a tree
7 with an induced-paired dominating set can be recursively obtained from
P> using only the three operations given in the theorem. O

X w
P: *— r
I

’%
TR
4:

Figurc 7: A longest path.

For example, in Figure 8, we give a tree that was constructed using the
three operations described in Theorem 14 (the shaded vertices represent the
induced-paired dominating sct determined by the construction). The tree
was constructed from a P, = ab in which both vertices must both be in S.
We then use operation 1 to add the new vertex uq. Next we use operation
3 to add the vertices {v;, wy, 71}, followed by operation 1 to add the vertex
ug. Operation 2 was uscd to add the vertices {wa, z2}. Finally, the tree was
completed by using operation 1 to add the vertex u3. Note that the order
of the operations to produce this tree is not unique. Also, notice that the
induced-paired dominating set determined by the construction is a «yip-set,
but this is not necessarily the case in general, that is, the construction may
produce an induced-paired dominating sct that does not have minimum

cardinality.
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4.2 Caterpillars

A caterpillar is a tree with the property that the removal of its endvertices
results in a path. The resulting path wujug...us is referred to as the spine
of the caterpillar and the endvertices are called the legs of the caterpillar.
A sequence of nonnegative integers (t1, t2, ..., ts) where £; is the number of
endvertices (legs) adjacent to u; for s > 2 is associated with T. Both this
sequence and its reverse sequence define T'. The code C of the caterpillar is
the larger of these two scquences. For example, the code of the caterpillar
in Figure 9 is (23021).

Figure 9: A caterpillar.

Although we have given a constructive characterization for trees, we now
give a more descriptive characterization for caterpillars in terms of their
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codes. To aid in the presentation of the characterization, we introduce
some additional notation. Let R, denote a caterpillar with s > 2 vertices
on its spinc. For convenicnce, we write the code C of IZg as a sequence
of zeros and variables where a variable represents a nonzero entry. For
a variable @ representing a positive integer in the code, let v, denote the
vertex of R, associated with a. Also, let »£ be the vertex to the left of vg
on the spine, »2 be the vertex to the right of v, and v} be an endvertex
adjacent to ve. A block of zeros is a maximal set of consecutive zeros in C.
Let z; denote the number of zeros in the ith block of zeros. Thus for the
code (2,000 3500000021), z; =3, and z3 = 6.
~ ——

Let F = Fy U F> U F3 be the collection of subcodes where

Fy = {(abc)la,b,c > 1}
F> = {{ab000cd)|a, b, c,d > 1}
F3 = {(ab000¢1000cs...000¢:,000de)|a, b, i, dye > 1,4 > 1}.

We arc now rcady for the characterization.

Theorem 15 A caterpillar R, has a ip-set if and only if its code does not
contain a subcode from F.

Proof. If a caterpillar with code C has a v;p-sct S, then it follows from
Theorem 14 that C has no subcode from F. Next let R be a caterpillar
with code C that does not contain any subcode from F. We will show that
R, has an induced-paired dominating set S. Since C has no subcode from
F, C does not have three consecutive nonzero integers. If z; = 3 for each
zero block i of C (and C has no subcode from F), then C is one of the
following codes:

{(¢1000¢2000...cpr -1 000cpr)|e; > 1, M > 1}

{(¢1000¢2000...¢;000ab000¢;.4+1000...car-1000cas )| @, b, 2 1,5 2 1, M >
1}
{(ab000c;000c>...000¢hs )|a, b,¢; > 1, M > 1}

{(¢1000cz...000cps000ab)|a, b, ¢; > 1, M > 1}.

For each code, we give an induced-paired dominating set S for R;.
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For code C = (¢1000¢2000...¢4r-1000¢51), let S = {-ncl,vg,vé‘i,vc‘ 2<i<
M}

For code C = (¢,000¢2000...¢;000a0000¢;41000...c41 -1 000¢4, ), let S =
{ve, u,f|1 <i<jlu {vé‘,,,'uc‘. [J+1<i< MU {1, s}

AN
A

For code C = (ab000¢00002...000¢5,), let § = {vg,nc,[l <i< MU

{Va, s}

For code C = (¢1000¢2...000¢3,000ab), let S = {v,,vf|1 < i < M} U
{vasm}

Thus, if z; = 3 for all zero blocks 7 in C, we are finished. Hence, cither
z; # 3 for all zero blocks 7 or there exists z; = 3 and z; # 3 for some zero
blocks 7 and j.

Casc 1: Assume z # 3 for all zero blocks 4 in C. Apgain, we determine
an induced-paired dominating set S. By Observation 2, every vertex v,
associated with a nonzero entry a € C must be in S. Consider such vertices
and pair all the adjacent ones in S. Now for the remaining unpaired v, € S,
add v/, to S and pair it with v,. Next consider the zero block i of C. If z; = 1
or z; = 2, then the vertices associated with the 7th block are dominated by
S. If z; > 4, then the vertices associated with the 2; zcros in the sth block
form a P,, path. Let vy, vgr be the two endvertices in the induced subgraph
(P.,). Consider the path P, —{wyvg}. Since z; > 4, P;, —{vLvgr} is a path
thh at least two vertices (vL and vg are dominated by S ). By Theorem 13,

P,, — {vyvgr} has an induced-paired dominating sct S;. Adding the vertices
of S; to S for cach z; > 4 yiclds an induced-paired dominating set for R,.

Casc 2: Assume z; = 3 and z; # 3 for zcro blocks i and j in C. Again we
build an induced-paired dominating set S. First select all subcodes Cj of C
such that C; is a code of a caterpillar, C; has at least onc zero block, every
zero block i in C; has z; = 3, and Cj is maxunal in length. Assume there
are k > 1 of these subcodes and donunatc cach of these subcaterpillars
with codes Cj, 1 < j < k, as we did above for caterpillars with such codes.
Let S be the union of these induced-paired dominating scts. Next select
all subcodes C; of C (that have not been previously sclected) such that
C; is a code of a caterpillar, every zero block 7 in C; has z; # 3 and C;
is maximal in length (note that C; does not nec cssauly have a zcro l)locl\
that is, C; = (ab)). Dominate tlu.so caterpillars as we did in Case 1 and
add these dominating sets to S. Finally, if for any nonzcero entry a, v, is
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not. already in S. then add », and v}, to S (pairing them).

Note that S induces a set of independent edges and the ouly vertices that,
may not be dominated correspond to zero blocks separating the subcodes
whose vertices are dominated by S. Cousider such a block 7. By the way
we selected the subceodes, 2 # 3. Furthermore, the vertices associated with
the first and last zero in cach block are dominated by S. Hence if z; = 1 or
zi = 2. we are finished. If z; > 4. dominate the path as we did in Case 1.
Adding these dominating sets to S gives an induced-paired dominating sct
for R;. ©

Finally, we give bounds on vip(£2s).

Theorem 16 For any caterpillar Ry which has an induced-paired domni-
nating set,

s+2
2[\): ]S’Yip(Rs)SS'Fl
and these bounds are sharp.

Proof. For the lower bound, let Psya be a longest path of Rs (this path
contains all vertices on the spinc and two endvertices). Since Yip(Psy2) =
2 [%ﬁ] by Theorem 13 and adding endvertices cannot decrease the induced-
paired domination number, we have 7;p(Rs) > 2[232]. To sce that this
bound is sharp, let Rs = Pn,n =0 (mod 4).

For the upper bound, let S be an induced-paired dominating set for
R,. Since a vertex on the spine dominates more vertices than an end-

vertex dominates, vip(f2s) is maximum for a caterpillar with the code

s+1
C = (a10a20...a;—10a;) where t = %— By Obscrvation 2, v,, € S. Fur-

thermore, v/, is paired with v,, in S. So |S| =2 (2}!) = s + 1. Therefore,
Yip(Rs) £2(H) =s+1. 0
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