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ABSTRACT

For two vertices u and v of a connected graph G, the set H(u, v) consists
of all those vertices lying on a u — v geodesic in G. Given a set S of vertices
of G, the union of all sets H(u,v) for u,v € S is denoted by H(S). A
convex set S satisfies H(S) = S. The convex hull [S] is the smallest convex
set containing S. The hull number £(G) is the minimum cardinality among
the subsets S of V(G) with [S] = V(G). When H(S) = V(G), we call S
a geodetic set. The minimum cardinality of a geodetic set is the geodetic
number g(G). It is shown that every two integers a and b with 2 < a < b
are realizable as the hull and geodetic numbers, respectively, of some graph.
For every nontrivial connected graph G, we find that A(G) = (G x K2). A
graph F' is a minimum hull subgraph if there exists a graph G containing F
as induced subgraph such that V(F) is a minimum hull set for G. Minimum
hull subgraphs are characterized.

1 Introduction

The distance d(u, v) between two vertices u and v in a connected graph G
is the length of a shortest u — v path in G. See the books [1, 5] for graph
theory notation and terminology. A u — v path of length d(u,v) is called
a u — v geodesic. The set H(u,v) consists of of all vertices lying on some
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u — v geodesic of G, while for S C V(G),

HS)= | H(u,v).

u,v€S

The set S is convez if H(S) = S. The convez hull [S] is the smallest
convex set containing S. Obviously, [S] is the intersection of all convex
sets containing S. The convex hull [S] of S can also be formed from the
sequence { H*(S)} , k > 0, where H°(S) = S, H'(S) = H(S), and H*(S) =
H(H*%-'(8S)) for k > 2. From some term on, this sequence must be constant.
Let p be the smallest number such that HP(S) = HP*!(S). Then H?(S)
is the convex hull [S]. This sequential construction was utilized in [6] in
connection with the “ geodetic iteration number ”.

A set S of vertices of G is called a hull set of G if [S] = V(G), and a
hull set of minimum cardinality is a minimum hull set of G. If S is a hull
set of G and u,v € S, then each vertex of every u — v geodesic of G belongs
to H(S). This observation as stated next will be used on several occasions.

Lemma 1.1  Let S be a minimum hull set of a connected graph G and
let u,v € S. Ifw (# u,v) lies on a u— v geodesic in G, then w ¢ S.

The cardinality of a minimum hull set in G is called the hull number
h(G). This number was introduced by Everett and Seidman [4], who char-
acterized graphs having some particular hull numbers and who obtained
a number of bounds for the hull numbers of graphs. The hull number of
median graphs was determined by Mulder [7]. (A connected graph G is
a median graph if, for every three vertices u,v,w of G, there is a unique
vertex lying on a geodesic between each pair of u,v,w.)

Clearly, 2 < h(G) < n for every connected graph G of order n > 2.
For example, in the graph G of Figure 1, Let S; = {u, z}. Since [S)] = S}
which is a proper subset of V(G), it follows that S; is not a hull set of
G. On the other hand, let S» = {z,y}. Since H(S2) = {z,y,u,v,w} and
H(H(S2)) = V(G), we have [S2] = V(G) and so h(G) = 2.

Since the hull number of a disconnected graph is the sum of the hull
numbers of its components, we are only concerned with connected graphs.
While the graph G of Figure 1 has the smallest possible hull number for a
nontrivial connected graph, we note that for each integer n, there is only
one connected graph of order n having the largest possible hull number,
namely n, and that is the complete graph K.
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Figure 1: The graph G

2 Relating the Hull Number to the Geodetic
Number

A related concept was introduced in [2, 3]. A set S of vertices of G is a
geodetic set if H(S) = V(G). A geodetic set of minimum cardinality is a
minimum geodetic set, and this cardinality is the geodetic number g(G).

Obviously, h(G) < g(G) for every nontrivial connected graph G. The
hull and geodetic numbers of the graph G of Figure 1 are both 2 as {u, v}
is both a minimum hull set and minimum geodetic set of G;. While the
hull number of the graph G, of Figure 1 is 2 and {z, y} is a minimum hull
set, its geodetic number is 3 and {z,y, 2z} is a minimum geodetic set.

u T

Gy Ga:
z
v Yy

Figure 2: The graphs G; and G,

Next, we show that every pair a,b of integers with 2 < a < b are
realizable as the hull and geodetic numbers, respectively, of some graph.
To show this, we first state a lemma, which is an immediate consequence of
the trivial observation that each end-vertex v of a graph is an end-vertex
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of every geodesic containing v.

Lemma 2.1 Each end-vertex of a graph G belongs to every hull set and
every geodetic set of G.

Theorem 2.2  For every pair a, b of integers with 2 < a < b, there exists
a connected graph G such that h(G) = a and g(G) = b.

Proof. If a =b, then G = K, has the desired properties. Thus we may
consider that @ < b. We construct a graph G with the required hull and
geodetic numbers. For each 7 with 1 < i < b — a, let G; be the graph of
Figure 3.

Ti
t; Yi
Gi:
Vi
Si Zi
w;

Figure 3: The graph G;

Then G is obtained from the graphs G; by adding vertices u; for 1 <
j < a-—1 and edges (1) z;zi41 and wiw;y; for 1 <i<b—a—1and (2)
wy_qu; for 1 < j < a— 1. The graph G is shown in Figure 4.
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Figure 4: The graph G with A(G) = a and g(G) = b
We first show that h(G) = a. By Lemma 2.1, the end-vertices u,, us,

- -+, Uq—1 Of G belong to every hull set of S of G and so h(G) > a—1. Since
[{u1,u2, -, ua=1}] # V(G), it follows that h(G) > a. Let S; = {x|, uy,
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ug, -+, Ug—1 }. Since H(S)) = V(G) — {v1, v2, - -+, vo—a} and H(H(S))) =
V(G), it follows that [S;] = V(G). Therefore, h(G) = |Si| = a.
Next we show that g(G) = b. Since

52 = {.’Cl,‘lll,uz, Ty Ug—1,V1, V2 ",'Ub_a}

is a geodetic set, g(G) < b. Suppose, to the contrary, that there exists
a geodetic set W of G with |W| < b. Certainly, {uy,u2,---,uq—1} C W.
We claim that W contains at least one vertex in each G; for all ¢ with
1 <7 < b— a. Suppose, to the contrary, that for some i, V(G;) N W = .
Observe that v; does not lie on any z—y geodesic in G for z,y ¢ V(G;). This
implies that v; € H (W), which contradicts the fact that W is a geodetic set.
Therefore, W contains at least one vertex from each G; and so |W| > (a —
1)+ (b—a) = b—1. If {W]| = b—1, then W contains exactly one vertex from
each G; (1 < i < b—a). Since v; only lies on those geodesics having v; as one
of its end-vertices or having both end-vertices belonging to G;, it follows
that v; € W. This implies that W = {uj,u2, -+, ua—1,v1,v2," -+, Ub-a}-
Since z; ¢ H(W), we have a contradiction. Therefore, g(G) = b. n

The hull number of a graph has certain properties that are also possessed
by the geodetic number of a graph. To show these, we need some additional
definitions. For a vertex v of G, the eccentricity e(v) is the distance between
v and a vertex farthest from v. The minimum eccentricity among the
vertices of G is the radius rad G and the maximum eccentricity is its
diameter diam G. Two vertices u and v with d(u, v) = diam G are called
antipodal vertices. One might be led to believe that every minimum hull
set must contain some pair of antipodal vertices, but this is not so, as the
graph in Figure 1 shows.

In [2] it was shown that if G is a connected graph of order n > 2 and
diameter d, then g(G) < n —d+ 1. The following theorem is an immediate
consequence of this result and was also established in [4].

Theorem 2.3  IfG is a connected graph of order n > 2 and diameter d,
then h(G) <n—-d+1.

The proofs of the next two theorems are similar to those for the geodetic
number given in [2] and are omitted.

Theorem 2.4  For positive integers r, d, and k > 2 withr < d < 2r,
there exists a connected graph G with rad G = r,diam G = d, and h(G) =
k.

Theorem 2.5 Ifn, d, and k satisfy2 <d<n,2<k<n, andn—

d—Fk+12>0, then there erists a graph of order n, diameter d, and hull
number k.
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3 The Hull Number of a Cartesian Product

We now determine the hull number of the Cartesian product of a nontrivial
connected graph with K. We first consider the hull numbers of the cycles
Cn of order n > 3. When n is even, the set of any two antipodal vertices of
C, is a hull set. But when n is odd, no two vertices form a hull set. Since
there exists a 3-vertex hull set,

2 neven
h(Cn) = { 3 nodd

It is easy to verify that the hull number of the Cartesian product C, x K»
is exactly that of Cy. In fact, we shall see that every nontrivial connected
graph G has this property. Some notation and definitions are useful to help
simplify our proof of this fact. Let G x K3 be formed from two copies G
and Gy of G with V(G;) = V;, i = 1,2. For a set S of vertices in G x Ko,
let 7(S) be the projection of S onto Vi, that is, m(S) is the union of those
vertices of G; belonging to S and those in G corresponding to the vertices
of G2 that are in S. Certainly, n(S) C n(H(S)). First, we state a lemma.

Lemma 3.1 Let G x K, be formed from two copies G1 and Gy of G. If
S C V(G x K,), then H(n(S)) = n(H(S)).

Proof. First, we show that H(w(S)) C n(H(S)). Let vy € H(n(S)).
Since (S) C w(H(S)), we may regard that v; ¢ n(S). Then v lies on
some z; — y; geodesic Py in Gy, where vy # z1,4 and z;,41 € S;. We
consider three cases.

Case 1. z1,y1 € S. Then P is the same z; — y; geodesic in G x Ko
that contains v;. So v; € w(H(S)).

Case 2. Eractly one of x| and y; belongs to S, sayz; € Sand y, ¢ S.
Let y» € S be the corresponding vertex of ¥ and P be the z; — y, path
obtained by adding y1y2 and y, to Pi. Then P contains v, where z1,y2 €
S. Therefore, v; € w(H(S)).

Case 3. z,,yn € S. Let zo,y2 and vy be the vertices corresponding to
z1,y1, and v; in Gg, respectively, and let P, be the corresponding z2 — ya
geodesic of P; in G2. Since vy € V(P,) C H(S), it follows that v; belongs
to w(H(S)).

Therefore, H(#(S)) C m(H(S)).

Next, we show that 7(H(S)) C H(n(S)). Let vy € w(H(S)). If v; €
7(S), then v; € H(w(S)). So we assume that v; ¢ 7(S). We consider two
cases.

Case 1. vy € H(S)NV). Then v, lies on some z—y geodesic P in Gx Ko,
where z,y € S. Since v; € V}, at least one of z and y belongs to Vi, which
implies that at least one of z and y belongs to =(S). If z,y € n(S), then
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P is an z — y geodesic in G, that contains v;. So v; € H(m(S)). Thus
exactly one of z and y belongs to #(S), say ¢ € n(S) and y ¢ n(S). Let
y1 € ©(S) be the corresponding vertex of y in G;. Then v, lies on some
x — y geodesic in Gy, where z,y; € n(S). Hence v; € H(n(S)).

Case 2. vy ¢ H(S)NV;. Let vz be the corresponding vertex of vy in Va.
Then vy lies on some z — y geodesic P in G x Ky, where z,y € S. Since
va € Va, at least one of ¢ and y belongs to V5. If 2,y € V3, then P is an
z —y geodesic in G, that contains v,. Then the corresponding path P of P
in G contains vy, which implies that v; belongs to H(7(S)). Thus exactly
one of z and y belongs to V5, say z ¢ Va and y € V. Let y; € n(S) be the
corresponding vertex of y in G. Then v, lies on an z — y, geodesic in Gj.
Since z,y; € #(S), it follows that v; € H(#(S)). n

Corollary 3.2  Let G x Ky be formed from two copies Gy and Gs of G.
If S is a hull set of G x K3, then w(S) is a hull set of G;.

Proof. Since S is a hull set of G x K3, it follows that [S] = Vy UV5,. Hence
there exists a positive integer k such that H*(S) = VU V4. So n(H*(S)) =
V1. By k applications of Lemma 3.1, we have H*(n(S)) = n(H*(S)) = V,.
Therefore, 7(S) is a hull set of Gj. =

Theorem 3.3  For every nontrivial connected graph G,
h(G) = h(G X Ii’z)

Proof. By applying Corollary 3.2 to the case where S is a minimum hull
set of G x Ko, we have that h(G) < h(G x K3).

It remains to show that A(G x K3) < h(G). Let G x K2 be formed
from two copies G; and G2 of G. Suppose that S; = {uy,uz,---,ux} is a
minimum hull set of G; and S; = {v1,v2, -, v} is the set corresponding
to Sy in Ga. Let S = {v1,us,---,ux}. Thus |S| = |S;]. We show that S is
hull set of G x K, which will imply that A(G x K3) < h(G).

Next we show that S; U Sy C H(S), which will imply that S is a hull
set of G x Ka. Since S C H(S), we need only show that v, € H(S) and
Sa — {v1} C H(S). Let Py be a us — u; geodesic and let P be the path
obtained from P; by adding u;v; and v;. Then P is an us — v; geodesic
in G x K, containing u;. Since uz,v; € S, it follows that u; € H(S). For
2 < i<k, let P; be a v; —v; geodesic in G2 and let P/ be obtained from P;
by adding w;v; and u;. Then P/ is a u; — v; geodesic in G x K> containing
v;. Since u;, v, € S, we have that S, — {v1} C H(S) and so S is a hull set
of G x Ks. =
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4 Minimum Hull Subgraphs

In this section, we present a characterization of graphs of order n having hull
number n—1. If v is a vertex of a graph G such that (N (v))} is complete, then
v is an end-vertex of every geodesic containing v. This observation extends
Lemma 2.1 and gives us the following result, due to Everett and Seidman
[4] in the case of hull sets. Corollary 4.1 is an immediate consequence of
Theorem A.

Theorem A If v is a vertex of a graph G such that (N(v)) is complete,
then v belongs to every hull set and every geodetic set of G.

Corollary 4.1  The hull and geodetic numbers of a tree T are the number
of end-vertices in T. In fact, the set of all end-vertices of T is the unique
hull set and the unique geodetic set of T.

By Corollary 4.1, the star Ky ,_; of order n > 3, which can also be
expressed as Kj + Kp,_1, has hull number n — 1. Our characterization of
graphs of order n having hull number n — 1 shows that the class of stars
can be generalized to produce all graphs having hull number n — 1. First,
we present a lemma this is an immediate consequence of Theorem 2.3.

Lemma 4.2 If G is a connected graph of order n > 2 such that h(G) =
n — 1, then G has diameter 2.

We now present a characterization of graphs with hull number n — 1.

Theorem 4.3 A connected graph G of order n > 3 has hull number n—1
if and only if
G=(Kn,UKp,U---UK,, )+ K

where r (> 2), ny,ng, - -+, n, are positive integers withny +na+---+n, =
n—1.

Proof. By Theorem A, G = (K,,UKp,U---UKy,, )+ Ky has hull number
n — 1 and, in fact, the vertex set of K, U K,, U---U K, is the unique
minimum hull set of G.

For the converse, assume that G is a connected graph of order n > 3
such that h(G) = n—1. By Lemma 4.2, diam G = 2. Let S be a minimum
hull set of G, where V(G) — S = {v}. Then H(S) = V(G), which implies
that S is also a minimum geodetic set of G.

We claim that v is adjacent to every vertex in S. If z,y € S and
zy € E(G), then since diam G = 2, there exists a vertex of G mutually
adjacent to z and y. By Lemma 1.1, this vertex cannot be in S, so v is
adjacent to x and y. Hence, if v is not adjacent to some vertex u in S,
then v must be adjacent to all other vertices of S. Since S is a geodetic

136



set, however, v lies on some s — ¢ geodesic, necessarily of length 2, where
s,t € S. Since us,ut € E(G), it follows that u ¢ S by Lemma 1.1, which is
a contradiction. Hence, as claimed, v is adjacent to all vertices of S.

To show that G = (K, U K,, U---UK,_ ) + K, it only remains to
verify that if zy, yz € E(G), where z,y,2 € S, then zz € E(G). However,
this follows again by Lemma 1.1. ]

Theorem 4.3 can also be derived from a theorem of Everett and Seidman
[4].

Since h(G) < ¢(G) and the graph K, is the only graph with geodetic
number n, we have the next observation.

Corollary 4.4 A connected graph G of order n > 3 has geodetic number
n — 1 if and only if

G=(Kn,UKp,U---UK, )+ K;
where r (> 2), ny,ng, -, n, satisfyny1 +na2+---+n,=n-—1.

We now introduce a concept that will turn out to be closely connected
to the result already stated in this section. A graph F is called a minimum
hull subgraph if there exists a graph G containing F' as an induced subgraph
such that V(F) is a minimum hull set. For example, consider the graphs F
and G in Figure 8. Since S = {u, v, w} is a minimum hull set of G, and F
is an induced subgraph of G, it follows that F is a minimum hull subgraph
of the graph G. Also, by Theorem 4.3, for positive integers ny,ns, .-+, n,,
where r > 2, the graph K, UKp,U---UK,_is a minimum hull subgraph.
We shall see shortly that this example illustrates the general situation.

(S

<

w

Figure 5: A minimum hull subgraph F

A related concept was defined in [2]. A graph F is a minimum geodetic
subgraph if there exists a graph G containing F as an induced subgraph
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such that V(F) is a minimum geodetic set in G. Theorem B, which was
verified in 2], gives a characterization of minimum geodetic subgraphs.
Theorem B A nontrivial graph F is a minimum geodetic subgraph if
and only if every vertex of F has eccentricity 1 or no vertex of F has
eccentricity 1.

We now determine exactly which graphs are minimum hull subgraphs.

Theorem 4.5 A nontrivial graph F is a minimum hull subgraph of some
connected graph if and only if every component of F is complete.

Proof. First, let F be a minimum hull subgraph of a graph G. Assume,
to the contrary, that F contains a component that is not complete. Then
there exist u,v € V(F) such that dp(u,v) = 2. Let w be a vertex of F lying
on some u — v geodesic in F. Then w € V(F) by Lemma 1.1, producing a
contradiction.

We now verify the converse. Let F be a connected graph, every com-
ponent of which is complete. If F is connected, then V(F) is the minimum
hull subgraph of F itself. Otherwise, F = K, UK, ,U---UK,_for positive

integers ny,na,---,n,, where # > 2. Let G = K, + F. Then as we have
seen, V(F) is the unique minimum hull subgraph of G. u
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