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ABSTRACT

This paper defines a new graph invariant by considering the set
of connected induced subgraphs of a graph and defining a polyno-
mial whose coefficients are detemined by this partially ordered set
of subgraphs. We compute the polynomial for a variety of graphs
and also determine the effects on the polynomial of various graph
operations.

1 Introduction

Let G be a finite simple graph. Throughout this paper we shall use the
notation of [1]. V(G) is the set of vertices of G and |G| is the order of G
and is the number of vertices of G. E(G) is the set of edges of G and we
shall denote the edge connecting vertices v and w by vw.

We are interested in the relationship between G and the set of connected
induced subgraphs of G. Recall that if G is a graph and H is a subgraph of
G then we say H is an induced subgraph of G if every edge in G connecting
vertices in H is also an edge of H. For instance, K4, the complete graph on
4 vertices does NOT contain Cj, the cycle graph consisting of 4 vertices, as
an induced subgraph. It is very important to note that virtually all of the
subgraphs we shall consider will be induced subgraphs.

If G is a graph, then let P(G) be the set of all connected induced
subgraphs of G, and call it the induced subgraph poset. For the sake of
convenience we shall say that the empty graph is also connected. Equiva-
lently, P(G) is the collection of all connected (or empty) subsets of V(G),

ARS COMBINATORIA 57(2000), pp. 139-149



the vertex set of G. (This definition extends trivally to multigraphs, but
extending our results to this more general setting will needlessly compli-
cate many of our statements without changing their substance, so we shall
remain in the simple graph setting.)

We can define a partial order on P(G) by inclusion: if H,K € P(G)
then we say K < H if and only if V(K) C V(H). P(G) has minimal element
@ (which we usually denote by 0) and if G is connected then P(G) has G
as its maximal element. We shall write H < K or H C K only if V(H) is a
proper subset of V(K). We shall define our graph invariant via the Mobius
function on this partially ordered set (or poset).

Definition 1.1 If P is a finite poset with minimal element 0, then a Mobius
function on P is an integer-valued function on P such that p(0) = 1 and

> u(K) =0 for each He P.
0<K<H

The M&bius function may be recursively computed and is clearly uniquely
defined. More precisely:

Theorem 1.2 If P is a finite partially ordered set with minimal element

0, and if f is an integer-valued function on P such that f(0) = 1 and for

each H in P we have Z f(K) = 0 then f is the Mobius function on P.
0<K<H

P(G) has a natural ranking, given by the number of vertices in each
induced subgraph. We use this ranking to define our polynomial.

Definition 1.3 Let G be any finite graph, P(G) be the set of connected
induced subgraphs of G and p the Maobius function on P(G). The lattice

polynomial of G is
2(G,ty= Y p(H)M
HeP(G)

This polynomial should more properly be called the characteristic poly-
nomial of the poset P(G), but since the characteristic polynomial of a graph
has been previously defined in graph theory, we use the term lattice poly-
nomial. We also adopt the following ﬁsomewhat redundant) notation and
define u(G) to equal the coefficient of ¢ Glin 7(G,1). If G is connected then
#(G) is just the value of the Mdbius function at the maximal element G
of P(G), while if G is not connected then y(G) = 0. This convention will

allow us (when convenient) to write 7(G,t) = Z p(K)t™! where the sum
KCG

is taken over all induced subgraphs of G.
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Clearly both m(G,t) and pu(G) are invariants of the graph type. The
goal of this paper is to explore the properties of these two invariants. In
particular we shall determine the effects that certain graph operations such
as join and addition or contraction of edges and vertices have on the lattice
polynomial.

2 Empirical Results

In this section we give several examples of the lattice polynomial on small
graphs, and derive a few of its properties. Figure 2.1 shows the induced
subgraph poset and the values of the Mobius function on the poset for
the graphs K3 and C,;. Here we visualize the induced subgraph poset as
a (directed) graph whose edges (directed upward) record inclusion of the
connected induced subgraphs. .

JANE SRS
c : :
K3 P(K3) w(K3,t) =1—3t+ 32— ¢
Ca P(C4) 1r(C4,t) =1-— 41+ 4% -¢t*

FIGURE 2.1 The lattice polynomial of K3 and Cj.

A glance at the definition of mobius function shows that if P(G) has
a maximal element, then the sum of the coefficients of #(G,t) is zero, i.e.
7w(G,1) = 0 if G is connected. Our study of the lattice polynomial begins
with a simple observation concerning graphs which are not connected.

Proposition 2.1 If G is a disjoint union of the graphs G, and G2 then
m(G,t) = 7(Gy,t) + 7(G2,t) — 1 and hence the number of connected com-
ponents of G is 1 — n(G, 1)
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Proof: P(G,UG;) is just P(G,) and P(Gg) joined at the minimal element.
Hence for degree k > 0 the coefficient of ks

STou= Y pH)+ D wu(H).

HEP(G) HEP(G;) HEP(G2)
|H{=k H|=k |H|=k

and so 7(G,t) = 7(Gi,t) + m(Ga,t) — L. Clearly, then, if G is a disjoint
union of the connected graphs Gq,...,Gy then

n
7(G,t) = —(n—1) + Y _ m(Gy,1)
k=1
Since 1 is a root of the lattice polynomial for connected graphs we have

1-7n(G,1)=n.m

In light of this proposition, we shall concentrate on connected graphs.
For these graphs the sum of the coefficients of 7 is zero, a fact we shall use
repeatedly in our later results. Before revealing these results in Section 3,
we shall list the lattice polynomials of some small graphs. {Ey, is the graph
with n vertices and no edges, P, is the path of length n, Cy, is the circle
graph with n vertices, K, is the complete graph on n vertices and Km,n is
the complete bipartite graph with m + n vertices.)

1. 7{En,t)=1—nt

m(K,t)=1-1
m(Ka=Pt)=1=-2t+12
m(Ks=Cat)=1-3t+3t2-¢3
w(Py,t) = 1 — 3t + 2

m(Ks,t) =1 —4t +6t> — 483 +1*
7(Ca = Kao,t) = 1 -4t +4t% —t*
m(Ps,t) = 1 — 4t 4+ 3t2
m(

© o N B ;e e W

Kaa,t)=1—5t+6t2—3t*+1°

Clear patterns emerge in the above list and we shall later provide the
general formulae for the lattice polynomials of these types of graphs. If we
denote by |H| the number of induced subgraphs of a graph G which are
isomorphic to the graph H, then a review of the values of p for all graphs
on 5 or fewer vertices shows that

w(G,t) = 1= [V(G)|t + | E(G)t* — | Kalt® + (|Kal = [Cal) £ + -
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As a result we see that several graph properties can be determined by the
lattice polynomial, including:

1. If the coefficient of 2 is non-zero then the chromatic number of G is
at least three, since G contains a subgraph isomorphic to K.

2. If the coefficient of ¢! is positive then the chromatic number of G is
at least four, since G must contain a subgraph isomorphic to Kj.

The situation for graphs with 5 or more vertices is much more complex.
Figure 2.2 shows all graphs with five vertices having a non-zero value for p.

u(G) = -1 wG) = -1

p(G)=1 #(G) =1 nG)=1
FIGURE 2.2 A complete list of graphs with 5 vertices and p(G) # 0.

This classification allows us to add the following to our list of graph
properties reflected in the lattice polynomial.

3. If the coefficient of t* is positive or the coefficient of t° is positive then
G is not outerplanar. This follows, since these conditions require
that G contain a subgraph isomorphic to K4 or K 3, which cannot
occur in an outerplanar graph (See [1] p. 36 problem 92.)

Further analysis on graphs of 5 or more vertices would reveal additional
graph properties contained in the lattice polynomial.

3 Properties of the Lattice Polynomial

In this section we discuss several graph operations and their effects on the
lattice polynomial.

If G and H are disjoint graphs, then the join of G and H, denoted
G+H, is the graph consisting of GUH with an edge connecting each vertex
of G with each vertex of H. For instance, Ky, n = Epn + E,. Borrowing
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terminology from topology, call Ey + G the cone of G and denote it by
cone(G). One can easily see that cone(Kp) = Kn41.

Theorem 3.1 If G is any graph then p(cone(G)) = —p(G) and
n(cone(G),t) = (1 — t)n(G,1).

Proof: We shall prove the result by induction on n = |G|. The cases
n =0, 1 are trivial, so assume » > 1. If H is a connected induced subgraph
of cone(G) then H is either a connected induced subgraph of G or the
cone of a not-necessarily connected induced subgraph of G (noting that the
added vertex is the cone of the empty graph), hence

m(cone(G),t) = Z p(H)H 4 Z pe(cone(H))tHI+! 4 y(cone(G))tlSI+!
HCG HCG

= n(G) - x(G)t + (4(G) + p(cone(G)) )¢+

and since the cone of G is connected, t = 1 is a root of 7(cone(G),t) and
we see that p(cone(G)) = —p(G) and n(cone(G),t) = (1 —t)n(G,t). =

As an immediate corollary we have

Corollary 3.2 n(K, + G,t) = (1 —1)"n(G,1), hence n(Kn,t) = (1 -1)"
and p(K,) = (-1)".

However, in general it is not true that #(G + H,t) = (G, ) - n(H,t) as
one can see by considering Es + E2 = Cy.

Next we consider a particular kind of gluing operation. Let G and
H be graphs each of which contains a subgraph isomorphic to K,. We
again borrow terminology from topology and denote by G Uk, H the graph
obtained by gluing (or identifying) these two subgraphs with each other.
Obviously there are many ways of gluing the two K,, together, but since
the lattice polynomial does not distinguish these, we shall not worry about
the particular way in which they are glued together and shall retain this
ambiguous notation.

Theorem 3.3 n(H; Uk, H,t) = n(H;,t) + n(Hz,t) — 7(K,,t) and hence
p(Hy Uk, Hz) = 0 if [Hy|, [Ho| > n.

Proof: In the following proof we use K C G to mean K is a proper induced
subgraph of G, while K C G is used when K = G is allowed. Theorem 2.1
shows that we need only consider connected graphs. Denote Hy Ug, Ha by
G:. First note that if either H; or Hs is isomorphic to K, there is nothing
Lo prove.
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We prove the result by induction on n. The base case is n = 1. We
prove the base case by induction on k = |G| — n. Since neither H; nor H,
is a K, the base case is k = 2. If k = 2 then

m(G,1) = Y I 4 ST p@® — S ) 4 p(G)lS!
KCH, KCHa, KCH,;nH,
= w(Hy,t) + n(Hy,t) — n(Kn,t) + pu(G)t!Cl

Since G,H;,Hs and K, are all connected, 1 is a root of each of their lattice
polynomials and hence u(G) = 0.
If £ > 2 then

m(G0) = Y K+ Y pE)d® - 3 k)

KCH; KCH, KCH,nH,
+ > p(K)K 4 p(G)ilCl
KCG,KZH, KZH2>

By induction on % the second to last sum is zero hence
m(G,t) = m(Hy, ) + m(Ha, t) — 7(Kn,t) + p(G)t!€l

and, as before, it follows that u(G) = 0.
Now assume n > 1 and the result holds for n — 1. We prove this by
induction on k = |G| — n where k = 2 is again the base case. If k = 2 then

m(G,8) = Y pE)E 4 3 p) - S () 4 p(G)de
KCH, KCH, KCH;NnH,
= w(Hi,t) + n(Hz,t) — 7(Kn,t) + p(G)tI®

and it follows that x(G) = 0.

If £ > 2 then
7(G,t) = Y w4+ D pEeE - " p(K)e
KCH, KCH3 KCH,nH,
+ > p()EE 4+ p(G)lS
KCG,KEZH,
K@ZH»

= n(Hi,t) + m(Ha,t) — m(Kq,,t) + p(G)t!G

since by induction on k or on n the second to last sum is zero. Again, since
G is connected it follows that 4(G)=0. m

This result does not hold if one tries to extend it to gluing along other
types of subgraphs. For instance C4 can be thought of as two Ps’s glued
along the end vertices, yet 7(C4,t) # 2m(Ps,t) — n(E2,1).

Theorem 3.3 allows us to show that adding a leaf to a graph has a
predictable effect on the lattice polynomial. Recall that a leaf is a vertex
of degree 1.
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Proposition 3.4 If G is a graph containing at least three vertices and
which contains a leaf then u(G) = 0. Furthermore if H is any graph and G
is obtained from H by adding a leaf then =(G,t) = m(H,t) —t + ¢.

Proof: If G is obtained by adding a leaf to H then G = HUg, K> and
hence #(G,t) = n(H,t) + n(K2,t) — #(K;,t). The result follows. m

This proposition has a simple corollary.

Corollary 3.5 If T is a lree with n vertices then n(T,t) = 1—nt+(n—1)t*
and hence pu(T) = 0 if |T| > 2. Furthermore, m(Pp,t) = 1— (n+ 1)t + nt®.

Proof: Since a tree with n vertices may be built by successively adding
leaves to a smaller tree, it follows that #(T,t) = (1 —t) — (n = 1)(t — ¢t*). m

Corollary 3.6 7(Cy,t) =1—nt +nt® —t".

Proof: All of the connected induced proper subgraphs of C,, are trees and
hence the coefficients of ¢ through " ! in 7(C,,) are zero. ®

One can combine Corollary 3.6 with Theorem 3.1 to see that the lat-
tice polynomial for W,, = cone(Cp), the Wheel graph with n-spokes, is
T(Wa,t) =1— (n+ 1)t + 2nt? — nt® — ¢* + "1,

Corollary 3.7 If G is a mazimal outerplanar graph with n vertices then
m(G,1) = 1—nt + (2n — 3)t2 — (n — 2)¢3.

Proof: A maximalouterplanar graph with n vertices can be constructed by
successive gluing a K3 onto an outer edge of a smaller maximal outerplanar
graph. Hence 7(G,t) = (1—-t)3+ (n=3) (1 -¢)®-(1-t)}) =1—nt +
2n—-3Nt2 = (n—-2)t°. m

Next, we discuss the effect of deleting an edge from a graph. As we
already know, this would decrease the coefficient of ¢* in the lattice poly-
nomial by one, but the effect on higher terms of the polynomial is much
more subtle. Two situations where the effect on the polynomial is known
are given below. One should compare these results with those for the Tutte
polynomial given in (1], pp 335-358.

Recall that an edge e of a graph G is a cut edge if G \ e (the graph
obtained by deleting the edge e from G) is not connected.

Corollary 3.8 If G is a graph and e is a cut edge of G then
m(G,t) = 7(G \ e, 1) + t2.
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Proof: Write G as H; Ug, K2k, Ha where the K is the cut edge, then
(G, 1) (Hl,t)-l-(l—t) +1r(H2,t) 2(1-1)
(Hl) )+ W(HZat) -1 +t

and so n(G,t) = n(G\ e, t) +t2. m

If v is a vertex of a graph G, then the neighborhood of v, denoted I'(v)

is the set of all vertices adjacent to v. If vw is an edge of a graph G and

I'(v) U {v} = I'(w) U {w} then we shall say that v and w have ¥ common

neighbors where & = |I'(v) \ {w}|. For instance, any two vertices of K,
have n — 2 common nelghbors

|l

Lemma 3.9 Let G be a graph and e = vw an edge of G such that v and w
have common neighbors. IfH is a connected induced subgraph of G properly
containing v and w then H\ e is a connected induced subgraph of G\ e.

Proof: H\ e is clearly an induced subgraph of G \ e, so that we need only
show it is connected. If H\ e were not connected then e would be a cut
edge of H. This is clearly impossible, for since H is connected there exists
a third vertex, z of H adjacent to either v or w and hence both. Thus zv
and zw are edges of H and so e is not a cut vertex of H. =

If P is a partially ordered set and H,K € P with H < K then the
interval [H,K]={Le€ P|H < L<K}.

Theorem 3.10 If G is a graph and e = vw is an edge of G such that v
and w have k common neighbors, then

7(G,t) = 7(G \ e, ) + t3(1 — t).

Proof: Lemma 3.9 shows that every element of P(G) is also an element
of P(G\ e) except for the edge e. Denote by S the set of neighbors of v
and w, i.e. $ = T(v)\ {w} = T(w)\ {v}. Let pg be the Mobius function
on P(G) and deﬁne the funct.lon fon P(G\e) by

pa(H) + (=D)WVENSI=L - Gp 0y c VH)C S
f() = { pa(H) otherwise

We shall show that f is a Mobius function on P(G \ e).

Clearly u(8) = 1, so suppose H € P(G \ e). The induced subgraphs of
G \ e which do not contain both v and w are exactly the induced subgraphs
of G which do not contain both v and w, hence

S OAE) = Y welE)-—pal)+ Y (~pIVEIns-t
0K <H 0<K<H {u,v}CV(K)
I\EP(G\e) KePr(q) CSNV(H)
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= Z pa(K) - Z (=1)lV K0S

0<K<H {10} CV(K)

KeP(G) CSAV(H)
But it is easy to see that the last summand is the sum of the values of a
Mobius function on the boolean sublattice [e, HN S] of P(G) and hence
is zero (see [2] Prop. 2.44), so that E f(K) =0 and f is a Mobius

0<K<H
KEP(G\e)

function on P(G\ e). As a result
m(G\et) = 3 pa(K)pKl—2— S (-1)KldX]

0<K<H {u,v}CV(K)
Ke€P(G) CSAV(H)
— 7l'(G,t) —¢2 Z (_l)lKnS|—2th|—2
{u,v}CV(K)
CSNV(H)

= w(G)-t3(1-t)*
and the result is proven. =

If G is a graph then let cyl(G) = E2 + G and call it the cylinder of G.
Since the cylinder of a graph is the two-fold cone of a graph with a deleted
edge we have:

Corollary 3.11 7 (cyl(G, 1)) = (1-t)%n(G, t)—t2(1-t)!S! and p(cyl(G)) =
1(G) = (=1)ISl. Hence if u(G) = 0 then p(cyl(G)) # 0.

One should now consider the 5 graphs on five vertices given in figure
2.2. Note that those other than K5 and Cjs are the cylinders of the graphs
with 3 vertices having a zero value for p.

We can now consider complete bipartite graphs. Recall that K, n =

Em + E,. Since connected induced subgraphs of complete bipartite graphs
are also complete bipartite graphs, we have the following theorem.

Theorem 3.12 Ifm >2 and n > 2 then p(Kmn) = (—1)™*"*! and
(Kmn,t) = (1-mt)(1—t)" + (1 —nt)(1 - )™ — (1 - t)™+"

Proof: Note that Proposition 3.5 gives the result in the case m = 1 or
n = 1. While Corollary 3.11 gives the result if m = 2 or n = 2. We prove
the result by induction on m. Now assume m > 2. We shall prove this
by induction on n, so assume n > 2. Now each of the connected induced

subgraphs are also complete bipartite, and K ; occurs T (7;) times. So
that

m,n
n
w(Kmp,t) = 1—(m+n)t+mnt®+ > p(Kiy) (’Z) (l)t"’”
k=21=2
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= (1- mt)(l —nt) + (p(Km,n) + (=1)™+")

+ P ; 2 1)k+1+1( )(Tl‘>tk+t

= (1—mt)(1 —nt) + (u(Kmn) + (=1)™F") gm0

-2 ()2 (e

= (1-mt)(1 —nt) + (p(Km,n + (-1)F")) 27 H0
~[a-ym-q- mt)| [(1=1)" = (1= nt)|
= (I-m)(1-t)"+(1—-nt)(1-1)"-(1-t)™*"
+ (1(Kmn) + (1)) gmin
Now since the graph is connected and ¢t = 1 is a root of the above polymo-
mial we see that u(Kmn) = (—1)™***! and the proof is complete. m

The above theorems allow us to compute the lattice polynomial for quite
a few graphs. The interested reader can verify the following results, which
are just a few of the many one can obtain.

1. m(P2+ G 1) = (1 —1)3%(G,t) —t2(1—1)!SI+! and hence p(Pr +G) =

#(G) + (-1

2. m(C4+G,t) = (1-1)*n(G,t) —2t2(1—1)I61*2 and hence u(Cs+G) =
(G) —2(-1)".

In a forthcoming paper we shall delve more deeply into the operations

of edge deletion and contraction and discuss a several variable version of
the polynomial.

I
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