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ABSTRACT. The Ramsey numbers r(Cs,G) are determined for
all graphs G of order six.

1 Introduction

Ramsey numbers for small graphs have been studied assiduously since the
earliest work on this subject by Chvétal and Harary [4]. For a constantly
updated compilation of known results, the reader is referred to the use-
ful electronic survey prepared by Radziszowski [14]. Various contributions
have involved creating complete catalogues for limited families of graphs.
An early effort in this direction was that of Clancy, who gave all but five
Ramsey numbers r(F, G) with |V(F)| < 4 and |V(G)| < 5 [6]. Additional
diagonal Ramsey numbers for graphs of order five were found by Harborth
and Mengersen [9]. Hendry extended Clancy’s catalogue to cover, with
six exceptions, all pairs where both F' and G are of order at most five
{10]. Another approach involves finding for some fixed graph F all Ramsey
numbers r(F,G) for graphs G of limited order. All triangle-graph Ramsey
numbers for connected graphs of order six were found in [7]. By standard
methods, Schelten and Schiermeyer found r(Kj3,G) for all but 39 of the
853 connected graphs G of order seven [17]. Using a computer, Brinkmann
independently determined r(K3, G) for connected graphs of order seven,
and he extended the calculations to cover connected graphs of order eight
[3]. Brandt, Brinkmann, and Harmuth have now determined r(Ks,G)
for all connected graphs of order nine [2]. The authors established that
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7(Cs, Kg) = 18 [15] and then found r(Cy, G) for all graphs of order six [12].
In this paper, we address the corresponding problem for Cs. An essential
step in this program is taken in [16] where we show that r(Cs, K¢) = 21.
In determining 7(Cs, G) for disconnected graphs G of order six, the results
of [4], [6], [10], and [11] can be used. Most of the effort here is devoted to
determining r(Cs, G) where G is connected.

We consider only finite, undirected graphs without locops or multiple
edges. Given graphs F and G with no isolates, the relation K, — (F,G)
holds if for every coloring of the edges of K, using two colors, red and
blue, the resulting red graph R contains (a subgraph isomorphic to) F or
the blue graph B contains G. The Ramsey number r(F, G) is the smallest
positive integer p such that K, — (F,G). For p < r(F,G) a two-coloring
of E(K,) with no red F and no blue G is called good. For p=r(F,G) -1
such a good coloring is called eritical. Given graphs G; and G, the graph
G + G, is obtained from disjoint copies of G; and G2 by joining each
vertex in V(G)) to every vertex in V(G2). Standard symbols will be used
for cycles, complete graphs, and complete bipartite or multipartite graphs.
The book with m pages is the graph B,, = K; + K1m.

2 Results

Theorem 1 Let G be a graph of order siz with no isolates. In case G is
disconnected, Py U K9, K13U K3, 2P3, 3K», (K1,3 +e)U Ky, K3U Ps,

8, G=CyUK,,
9, G=ByUK,,
10, G = 2Ksj,

13, G= K;UK,.

r(Cs,G) =

In case G is connected,

21 ifG = K,

17 if Ks C G and G & K,
7(C5,G)=¢13 ifK4 CGand K5 ¢ G,

13 fG=Ws=K;+Cs,

11 otherwise.

The proof of the theorem is given in a sequence of lemmas. The first
lemma takes care of the cases in which G is disconnected.
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Lemma 1 Py U K3, 2P3, 3K», (K13 +¢€)U Ky, K3U Ps,

8, G2 CiUK,,
9, G=ByUK,,
10, G = 2Kj;,

13, G= K4,UKs.

1‘(05, G) =

Proof: The two-coloring of E(K7) in which R 22 Bs shows that 7(Cs,C4U
K3) > 8. Let (R, B) be any two-coloring of E(Ks). Since r(C5,C4) = 7
we may assume that Cy C B. Let X = {vy,v9,v3,v4} be the vertex set of
such a C4. Then Cy U K3 C B unless Y = {vs,vs,v7, s} spans a red Kj.
If any vertex in X is adjacent in R to two vertices in Y there is a red Cs.
Otherwise, in B any two vertices in X "have two common neighbors in Y;
this gives C4 U K5 C B.

Remark. If r(Cs, G) 2 |V(G)| + 5, then 7(Cs, GU K3) = r(C5, GU P3) =
r(Cs, G). Since r(Cs, B2) = 9 we have 7(Cs, B U K3) = 9.

The two-coloring of E(Ky) with B 22 K 4 4 shows that r(Cs,2K3) > 10.
In [10] we find that r(Cs, Wy) = 9 where W, = K, + Cy is the four-spoked
wheel. Let (R, B) be a two-coloring of E(Kyo) with Cs ¢ R. If view of
the result just mentioned, Wy C B. Delete the hub vertex of such a blue
copy of Wy and apply the result again to find a second Wy with a different
hub. Now clearly we can pick four distinct vertices, two from the first wheel
and two from the second (even if the rims overlap completely) to yield two
disjoint triangles; hence 2K3 C B.

In view of the earlier remark and r(Cs, K4) = 13, we have r(Cs, K4 U
K3) = 13. The other values follow directly from the above remark and
6]). o

It is easy to see that 7(Cs, G) > 11 for every connected graph G of order
six. With the exception of the five-spoked wheel W5 = K 4 Cs, every K;-
free graph of order six is 3-colorable. Thus, except for Ws and By = K 1 4,
the Kj-free graphs of order six are subgraphs of either K322 or Kj23.
Our first goal, achieved in Lemma 3, is to show that if either G C K399
or G C Ky 2,3 then r(Cs,G) = 11. Since 7(Cs, Bs) = 11 [8], it is thus true
that 7(Cs,G) = 11 for every connected graph G 2 Wjs of order six and
satisfying K4 ¢ G.

Lemma 2 If (R, B) is a two-coloring of E(K1) such that §(R) > 3 and
Cs ¢ R then B contains both K322 and K 1,2,3-

Proof: Suppose that (R, B) is such a two-coloring of E(K;;). Let V =
{v1,v2,... ,v11} denote the vertex set of the Kj;.

Case 1. K4 C R. Suppose K = {v1,v,vs,v4} is the vertex set of a
red K. In view of the known results r(Cs, K2,2) = r(Cs, K13) = 7 [10],
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we may assume that the blue graph spanned by V' \ K contains both Ky 2
and K,3. If two vertices of K are adjacent in B to every member of
V' \ K then B contains K322 and K 23. Thus at most one vertex of K is
adjacent in B to every member of V' \ K. Take v4 to hold this possibility.
Since there is no red Cs, no two vertices in K are adjacent in R to the
same vertex in V \ K. Thus there are distinct vertices vs,vs,v7 € V\ K
such that {v;vs,vove,v3v7} C R. Also {vs,ve,v7} is an independent set
in R, and each vertex therein is adjacent in R to at least two vertices in
{vs,v9,v10,v11} since §(R) > 3. There must be a common adjacency and
this gives C5 C R, a contradiction.

Case 2. Ky—e C R and K4 ¢ R. Suppose K = {v1,v2,v3,v4} induces a
red K4 — e; specifically, assume that vz, is the sole blue edge. Asin case 1,
the blue graph spanned by V' \ K contains both K32 and K, 3. Note that
since 6(R) = 3 neither v3 nor v4 can be adjacent in B to every member of
V' \ K. Also at most one of vy, vz can be adjacent in B to every member
of V\ K. Since there is no red Cs, we may therefore assume that there are
distinct vertices vs,vs,v7 € V \ K such that {vivs,vsve,vav7} C R. Let
X = {vs,v9,v10,711} and let N denote the neighborhood of vs in R. There
are two subcases.

(a) {vs,ve} C NN X. In this case, the absence of a red Cs implies that
there is a blue K5 55 with parts {vs,ve}, {va,v7}, {vs,vo} and also a blue
K23 with parts {’Us}, {'03,’09}, {1)2,'()4,1)7}.

(b)) NN X = {vg}. Then in order to fulfill §(R) > 3, we must have
vous € R. The absence of a red Cs implies a blue K329 with parts
{vs,ve}, {va,v7}, {vs,vs}. Note that v;v; € B for i = 1,2,3,5,6,8; oth-
erwise Cs C R. Hence we may assume that {v7v,v7v10} C R. If vgug € B
then there is a blue K 23 with parts {vs}, {vs,ve}, {v1,v2,vs}; hence we
may assume vgvg € R. Also vgug € B yields a blue K 5 3 with parts {ve},
{vr,v9}, {v1,v2,v5}, s0 vgug € R. By symmetry, vsvio € R and vsvio € R.
Hence R contains the graph shown in Figure 1. The only additional edge
that is possible is vguvg.

If viv1; € R then, in order to avoid a red Cs, we must have v;v;; €
B for i = 3,4,5,9,10, yielding a blue K, 23 with parts {v11}, {vo,v10},
{vs,v4,vs}. Hence viv; € B. (Note that this argument does not use the
fact that vjve € R.) By symmetry then, v;v;; € B for i = 1,2,9,10. To
fulfill the condition §(R) > 3, v11 must be adjacent in R to three vertices
in {vs,v4, s, Vs, v7,v3}. Inspection shows that a red Cs is produced unless
{1)31111,1)41)11,’051)11} C B and {051)11,1)71111,1181111} C R. But this gives
K123 C B with parts {v11}, {ve,v10}, {3,v4,vs}.
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Figure 1

Case 3. K3 C R and K4 — e ¢ R. Suppose K = {v1,v3,v3} is the vertex
set of ared K3. Since 6(R) > 3 and there is neither a red Cs nor ared Ky —e,
there must be distinct vertices vy, vs, v such that {v,v4,vous,v3v6} C R.
Since there is no red K, — e, each of vy, vs, v must be adjacent to at least
two vertices in {vz,vs, ... ,v11}. Thus there must be a common adjacency.
This gives Cs C R, a contradiction.

Case 4. Ks ¢ R. Let v; be a vertex of maximum degree in R. Since
8(R) = 3 and the number of vertices is odd, A(R) > 4. For each vertex v;,
i > 2, let d(v1,v;) denote the distance from v; to v;. Accordingly, we define

Ny = {'Uil d(vy,v;) = l}, Ny = {'ui| d(vl,v,-) = 2}, Nso = {'v,-| d(v1,'v,~) > 2}.

Then |N;| > 4, and the blue graph spanned by N; is complete. Since
R contains neither Csz nor Cjs, the blue graph spanned by {v;} U N» is
complete. Hence we may assume |N2| < 4; otherwise B contains K and
thus both K322 and K 23. It follows that [Ny U N5a| > 6, so the blue
graph spanned by N; U N5 contains K¢ — e and thus both K322 and
Kiz23. D

Remark. A Cs-free graph G of order eight whose complement does not
contain Kp3 is isomorphic to one of the graphs Ky 4, K44 — Ps or else
contains K44 —4K>.

Proof of the remark: The proof is similar to the case analysis proof
of the Lemma 7, so we simply give a summary of the possible extensions
corresponding to the different cases of the minimum degree, as shown in
Table 1. Let v be a vertex of minimum degree and let H be the graph
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spanned by the set of vertices disjoint from v and its neighborhood. By a
well-known fact from extremal graph theory, if §(G) > 4 then G is pancyclic

except when G = Ky 4. 0

§(G) | |H| | H Extension
1 6 K33 (Lemma 5) N
2 5 Kg,g, B3 or K, + 2K, K4'4 -P

(Lemma 5)
3 4 Any Graph on 4 vertices Contains

without isolated vertices | K4 4 — 4K,

Table 1

Lemma 3 If G is a connected graph of order siz that is a subgraph of
either K123 or K222, then r(Cs,G) = 11.

Proof: The coloring of Ko in which R 2 Kj 5 shows that r(Cs,G) > 11
for any connected graph of order six. To complete the proof, it suffices
to show that K;; — (Cs,K1,2,3) and K;; — (C5,K2,2'2). By Lemma
2 and r(Cs, K23) = 7(Cs, K1 22) = 9 [10], we may assume that in any
counterexample §(R) = 2. Suppose that v, is a vertex of degree two in
R with neighbors v and vs3. Let us prove K3 — (Cs, K1,23). By the
above remark, the red graph spanned by {v4,vs, ... ,v11} will be a bipartite
graph of order 8 that is isomorphic one of the graphs Ky 4, K44 — P3 or
else contains K44 — 4K>. Specifically, we may assume that {v4,vs, ve, v7}
and {vs, vg,v10,v11} are the color classes of an appropriate bipartite graph.
Note that for each of the possibilities for the red bipartite graph spanned by
{v4,vs,... ,v11}, any two vertices in different color classes are joined by a
path of length three. Since there is no red Cs, we may thus assume that v,
is adjacent in B to each of the vertices vy, vs,v6,v7. Then {vy,v2,...,v7}
spans Kg —e in B, a contradiction. The proof for K» 22 is similar. Details
are left to the reader. a

We have shown that, except for Ws, every connected graph G of order
six that does not contain K, satisfies (Cs,G) = 11. In [5] Chvétal and
Schwenk found that 7(Cs, W) = 13. Our next goal is to show that if G
contains K4 but not Ky then 7(Cs, G) = 13. This is achieved in Lemmas 5
and 8.

Lemma 4 A Cs-free graph G of order thirteen satisfying 6(G) > 4 is
bipartite.

Proof: See the proof of Theorem 1 in [5). ]

Lemma 5 If G 2 K¢ — K3 is a connected graph of order siz that contains
a K4 but no Kz then r(Cs,G) = 13.
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Proof: It is known that r(Cs, K4) = 13 [6], so 7(Cs, G) > 13. By exhaus-
tive consideration of the possible graphs, it is seen that G C Kg — 2K, for
all graphs G under consideration. Thus it remains to show that r(Cs, K¢ —
2K>) < 13. Let (R, B) be a two-coloring of E(K;3) with no red Cs and
no blue K¢ — 2Kj,. In view of Lemma 4, we may assume that §(R) < 3 so
A(B) 2 9. Consider a vertex of degree A(B) and its neighborhood in B.
It is known that 7(Cs, K5 — 2K3) = 9 [10]. Thus we find either C5 C R or
else K¢ — 2K, C B, a contradiction. m]

Lemma 6 A Cs-free graph of order siz with minimum degree at least 8 is
isomorphic to K3 3. A Cs-free graph of order five with minimum degree at
least 2 is isomorphic to Ka3, B3, or K1 +2K> (a bow tie).

Proof: The first fact is well known from extremal graph theory. The second
can be found by direct inspection of all graphs of order five. (n]

Lemma 7 The Ramsey number r(Cs, B3) is 10, and in any critical color-
ing of E(Kg) the red graph is isomorphic to the graph G shown below.

g
Figure 2

Proof: See (8] for 7(Cs, Bs) = 10, including a critical coloring of E(Kjy).
Our goal is to prove uniqueness: if (R, B) is a critical coloring of E(Kjy)
then R = G. It is easily checked that the addition of any edge to G produces
a Cs. Hence it suffices to prove that G C R. We argue by cases depending
on the minimum degree. In each case, take v; to be a vertex of minimum
degree in R.
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Case 1. §(R) < 2. Then the neighborhood of v; in B has at least seven
vertices. Since r(Cs, K1,3) = 7 we thus find either Cs C Ror K1 + K; 3=
B3 C B, a contradiction, so there is no such critical coloring.

Case 2. §(R) = 2. Suppose v, has neighborhood {vs,v3} in R. Since
there is no blue Bj, the red graph spanned by {vs,vs, ... ,v9} has minimum
degree at least 3, so it is isomorphic to K33 by Lemma 5. Take the color
classes to be {v4,vs,v6} and {vr,vs,ve}. If v is adjacent in B to all three
vertices in one of the color classes then K5 — e C B. Otherwise, v, is
adjacent in R to at least one vertex in each color class and then there is a
red Cs. Again there is no such critical coloring.

Case 8. 6(R) = 3. Suppose v; has neighborhood {v2,v3,v4} in R. Let
X = {vs,vs,...,vg} and let (X)gr denote the red graph spanned by this
set. Note that (X)pr has minimum degree at least 2 (otherwise there is a
blue B3), so we can apply Lemma 6 to find that this graph contains Kz 3
or is isomorphic to the bow tie K} + 2K,. We consider the corresponding
subcases in turn.

(a) Ka3 C (X)p. Take the color classes to be {vs,v7,v7} and {vs,vg}.
Since there is no red Cs we have {vsvg,vsv7,v6v7} C B. If, for example,
{vavs,vov7} C B, then the blue graph spanned by {v),v2,vs,vs,v7} con-
tains Bs; hence we may assume that {vovs,vovg} C R. Then there is a
red Cs unless {v;v; | 2 <7 < 4,8 < j <9} C B. If vgug € R then
(v2,vs, v8, v, vs, v2) is a red Cs, and if vgug € B there is a blue By.

(b) (X)r = Ki + 2K3. Take the red bow tie to consist of triangles
{vs,ve,ve} and {vs,vs,v9}. Consider vertices vs and vg. In order to satisfy
6(R) > 3, each of these vertices must be adjacent in R to some vertex in
{v2,v3,v4}. However, v;vs € R and vjus € R where 2 < i, j < 4 and
1 # j gives the red cycle (vy,v;, vs, vg, v4,v1), SO we must have : = j. The
same observation holds for the pair v7,vs, so there is no loss of generality
in assuming that {vs,vs,vs} and {v4,vs,vs} induce red triangles. Now if
v3 is adjacent in R to any vertex »; with 5 < ¢ < 9 there is a red Cs. Hence
6(R) > 3 requires {v3vy,vsv4} C R, and therefore G C R.

Case 4. 6(R) > 4. The following result is left as an exercise for the
reader: a Cs-free graph G of order 9 satisfying 6(G) > 4 is bipartite. (The
smallest odd cycle, if there is one, is clearly a C3. Consider the following
possibilities: (i) K3 C G and Ky —e¢ G. (ii) K4y—e C G and K4 ¢ G,
(iii) K4 C G.) If R is such a graph, then B3 C K5 C B. D

Lemma 8. 7‘(05, Ks - Kg) =13

Proof: Suppose (R, B) is good coloring of E(K;3). Since r(Cs, Bs) = 10
and K¢ ~ K3 = K, + B3, we have §(R) > 3.

Case 1. 8§(R) = 3. Let v; be a vertex whose neighborhood in R is
N = {vg,v3,vq}. Let X = {vs,vg,...,v13}; by assumption Bz ¢ {X)p.
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In view of Lemma 7 we have (X)p = G. Let P denote the set of vertices
in X that are of degree 3 in the red copy of G, and let @ denote the set
of vertices of degree 4 in this copy. Observe that no vertex in N can be
adjacent in the red graph to vertices in both P and Q; otherwise there is a
red Cs. Hence we may assume that all edges from {v;, v, v3} to P are blue
or all edges from {v;,vs,v3} to Q are blue. Since (P)p = K — 3K, and
(@)s = K3 each contain K3, in either either case we find K¢ — K3 C B, a
contradiction.

Case 2. 6(R) = 4. Then R is bipartite by Lemma 3, and therefore
K¢ — K3 C K7 C R, a contradiction. O

In [16] it is proved that the only Cs-free graphs of order 12 with inde-
pendence number three are certain supergraphs of 3K,. In particular, we
have the following fact.

Lemma 9. A graph of order twelve must contain either Cs, K4, or an
independent set of four vertices.

Lemma 10. If G is a connected graph of order six, Ks C G and G ¢ Kg
then v(Cs, G) = 17.

Proof: The two-coloring of E(K¢) with R = 4K, has neither a red Cs nor
a blue K. In view of this example, it suffices to show r(Cs, Ks — €) < 17.
Let V = {v},vs,...,v17} and let (R, B) be a two-coloring of edges of the
complete graph on this set such that Cs ¢ R and K¢ — e ¢ B. From [7] we
know that r(K3, K¢ —e) = 17; hence K3 C R. In view of 7(Cs, K5 —€) = 13
we have 6(R) > 4.

First we prove that Ky ¢ R. Suppose {v1,v2,vs,v4} is the vertex set of
a red K4. Since §(R) > 4 and Cs ¢ R, we may assume four additional
vertices vs, vg, v7, vs such that {v,vs,vove,vavr, vavs} C R. Now each of
the vertices vs, vg, v7, vs must be adjacent in R to three new vertices, and
this is clearly impossible.

We know that K3 = B; C R. Thus there is some m > 1 so that
B, is the largest book contained in R. Now we consider four cases. In
each case, the given B,, has vertex set {v1,v,...,Um+2} Where vivs is the
spine of the book. Since there is no red K4, the blue graph spanned by
{va,va,...,vm+2} is complete.

Case 1. By C R. We may assume that v;ug;41,v;v942 € R for i =
3,4,5,6. Then either Cs C R or else we find that {vq,v2,v7,v9,v11,v13}
spans a blue K¢ — e, a contradiction.

Case 2. B3 C R and By ¢ R. There are two subcases.

(a) degp(v1) = S. Suppose viug € R. Then voug € B, and we have a
configuration similar to that of case 1 except that v ,vg € B, so we may
assume vgv15 € R. Note that vev3, vovi14,v2v15 € B; otherwise Cs C R. If,
for example, v,v13 € B then {v;, v2,v7, v9, v11,v13} spans a blue Kg—e as in
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case 1. Hence we may assume that vov13, vov14, v2v15 € R 50 {v13,v14, %15}
spans a K3 in blue. In this case {v3, vy, vs,v13,v14,v15} spans a K¢ in B.
Clearly the same argument applies in case degg(vs) > 5

(b) degp(vy) = degp(ve) = 4. By Lemma 9 and the fact that there is
neither a red Cy nor a red K4, the blue graph spanned by {vs,v7,...,v17}
contains a Kj4. Together with v; and vs this gives a blue K¢ —e.

Case 8. B C R and B3 ¢ R. Since v; and vy are of degree at least
4 in R, we may assume v1vs € R, vvs € B, vyug € R, vivg € B. Since
5(R) > 4 and C5 ¢ R we may assume vs is adjacent to vy, vg, and vg € R
and similarly vg is adjacent to vyg,v11, and vy € R. Also vav13 € R and
v4v14 € R. Observe that v;3 cannot be adjacent in R to any vertex v; with
i < 14 other than wvs; otherwise there is a red Cs. Thus v;3 is adjacent
to w15, v16, and vy7 in R. Now we have accounted for all of the vertices.
Consider v4. This vertex cannot be adjacent in R to any vertex other than
v1, v2, and vy4 without creating a red Cs. Since v4 has degree at least 4 in
R, we have reached a contradiction.

Case 4. B; C R and B> ¢ R. In this case {v;,v9,v3} spans a red K3
and we must have v;v9;12 € R and v;v9;,3 € R for 7 = 1,2,3 since there
is no red By. Now each pair of vertices {vs,vs}, {vs,v7}, {vs,vo} must
account for at least three additional vertices. (For example, if vqvs € B
then we may assume that v4 — and possibly vs as well — is adjacent in R
to vy, ¥11,%12, and if v4us € R we may assume that v4 iS adjacent in R
to vyp and v,; and vs is adjacent to v and v13.) Thus we account for 18
vertices, a contradiction. a

By the results of Lemma 1 through Lemma 10, together with the special
cases 7(Cs, By) = 11 and 7(Cs, Ws) = 13 found in [8] and [5], respectively,
we have completed the proof of Theorem 1.
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