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A (g+1)-ary constant weight code (n,w,d) is a code C C (Zg+1)" of length
n and minimum distance d, such that every ¢ € C has Hamming weight w.
To construct a constant weight code (7, w,d) with w = 3 a group divisible
design (GDD) will be used. A K—GDD is an ordered triple (V, G, B) where
V is a set of n elements, G is a collection of subsets of V called groups
which partition V and B is a set of some subsets of V called blocks, such
that each block intersects each group in at most one element and that each
pair of elements from distinct groups occurs together in exactly one block
in B, where |B| € K for any B € B. The group type is the multiset
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{IC] : G € G}. A k-GDD(g") denotes a K-GDD with n groups of size
g and K = {k}. If all blocks of a GDD can be partitioned into parallel
classes, then the GDD is called resolvable GDD and denoted by RGDD,
where a parallel class is a set of blocks partitioning the element set V. In
a 3-GDD(g"), let V = (Zg41 \ {0}) X (Zn41 \ {0}) with n groups G; € G,
Gi = (Zg+1\ {0}) x {i}, 1 £ i < n and blocks {(a, i), (b, 5), (c,k)} € B. One
can construct a constant weight code (n, 3,d) as stated in [7], [10]. From
each block we form a codeword of length n by putting an a, b and c in
positions i, 7 and k respectively and zeros elsewhere. This gives a constant
weight code over Z,.; with minimum distance 2 or 3. If the minimum
distance is 3, then the code is a (g + 1)-ary mazimum constent weight code
(MCWC) (n,3,3) and the 3-GDD(g") is called generalized Steiner triple
system, denoted by GS(2,3,n,g). It is easy to see that a 3-GDD(g") is a
GS(2, 3,n, g) ifl any two intersecting blocks intersect at most two common
groups of the GDD. The following result is known.

Lemma 1.1 ([7], [10]) Thke following are the necessary conditions fr the
cristence of a GS(2,3,n,9):

(1) (n—1)g =0 (mod 2);

(2) n(n —1)g% =0 (mod 6);

() n>g+2.

The necessary conditions are shown to be sufficient for g = 2,3 with one
exception by Etzion (7], for g = 4,9 by Phelps and Yin [9}, [10], for g = 5,6
by Chen, Ge and Zhu [4], [5].

Lemma 1.2 ([7], [9], (10], [4], [5]) The necessary conditions for the exis-
tence of a GS(2, 3, n, g) are also sufficient for g =2, 3, 4, 5, 6, 9 with
one exception of (g,n) = (2,6).

Recently, Blake-Wilson and Phelps 3] proved that the necessary condi-
tions for the existence of a GS(2,3,n, g) are also asymptotically sufficient
for any g.

Since the existence of GS(2, 3,7, g) has been solved for g < 6, we need
only to consider the case ¢ > 7. For g > 7, let T, = {n: there exists
a GS(2,3,n,9)}, By = {n: n satislying the necessary conditions listed in
Lemma 1.1 }, My = {n: n € Byg,n < 99+158 }. In this paper, the following
results are obtained.

Theorem 1.3 For any g > 7, if Mg C Ty, then By = T,. That is the
necessary conditions for the existence of a GS(2,3,n,g) are also sufficient.

Theorem 1.4 B; = Ty, that is the necessary conditions for the ezistence
of a G8(2,3,n,9) are also sufficient for g =17.
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Theorem 1.5 Bg = T, that is the necessary conditions for the ezistence
of a G5(2,3,n,9) are also sufficient for g =8.

Combining Lemma 1.2, Theorem 1.4 and Theorem 1.5, it is known that
the existence of a GS(2, 3, n, g) is completely determined for any g < 9.

2 Product Constructions

In product constructions, we will need the concept of both holey generalized
Steiner triple systerns and disjoint incomplete Latin squares.

A holey group divisible design, K — HGDD, is a fourtuple (V, G, H, B),
where V is a set of points, G is a partition of V into subsets called groups,
H C G, B is a set of blocks such that a group and a block contain at
most one common point and every pair of points from distinct groups,
not both in H, occurs in a unique block in B, where |B] € K for any
B € B. A k-HGDD(g¢*) denotes a K-HGDD with n groups of size g in
G, u groups in H and K = {k}. A holey generalized Steiner triple system,
HGS(2,3, (n,u), ), is a 3-HGDD(g™*)) with the property that any two
intersecting blocks intersect at most two common groups.

It is easy to see that if w = 0 or u = 1, then a HGS(2, 3, (n + u,u), g) is
just a GS(2,3,n, g) or a GS(2, 3,7 + 1, g) respectively.

A Latin square of side n, LS(n), is an nxn array based on some set S of n
symbols with the property that every row and every column contains every
symbol exactly once. An incomplete Latin square, ILS(n + a,a), denotes
a LS(n + a) "missing” a sub LS(a). Without loss of generality, we may
assume that the missing subsquare, or hole, is at the lower right corner.
We say (i,7,5) € ILS(n + a,a) if the entry in the cell (z,7) is s. Let A,
Az be two 1LS(n + a, a)s on the same symbol set. If (3, 5, 51) # (4, 4, s2) for
any (4,7,51) € A1, (4,5, 52) € A2, then we say that A; and A, are disjoint.
r DILS(n + a, a) denotes r pairewise disjoint ILS(n + a, a)s and r DLS(n)
denotes r pairewise disjoint LS(n)s.

The following singular indirect product construction for GS(2, 3,n, g)s
is first stated in [4].

Lemma 2.1 (Singular Indirect Product (SIP)) Let m,n,t,u and a be in-
teges such that 0 < a < u < n. Suppose the following designs ezxist:

(1) t DILS(n + a,a); _

(2) a 3 — GDD(g™) with the propery that all blocks of the design can be
partitioned into t sels So,S1, -+ ,Si—1, such that the minimum distance in
S,0<r<t-1,1is3;

(3) a HGS(2,3,(n + u,u), g).

Then there erists a 11GS(2,3,(c,d),g), where c=m(n+a)+u—a,d =
ma + u — a. Further, if there exists
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(/f) a GS(21 3) ma+u—a, g))
then there exists a GS(2,3,m(n+a)+uv —a,g).

Lemma 2.2 ([4]) There ezist §(a) DILS(n+a, a), where §(0) = n and §(a)
=a forl<a<n.

Taking @ = 0 m Lemma 2.1, the singular direct product is then obtained,
which is first appeared in [9]. From Lemma 2.2, ¢ DLS(n) exist when ¢ < n.

Lemma 2.3 (Singular Direct Product (SDP)) Let m,n,t, and u be integers
such that 0 < u < n. Suppose t < n and the following designs exist:

(1) a 3 = GDD(g™) with the propery that all blocks of the design can be
partitioned inlo t sets So,Sh,---,Si—1, such that the minimum distance in
S0 r<t—1,1453;

(2) a HCS(2,3,(n + u,u), 9).

Then there exists a HGS(2,3,(mn + u,u),g). Further, if there ezists a
GS(2,3,u,9), then there exists a GS(2,3,mn +u, g).

Taking u = 1 in Lemma 2.3, one gets the Construction D in Etzion (7]

Lemma 2.4 ([7]) Let (V,G,B) be a 3-GDD(g9™), and suppose there exists
a GS(2,3,n,g9). Then there exists a GS(2,3,m(n — 1) + 1,9) if B can
be partitioned into t sels So,---,Si—1, such that the minimum distance in
$.,0<r<t—1,is3 andt <n—1.

Taking v = 0 in Lemma 2.3, one gets the Construction C in Etzion [7]

Lemma 2.5 (Direct Product (DP)) Let (V,G,B) be a 3-GDD(¢g™), and
suppose there exists a GS(2,3,n,9). Then there exists a GS(2,3,mn,g)
if B can be partilioned into t sels So,-'+,Si—1, such that the minimum
distance in S,,0<r<t—1,1is3 andt < n.

Notice that the derived generalized Steiner triple system in Lemma 2.4
and Lemma 2.5 has a sub GS(2, 3,n, g), we state the fact in the following.

Lemma 2.6 Let (V,G,B) be a 3-GDD(g™). Suppose there exists a GS(2,
3.n,9). Then there exisls a HGS(2,3,(mn,n),g) or a HGS(2,3,(m(n -
1) + 1,7n),g) if B can be partitioned into t sets So,---,Si—1, such that the
minimum distance in S;,0 <K 1 <t-1,3 andt <nort <n-1
respectively.

If one uscs a 3-RGDD(g™) in the constructions, then each parallel class
becomes an S, and there are ¢ = 9(%9 such classes. The following is
stated in [4].
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Lemma 2.7 If there exists a GS(2,3,n,9) and a 3-RGDD(g™) with t =
ﬁ'i;;l—) < n orn—1, then there exists a GS(2,3, mn, g) or a GS(2,3, m(n—
1) + 1, g) respectively.

Tor the existence of a 3-RGDD(g™), we have the following.

Lemma 2.8 (1)) A 3-RGDD(g™) exists iff (m — 1)g = 0 (mod 2),mg =
0 (mod 3) and g™ # 2°,2° and 63.

Lemma 2.9 For anyg 2 7, if there exists a GS(2,3,n, g), then there exists
a G5(2,3,3n,9) and a GS(2,3,3(n — 1) + 1,g). Consequently, there exists
a HGS(2,3,(3n,n),9) and a HGS(2,3,(3(n - 1)+ 1,7n),9).

In the remainder of this section, we shall discuss a new construction to
obtain ¢ DILS from some difference matrices. Let G be an Abelian group,
|G| = n. An (n, k; A)-difference matriz is a k x nA matrix D = (d;;) with
entries from G, so,that for each 1 < i < j < k, theset {dy—dj; : 1 <1 < nA}
contains every element of G A times. Let (n, k; A)-DM denote an (n, k; A)-
diflerence matrix.

Theorem 2.10 [f there exists an 7,4;1)-DM, then there exist n DILS(n+
a,a) foranya, 0 <a<n.

Proof. If a = 0, the conclusion follows from Lemma 2.2, we need only
to consider the case 1 < a < n. Let G = {ap = 0,a;,---,a,—1} be an
Abclian group. By the assumption, we have two mutually orthogonal Latin
squares Ly = (cij), Lz = (di;), which are generated from the (n,4;1)-DM,
M = (m;;) as follows: Forany a, € Gand 1 <t < n, if my;+ap = a;, and
mag + ap = aj, we take ¢; = ma; + ap and di; = my¢ + ag.

Now we construct an ILS(n + a,a), denoted by Ao, based on G U
{o00,++,00a-1} as follows. For 0 < k < a — 1, if (a;,a5,5) € Ly and
(ai, aj, ax) € Lo, then (ai, aj,00k) € Ao, (ai, o0k, s) € Ap and (oo, aj, s) €
Ao; for a < k < n—1, if (ai,a;,8) € Ly and (a;,aj,ax) € Lo, then
(ai,aj,s) € Ap. Let m,(0 < h £ n — 1) be a permutation on G U
{000, Tt ooa-l} gi\'en by

n(z) = z+ap, forzed,
A for z € {co1,---,004-1}-

From Ag, we can construct n—-1 ILS(n+a, a)s, Ay, .-+, An—1, Whose entries
are defined as follows. For 1 < h < n — 1, define

(u, v, 'wo) € Ay if (ﬂh(u),'rrh(v),wo) € Ao.

Notice that for any given u,v € CU {00, +, 0041}, not both in {c0g, -+ -,
00 -1}, the entrics of Ag in the cells (7 (u), 7, (v)),0 < b < n —1, are
distinct. So, Ag, Ay, -+, An— are pairwise disjoint. ]
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The following Lemma. is known.
Lemma 2.11 ([6]) There ezists a (g, q;1)-DM for any prime power q.

Lemma 2.12 If there exists an (m1, k; 1)-DM and an (ma2, k;1)-DM, then
there exists an (myma, k;1)-DM.

Proof. Suppose D; is an (m;, k;1)-DM based on Gj, where |G;| =m;,1 <
1<2,and D, = (a,-j)kxm,, Dy = (bij)kxmz- Let

((an.bu) -+ (a11,bimy)  +++ (a1my,bu) .- (almlsblmg))
D= . . X . )

(ak1,bk1) - (ak1 bkmg) Tt (akml yvbog1) e (akml ’ bkmg)

It is easy to see that D is an (mimao, k;1)-DM based on G x G2 O

Lemma 2.13 Suppose n is a positive integer, 4|n, then there exists an
(n,4;1)-DM.

Proof. We can write n = 4 - 2% . 3% . n,, such that the prime factor of
n is no less than 5. Irom Lemma 2.11 and Lemma 2.12, there exists an
(m1,4;1)-DM, we need only to prove that there exists an (n2,4;1)-DM for
ng =4 -2« .38, We distinguish two cases

Case 1 B+ 1. If 8 =0, then ny = 22+*, From Lemma 2.11, there exists an
(n2,4;1)-DM. Otherwise 8 > 2, from Lemma 2.11 and Lemma 2.12, there
exists an (ng,4;1)-DM;

Case 2 B=1. ny =12-2% If o < 2, then np = 12 or nz = 24, from [6,
I1 Theorem 2.35, Theorem 2.43], there exists an (ng, 4;1)-DM. Otherwise
a > 2, from Lemma 2.11 and Lemma 2.12, there exists an (ng,4;1)-DM.

1]

As a corollary we have the following lemma which will be used very
often.

Lemma 2.14 Suppose n is a positive integer, 4|n, then there exists n
DILS(n + a,a) for 0 £ a < n.

Note added (May, 2000): New results on n DILS(n + a,a) can be
found in [11] and [8].
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3 Proof of Theorem 1.3

For g > 7, let
1, 3 if g=1,5 (mod 6)
_ )0 1, 38, 4 if g =2,4 (mod 6)
=194 3, 5 if g = 3 (mod 6)
0, 1, 2, 3, 4, 5 if g=0 (mod6)

0, if k is even,
‘5(k)={ 1, if k is odd.

From Lemma 1.1, it is easy to see that the necessary conditions for the
existence of a GS(2,3,n, g) are n = f(g) (mod 6), and n > g + 2.

Lemma 3.1 For g > 7, suppose v = 54p + 65 + f(g), 0 < j <8 I
6p +6 +6(f(g)) € Ty, 18p + 65 + f(g9) — 36 € Ty, and p > [F2], then
veT,.

Proof. Apply Lemma 2.1 withm =3,n=12p+12,t = g,u=6p+ 6 +
6(f(g)),a=6p+35—21+ [ﬁiﬁj. It is easy to check that a < u < n. Since
[ﬂzﬂj >0andp > [5L] = ﬂg("—':’), it is easy to see that @ > 0. From
Lemma 2.14, there exist n DILS(n + a, a) for 0 < a < n. We further have
¢t DILS(n + a, a) since ¢t < u — 2 < n. Thus the condition (1) of Lemma 2.1
is satisfied. For g > 7, a 3-RGDD(g®) always exists by Lemma 2.8, which
has g parallel classes. So, condition (2) is also satisfied. From u € T, we
apply Lemma 2.9 to obtain a HGS(2, 3, (n + u, u), g), providing the design
in condition (3). Finally, since 2|_ﬂ2ﬂj + 6(f(g9)) = f(g), we know that
ma+u —a = 18p + 65 + f(g) — 36 € T, the condition (4) is satisfied.
Therefore, we have the conclusion that v = m(n + a) + u — a € Ty. This
completes the proof. 0

Now, we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We need to show that M, C T, implies that
By C Ty. Suppose n € By. If n € M, then n € Ty. Otherwise, n =54p +
65+ f(g) > 99+158, where 0 < j < 8. We first, claim that p > [7—;-1] If not
s0, then p < [154] = T=8H0=4) | Thus n < 189 — 215 + 276(7 — 5) + f(g).
Since 0 € j <8,8(7T—37)<1,f(g) <5and g > 7, we have n < 221 <
99 + 158, a contradiction.

Next, it is easy to see that n > 9g+158 implies that 6p > g+11. Then, it
is easily checked that a = 6p+6+6(f(g)) > g+2,8 = 18p+65+ f(g)~36 >
g+2. Since 8= f(g) (mod 6), we see that 8 € By. It is also easily verified
that o € B,. If we have both & € My and 8 € M,, then Lemma 3.1
guarantees that n € Ty and the proof is completed. If at least one of « and
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B is not in M, then we can repeat the above process taking it as '’ and
using new o' and .

After certain steps o/ and # will be small enough so that both o’ and
B are in M. This makes both a € T, and 8 € Ty, thus n € T,. This
completes the proof. 1]

4 Proof of Theorem 1.4

For g = 7, the necessary conditions for the existence of a GS(2,3,n,g)
become n = 1,3 (mod 6) and n > 9. It is known that there exists a
GS(2,3,9+1,q9~1) for any prime power g in [7, Section 4]. Taking ¢ = 8,9,
we get a GS(2,3,9,7) and a GS(2, 3, 10, 8).
For n. = 3 (mod 6), to construct a GS(2,3,n,7) in Zz,, it suffices to find
a set of generalized base blocks, A = {B},---, B}, s = 7("—2_12, such that
(V, G, B) forms a GS(2,3,7,7), where V = Zz,, G = {Go,G1,"++,Gn-1},
--{z-i-ny 0<j<6},0<i<n—-1, andB {B+3j:Be A0<L5<

—1}. For convenience, we write A = U {{i,z,y}: {z,y} € Si}. So, for
each A we need only display the correspondmg S;,0<1<2.

Lemma 4.1 There exists a GS(2,3,n,7) forn € Fi, where Fy = {9,15,21,
33,51}

Proof. TFor n = 9, as mentioned above, there exists a GS(2,3,n,7). For
other values n € [, with the aid of a computer, we have found a set of
generalized base blocks of a GS(2, 3,n,7). Here, we only list the S;,0 <4 <
2 for n = 15. For the remaining values n, the corresponding S;,0 <1 < 2
are listed in Appendix A.

n=15 A= |){{i,z.y} : {z.} € Si},

So = {{79,101 }0 {41,97}, {54,55}, {3, 7}, {10, 28}, {9, 56}, {13, 69}, {39, 59},
{52,84}, {83,85}, {18,58}, {57,63}, {62, 71}, {61,80}, {81,100},
(2,12}, {35, 77}};

Sy = {{24,32}, {5,77}, {89, 94}, {34, 63}, {29, 83}, {18, 35}, {69,103}, {3,17},
{56,70}, {41, 52}, {14,75},{7,90}, {15, 79}, {25, 62}, {43, 44},
(53,85}, {58,67},{11,59}, {26, 81}, {12, 65}, {47,60} };

S = {{40,75}, {78,83}, {23, 39}, {8, 28}, {29, 37}, {42, 69}, {9, 81}, {20, 21},
(81,95}, {33, 100}, {68,104} }. i

Lemma 4.2 There cxists a GS(2,3,n,7) forn € F> = {13,19,31}

Proof. With the aid ol a computer, we have found a set of base blocks A
of 2 G§(2,3,n,7) for n € Fy.
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For convenience, we write A = {{0,z,y} : {z,y} € S}. So, for each A
we need only display the corresponding S.

n=13, § = {{15,34},{20,41}, {22,45}, {24, 55}, {25,53}, {1, 33}, {2, 37},
(3,43}, {4, 86}, {6, 83}, {10, 84}, {11, 75}, {12,42}, {18,47} }.

n=19, S = {{62,93)}, {87,89}, {15,49}, {88,116}, {58, 108},{100,132},
{124,129}, {30,122}, {56, 59}, {26,90}, {42, 97}, {8, 22},
{67,96}, {21, 106}, {20, 80}, {54, 126}, {16, 68}, {10, 120},
{47,98},{24,63}, {6,18}}.

n =31, S = {{82,182}, {95,208}, {67,190}, {40,203}, {51,136}, {97,108},
{78,103}, {16, 106}, {107,128}, {134,164}, {70,129}, {5,131},
{12,22}, {2, 34}, {66, 140}, {197, 214}, {57, 72}, {50,137},
{84,153}, {18,198}, {118,179}, {24, 76}, {48, 116}, {115,173},
{46,793, {144, 157}, {23,49}, {28, 36}, {47,112}, {43, 98},
(39,45}, {1,42}, {56, 63}, {142,213}, {29,121} }. O

Lemma 4.3 There cxists a GS(2,3,q,7) for any prime power q,q =1
(mod 6),q > 43.

Proof. We apply Theorem 2 in [3] to obtain the result. There exists an
STS(7) , which can be split into 7 partial parallel classes. Let ¢ = 6s+ 1,
since ¢ > 43, we have s > 7. The desired idempotent Latin squares needed
in the Theorem comes from Lemma 7 in [3] 1|

Lemma 4.4 There exists a GS(2,3,v,7) forallve Fa={e:e€ Br,e <
73}.

Proof. Ior v € £} U I3, the conclusion comes from Lemma 4.1 and
Lemm 4.2. Since 25 = 3-8 4+ 1 and there exists a GS(2,3,9,7), there
exists a GS(2,3,25,7) and a HGS(2,3,(25,9),7) by Lemma 2.9. For v =
43,49, 61,67,73, the conclusion follows from Lemm 4.3. For v = 69, there
exist 16 DILS(16 + 6, 6) and a GS(2,3,21,7) by Lemma 2.14 and Lemma
4.1. Apply Lemma 2.1 with m = 3,n = 16,t = 7,u = 9,a = 6, we get
a GS(2,3,69,7). For the remaining values v, we write v = 3n or v =
3(n—1)+1 for n € [9,25]. By Lemma 2.9, Lemma 4.1 and Lemma 4.2,
there cxists a GS(2, 3,v,7). Here, we list the pairs (v,n) in Table4.1.

v n v n v n
27=3-9 9 37=3-124+1 13 39=3.-13 13
456=3-15 15 55=3-18+1 19 57=3-19 19
63=23-21 21

Table 4.1 pairs (v,n) for v € I3\ (1 U Fy U {25,43,49, 61,67, 69.73})
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Lemma 4.5 There exislts a GS(2,3,v,7) forallve Fy={e:e= 1,3,7,
9 (mod 18),9 < v < 219}

Proof. For v = 1,3 (mod 18), write v = 18t + k,k = 1,3, where t < 12
since v < 219. Let n = 6t 41, then n < 73 and a GS(2,3,n, 7) exists from
Lemma 4.4. Since 18t +1=3(n—1)+1 and 18t + 3= 3n, a GS(2,3,v,7)
exists from Lemma 2.9;

Forv = 17,9 (mod 18), write v = 18t +k, where k = 7,9 and ¢ < 11. Let
n =6t + 3, then n < 69 and a GS(2, 3, n,7) exists from Lemma 4.4. Since
v=3(n—1)+1 or 3n, a GS(2,3,v,7) exists from Lemma 2.9. O

Lemma 4.6 There exists a GS(2,3,v,7) for allv e Fs = {e: e =13,
15 (mod 18),9 < v < 213}.

Proof. We can write v = 54h+ k, k = 13,15, 31, 33,49, 51. Since v £ 213,
we have h < 3.

For k = 13, if A = 0, from Lemma 4.4 there exists a GS(2,3,v,7).
Otherwise 1 < A < 3. Since 6h +3 < 21 and 18k 41 < 55, from Lemma
4.4 and Lemma 2.9 there exists a HGS(2,3, (182 + 7,6k + 3),7), and a
GS(2, 3,18k +1,7). From Lemma 2.14 there exist 12k +4 DILS(12h +4 +
6h—1,6h—1). Takingm =3,n=12h+4,t =7, u=6h+3,a=6h—11in
Lemma 2.1, we get a GS(2,3,v,7).

For k = 15,31,33,49,51 , if A = 0, then there exists a GS(2,3,v,7)
from Lemma 4.4. Otherwise, 1 < h < 3. The discussion is similar to
the case k& = 13. We list the parameters needed in Lemma 2.1. Taking
m = 3,t = 7. n,u and a are taken according to different k. We list the

fourtuple (k, n,u,a) in Table 4.2 0
k n u a k n u a
15 12h+4 6h+3 6h 31 12h+12 6h+7 6h-6

33 12h+12 6h+7 6h-5 49 12h+12 6h+7 6h+3
51 12h+12 6h+7 6h44

Table 4.2 fourtuples (k, n,u, a) needed in Lemma 2.1
Now, we are in a position to prove Theorem 1.4.
Proof of Theorem 1.4: From Theorem 1.3, we need only to consider the

values v, such that v € B, v < 219. The result comes from Lemma 4.5 and
Lemma 4.6. 0
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5 Proof of Theorem 1.5

For g = 8, the necessary conditions for the existence of a GS(2,3,n,g)
become n = 0,1 (mod 3) and n > 10. In [5], by introducing a K —* GDD,
Wilson’s Fundamental construction can be used to construct generalized
Steiner triple systems.

Definition 5.1 A K — GDD is said to have "star” property and denoted
by K —* GDD if any two intersecting blocks intersect at most two common
groups.

With this definition a GS(2, 3, n, g) is just the same as a 3—-* GDD(g").
Usinga K—*GDD as a master GDD, the well known Wilson’s Fundamental
Construction can be used to construct GS(2, 3, n, g)s, which we state below.

Lemma 5.2 (Weighting) Let (V,G,B) be a K —* GDD (the master GDD)
with groups Gy, Gq, ---, G,. Suppose there exists a function w: V —
Zt {0} (a weighling function) which has the property that for each block
B = {z1,z2, -,z } € B there exists a 3—* GDD of group type (w(z;),
w(zg), -, w(zg)) (such a GDD is an "ingredient” GDD). Then there exists
a 3=*GDD of group type ( Y. w(z), Y w(z),---, 3 w(z)).

zc Gy z€EG> z€G,
Lemma 5.3 ([5])If there exists a K—*GDD(g"), and there exists a GS(2,
3,k,h) for any k € K, then there erists a GS(2,3,n,gh).

Lemma 5.4 There exisls a 4 —* GDD(4™) for n € E,, where E; = {13,
16,19, 22, 25, 31, 58}.

Proof. For each n € FE;, with the aid of a computer, we have found
a set of base blocks A for such a 4-*GDD(4") in Z,, with the groups
Gi={i+jn:0< 7 <3},0<i<n—1, which is listed as follows.
n=13, A= {{0,1,3,11},{0,4,16,25}, {0,5,19, 37}, {0, 6, 23,30} }.
n=16, A= {{0,1,3,7},{0,5,18,39},{0,8,17,44}, {0,10, 33,52},
{0,11,26,40}}.
n=19, A= {{0,1,3,7},{0,5,13,36}, {0,9, 24,42}, {0, 10, 26,54},
{0,11,41,62}, {0,12, 29,49} }.
n=122 A={{0,1,9,55},{0,2,19,72},{0,3,26,41},{0,4, 10, 68},
{0,5,45,56}, {0,7, 36, 67}, {0, 12, 25,39} }.
n =25, A= {{0,1,32,60},{0,2,76,90}, {0,3,61,80}, {0,4,17, 66},
{0,5,57,84}, {0,6, 35,91}, {0, 7, 53,89}, {0, 8, 30,63} }.
n=31, A= {{0,1,78,106}, {0,2, 39, 56}, {0, 3,67, 89}, {0, 4, 73, 83},
{0,5, 32,66}, {0, 6,59, 80}, {0, 8,84, 117}, {0,9, 81, 104},
{0,11,24,99}, {0, 12, 26,42} }.
n =58, A= {{0,1,41,118}, {0,2, 65,86}, {0,3,52,125}, {0,4, 54,101},
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{0,5,95, 13}, {0,6, 25,89}, {0, 7,127,205}, {0, 8, 31,204},
{0,9,70,132}, {0, 10,45,82}, {0, 11, 85,177}, {0,12, 79,212},
{0,13,46,176}, {0, 14,152,203}, {0, 15,96,126}, {0,16,87, 144},
{0,17,93,141}, {0, 22,60, 179}, {0, 24,188,214} }. 1]

As mentioned in Section 4, there exists a GS(2, 3,10, 8), by Lemma 1.2
we know that there exists a GS(2,3,4,2). So, by Lemma 5.3 and Lemma
5.4 we have the following.

Lemma 5.5 There exists a GS(2,3,n,8) forn € E; U {10}.

To construct a GS(2,3,7,8) in Zs, for some n = 0 (mod 3), it suffices
to find a set of generalized base blocks, A = {By, By, -+, Bs}, s =4(n-1),
such that (V, G, B) forms a GS(2, 3,n,g), where V=Zg,, §={G; : 0 < i <
n—1}, Ci={i+m:0<j<7},0<i<n—1, and B={B +3i: B €
A0<i< B 1)

Lemma 5.6 There czists a GS(2,3,n,9) for each n € E;, where E2={12,
15, 18, 21, 24, 27, 33, 42, 51}.

Proof. TFor cach n € 25, with the aid of a computer, we have found a set of
generalized base blocks A. For convenience, we can write A = U {{i,z,y}:
=0

{x,y} € Si}. So, for cach A we need only display the correspondmg S;,
0 <1i < 2. Here we only list the S;, 0 <7 < 2 for n = 12, for other values,
the corresponding S, 0 < i < 2 are listed in Appendix B (In order to save
space, we omit Appendix B, the interested reader may contact the authors
for a copy).

n=12, A= U{{l—'f"/} {z,y} € Si},

So = {{18,53}, {69,8:)}, (2,89}, (49,64}, {22,80}, {5, 37}, {3,50}, {40, 71},
(21,52}, {41, 62}, {1,90}, {13, 38}, {33,87}, {26,79}, {17, 34} };

Sy = {{50,69}, {36,56}, {64,93}, {68,77},{67,86}, {72,87},{2,58}, (5,19},
(39,94}, {7,9}, {6, 38}, {14,51},{10,52}, {8,47},{27,78} };

S = {{4,56},{37,64}, {33,76}, {8,9}, {30,69}, {70,90}, {24, 68}, {10, 83},
{12,412}, {15, 88}, {47,80}, {71, 75}, {7,28}, (84,95} }. 0

Lemma 5.7 There exists a 3 — GDD(8™) for m = 3,4,6 and 7 with the
property that all blocks of the design can be partilioned into ¢ sets So, Si,

., Si_y such thatt < 8 form =3,6,t <4 form = 4,7, and the minimum
distance in Sp, 0 <r <t -1, 143

Proof. TFor m = 3, from Lemm2.8, there exists a 3-RGDD(8%), which
has 8 parallel classes. By Lemma 1.2 there exists a GS(2,3,4,2) and a
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GS(2,3,7,2). In [7], a 3—GDD(2%) is presented, in which all blocks can be
partitioned into 2 sets Sg, S1, such that the minimum distance in So, S1, is
3. Use these designs as master GDDs in Wilson’s Fundamental construction
and give weight four to each clement, we get a 3—GDD(8™) for m =4,7,6
respectively. Since a 3 — RGDD(43) exists, it is not difficult to see that the
resultant designs are desired ones. 0

Since the existence of a GS(2, 3, n, 8) implies that n > 10, from Lemma
5.7, it is certain that for g = 8, the m in DP and SDP can be choosen to
be 3,4,6 and 7. So by Lemma 2.3 and Lemma 2.4 we have the following.

Lemma 5.8 If there exists a GS(2,3,n,8), then there exists a GS(2, 3,
mn,8) and a GS(2, 3, m(n—1)+1, 8), where m = 3,4,6 and 7.

Lemma 5.9 There exists a GS(2,3,v,9) for all v € Es, where E3 = {e:
e=0,1 (mod 3),e < 76}.

Proof. Tor v € I U 5, U {10}, the conclusion comes from Lemma 5.5
and Lemm 5.6. For the remaining values v, we can write v = mn or
v=m(n—1)+1 for some m € {3,4,6,7} and n € E; U Eo U {10}. By
Lemma 5.5, Lemma 5.6 and Lemma 5.8, there exists a GS(2, 3,v, 8). Here,

we list the triples (v, m,n) in Table 5.1. ]

v mn v mn v mn
28=3.94+1 3 10 30=3-10 3 10 3=3-114+1 3 12
36=3-12 3 12 37=3-12+1 3 13 39=3-13 3 13
M0 =41-10 4 10 43=3-144+1 3 15 45=3-15 3 15
446=3-154+1 3 16 48=3-16 3 16 499=4-12+1 4 13
52 =3.174+13 18 534=3-18 3 18 55=3-184+13 19
57=3-19 3 19 60=4-15 4 15 61=4-15+1 4 16
63=3-21 3 21 64=4.16 4 16 66 =322 3 22
67=6-114+16 12 69=4-174+14 18 70=7-10 7 10
72=3-24 3 24 73=3-24413 25 75=3-25 3 25
76 =4-18 4 18

Table 5.1 triples (v, m,n) for v € L3\ (B, U E2 U {10})

Lemma 5.10 There exists ¢ GS(2,3,v,8) for all v € Ey, where B4 = {e:
e=0,1, 3,7 (mod 9), 10 < v < 228},

Proof. For v = 0,1,3 (mod 9), write v = 9t + k, where k = 0,1,3. If
t < 3, the result follows from Lemma 5.9. Otherwise, ¢ > 4. Let n = 3¢,
then v = 3n,3n 4+ 1 or 3(n +1). Since v < 228, we have 4 <t < 25, hence
n < 75 n+1 < 76. Notice that n € Bg and n+ 1 € Bg, by Lemma 5.8 and
Lemma 3.9, there exists a GS(2,3,v, 8).
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For v = 7 (mod 9), write v = 9t + 7. If ¢ < 2, the result follows from
Lemma 5.9. Otherwise, ¢ > 3. Let n = 3t 43, then v = 3(n — 1) + 1. Since
v < 228, we have ¢ < 24, hence n < 75. Notice that n € Bg, by Lemma 5.8
and Lemma 5.9, there exists a GS(2,3,v,8). 1]

Lemma 5.11 There ezists a GS(2,3,v,8) for all v € Es, where Es = {e:
e =4,6,13,24, 31,33 (mod 36), 10 < v < 229}.

Proof. Write v = 36t + k,k = 4,6,13,24,31,33. If ¢t < 1, the result
comes from Lemma 5.9. For ¢ > 2, notice v < 229, we can write v = mn
or v = mn+ 1 for some m € {4,6} and n € Bg,n < 58. From Lemma
5.8 and Lemma 5.9, there exists a GS(2, 3,v,8). here we list the fourtuples
(k,v,m,n) in Table 5.2 . 1]

k v m n k v m n

4 v=4-(9t+1) 4 9t4+1 6 v=6-(6t+1) 6 6t+1
13 v=4-(9t+3)4+1 4 9t+4 24 v=6-(6t+4) 6 6t+4
31 v=6-(6L+5)+1 6 6146 33 v=4-(9t+8)+1 4 949

Table 5.2 fourtuples (k, v, m,n) for Lemma 5.11

Lemma 5.12 There ezists a GS(2,3,v,8) for all v € Eg, where Eg = {e:
e = 15,22 (mod 36), 10 < v < 229}.

Proof. For v = 15 (mod 36), write v = 36e + 15. If e = 1, then v = 51,
from Lemma 5.9, there exists a GS(2,3,51,8). If e = 2, then v = 87.
Apply Lemma 2.1 with m = 3,n = 24,t = 8,u = 13,a = 1. There ex-
ist 24 DILS(24 + 1,1) by Lemma 2.14, and there exist ¢ DILS(24 +1,1)
too, condition (1) is satisfied. As mentioned before, condition (2) is also
satisfied. Since there exists a GS(2,3,13,8) by Lemma 5.9, we get a
HGS(2, 3, (37,13),8) by Lemma 2.9, thus codition (3) is satisfied. There
exists a GS(2, 3,15, 8) by Lemma 5.9, this is the design desired in condition
(4). So, we obtain a GS(2,3,87,8). Fore > 3,3e—-4 2 5. Apply Lemma
2.1 withm=4,n=26e+6,L =4,u =3¢+ 3,a=3e—4. [rom Lemma 2.2,
there exist 3¢ — 4 DILS(n + a,a). Therefore, there exist ¢ DILS(n + a, a),
this is the condition (1). Condition (2) is satisfied by Lemm 5.7. Since
v < 229, we have 3 < e < 5, hence 12 < » < 18. From Lemma 5.9, there
exists a GS(2,3,u,8). So there exists a HGS(2, 3, (n + u, u),8), providing
the design needed in condition (3). Since 27 < ma+u—a=12¢—-9 <51,
by Lemma 5.9, therc exists a GS(2,3,ma + u — a,8). This is the design
needed in condition (4). Thus, we obtain a GS(2,3,v,8).

For v = 22 (mod 36), write v = 36e+22. If e < 1, the result follows from
Lemma 5.9. Otherwise, ¢ > 2. Just as we did in the case v = 15 (mod 36),
apply Lemma 2.1 withm =4,n=6e+6,t =4,u=3e+4,a=3e—2, we
obtain a GS(2,3,+,8). 0
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Combining Lemma 5.11 and Lemma 5.12, we have the following.

Lemma 5.13 There exists a GCS(2,3,v,8) for all v € Ey7, where B7 = {e:
e=4,6 (mod 9), 10 < v < 229}.

Now, we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5: From Theorem 1.3, we need only to consider
the values v, such that v € Bg,v < 229, the result comes from Lemma 5.10
and Lemma 5.13. g

Appendix A.
2
n=21, A= U ({i,:c,y} : {z,y} € Si}s

So = {{70, 1110—}0, {98,104}, {51, 119}, {30, 79}, {107, 120}, {48, 80}, {41, 75},
{55,141}, {22, 130}, {5, 36}, {40,97}, {108, 122}, {11, 56}, {53, 54},
{90, 114}, {15, 73}, {9, 124}, {3,65} };

S = {{8,120}, {12,121}, {23, 79}, {56, 113}, {71, 135}, {31, 114}, {105, 107},
{6,66}, {9, 34}, {35, 54}, {38, 52}, {14, 111}, {37,119}, {3, 49},
{30, 116}, {82, 143}, {48, 137}, {11, 13}, {5,86}, {63, 81}, {19, 20},
{94,103}, {60, 129}, {57, 133}, {45, 61}, {7, 27}, {15, 25} };

S2 = {{61,137}, {48,419}, {29, 129}, {11, 62}, {41, 85}, {28, 125}, {17, 55},
{121, 124}, {82, 123}, {126, 133}, {6, 10}, {76, 111}, {38, 141}, {75, 106},
{24, 116}, {12, 78}, {18, 70}, {9, 54}, {19, 77}, {20, 90}, {95, 118},
{22,97}, {120, 132}, {32, 101}, {100, 146} }.

2

n= 33, A= U {{ilxly} : {:c,y} € Si}'

So = {{69, 18T}(: (204, 211}, {39, 177}, {140,220}, {59, 73}, {12, 77}, {46, 124},
{8,31}, {47,130}, {176,196}, {114, 135}, {29, 152}, {62,84}, {144,205},
(23,223}, {44, 155}, {45, 203}, {81, 137}, {9, 175}, {52, 75}, {2, 188},
(60,228}, {154, 172}, {94, 207}, {15, 120}, {195, 214}, {18, 38}, {86, 157},
{90,103}, {101, 227}, {78, 95}, {113, 151}, {26,42}, {134, 190}, {6, 49},
{149,226}, {55, 160}, {48,217} };

51 = {{164,181}, {22, 167}, {118, 190}, {47,134}, {14,172}, {50, 71}, {113,222},
(35,99}, (5, 117}, {26, 174}, {69, 91}, {206,216}, {40, 197}, {136, 203},
(89,123}, {87, 144}, {65, 126}, {54, 105}, {124,125}, {112, 156}, {56, 107},
{148, 229}, {37, 204}, {162, 192}, {93, 191}, {95, 96}, {62, 163}, {29, 178},
{111, 145}, {7, 147}, {132, 185}, {46, 104}, {150, 217}, {28, 44}, {170, 195},
{13,76}, {135, 139}, {20, 25}, {122, 153}, {30, 98}, {3, 202} };

Sa = {{9, 157}, {44, 90}, {69, 141}, {13, 61}, {8,97}, {94, 196}, {181,219},

{185, 193}, {32, 222}, {65, 118}, {39, 143}, {71,211}, {104, 218}, {108, 197},
{153,154}, {54, 162}, {52, 226}, {11,115}, {34, 123}, {29, 228}, {56, 126},
{124, 133}, {60, 95}, {21, 46}, {4,51}, {15, 117}, {149, 161}, {42, 173},
{137,176}, {20, 105}, {148, 158}, {80, 83}, {26, 183}}.
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2
n=51, A= J{{i,z,¥}: {z,¥} €S},

sﬁ;::{{250,55?3,{100,289},{224,252},{43,246},{194,241},{131,167},{209,336},
{237,331}, {84, 311}, {149, 348}, {182, 186}, {268, 354}, {217, 267}, {218, 221},
{44,343}, {113,201}, {276,317}, {199, 270}, {314, 339}, {53,210}, {76, 150},
{216,322}, {140, 164}, {52, 247}, {233, 287}, {27, 67}, {38,297}, {20, 48},
{169, 232}, {45, 257}, {65, 144}, {188, 240}, {126,324}, {55,274}, {39, 127},
{101,266}, {83, 260}, {128,248}, {222, 269}, {28,103}, {138, 180}, {104, 123},
{166,342}, {6, 19}, {152, 326}, {30, 192}, {46, 133}, (58,74}, {183,319},
{163,275}, {36, 73}, {31, 347}, {189, 193}, {302, 335}, {110,238}, {328, 333} };

$, = {{104,265}, {183, 313}, {275,350}, {114, 186}, {38, 286}, {18,175}, {11,43},
{123,238}, {248,257}, {241, 355}, {224,254}, {135, 341}, {21,191}, {68, 80},
{128, 120}, {242, 335}, {101, 164}, {78, 132}, {66,83}, {181,237}, {24,153},
{130, 253}, {138,206}, {203, 232}, {7, 98}, {140,251}, {239, 356}, {42, 332},
{112, 144}, {37, 182}, {147, 236}, {193, 348}, {10, 208}, {89,214}, {268, 280},
{95,337}, {131, 304}, {19, 100}, {287, 294}, {26, 261}, {331,333}, {210, 328},
{93,344}, {16,213}, {65,81}, {171,249}, {99, 207}, {155, 302}, {61, 234},
{137,187}, {40, 109}, {63,202}, {32,47}, {150, 162}, {62, 148}, {41, 274},
{25,207}, {301, 309}, {134, 152}, {290, 351}, {54,342} };

Sa = {{197,300}, {234, 263}, {145, 173}, {139, 172}, {22, 191}, {46, 333}, {288, 351},
{314, 353}, {240, 352}, {114, 357}, {241,289}, {37, 303}, {23, 152}, {117, 278},
(60,94}, {142, 283}, {87, 340}, {75,218}, {64, 221}, {264, 287}, {238,282},
{186,279}, {50, 92}, {151,286}, {267, 346}, {254, 348}, {204, 309}, {184, 316}
{39,236}, {79, 354}, {120,345}, {146, 337}, (76,243}, {15, 161}, {168,225},
{78,100}, {160, 302}, {86, 166}, {251,310}, {116,181}, {7, 62}, {211, 307},
{148,327}, {71,187}, {273,274}, {222, 207}, {97, 144}, {133, 134}, {101, 332},
{158,355}, {13,281}, {183,325}, {187, 253}, {51,252}, {66, 324}, {55, 156},
{89,123}, {115, 174} }.
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