TWO PROPERTIES OF THE GENERALIZED SEQUENCE {Wn} RELEVANT TO RECURRING DECIMAL

Zhang Cheng-heng Hebei Langfang Teachers College Hebei Langfang 065000,China

1. Introduction

In this paper, we deduce two properties of the generalized sequence $\{W_n\}$ relevant to recurring decimal, and further get some interesting properties of special sequences $\{F_n\}$, $\{L_n\}$, $\{P_n\}$ and $\{Q_n\}$.

The generalized sequence $\{W_n\}$ is defined for all integers n by the recurrence relation (see[1])

$$W_{n+2} = pW_{n+1} + qW_n (1)$$

in which

$$W_0 = a, W_1 = b (2)$$

where,a,b,p,q are arbitrary integers.

Its general term formula is

$$W_n = \frac{(b-a \beta) \alpha^n - (b-a \alpha) \beta^n}{\alpha - \beta}$$
 (3)

where

$$\alpha = \frac{p + \sqrt{p^2 + 4q}}{2}$$
 , $\beta = \frac{p - \sqrt{p^2 + 4q}}{2}$ (4)

are the roots of the proper equation

$$x^2 - px - q = 0 \tag{5}$$

Special cases of {W_n} which interest us are

the Fibonacci sequence $\{F_n\}$: p=1,q=1,a=0,b=1

the Lucas sequence $\{L_n\}$: p=1,q=1,a=2,b=1

the Pell sequence
$$\{P_n\}$$
: $p=2, q=1, a=0, b=1$ (6)

the Pell-Lucas sequence $\{Q_n\}$: p=2,q=1,a=2,b=2

It is easy of to get the generating functions of the generalized sequence {Wn} as follows:

$$\sum_{i=0}^{\infty} W_i x^i = \frac{a + bx - apx}{1 - px - qx^2} \tag{7}$$

2. Two Properties of {Wn} Relevant to Recurring Decimal

Theorem 1:

$$\sum_{i=0}^{\infty} \frac{W_i}{10^{i+1}} = \frac{10a+b-ap}{100-10 \ p-q} \qquad (where \ p^2+q^2 \neq 0)$$
 (8)

Proof: In equation (7) putting $x = \frac{1}{10}$, we get

$$\sum_{i=1}^{\infty} \frac{W_i}{10^i} = \frac{100a + 10b - 10ap}{100 - 10 p - q} .$$

And dividing both sides of the equation by 10 we have

$$\sum_{i=1}^{\infty} \frac{W_i}{10^{i+1}} = \frac{10a+b-ap}{100-10p-q} .$$

Corollary 1: When a=0,b=1,from theorem 1 we get

$$\sum_{i=0}^{\infty} \frac{W_i}{10^{i+1}} = \frac{1}{100 - 10 \, p - q} . \tag{9}$$

(where
$$0 \le p \le 9$$
, $0 \le q \le 9$, $p^2 + q^2 \ne 0$)

In fact, when a=0, b=1, $0 \le p \le 9$, $0 \le q \le 9$, $p^2 + q^2 \ne 0$, $\sum_{i=0}^{\infty} \frac{W_i}{10^{i+1}}$ take the reciprocales of 1—99.

Corollary 2: When p=1, q=1, a=0 and b=1, from theorem 1 we get a property of the Fibonacci sequence $\{F_n\}$:

$$\sum_{i=0}^{\infty} \frac{F_i}{10^{i+1}} = \frac{1}{89} , \qquad (10)$$

this is

Corollary 3: When p=1, q=1, a=2 and b=1, from theorem 1 we get a property of the Lucas sequence $\{L_n\}$:

that is

$$\sum_{i=0}^{\infty} \frac{L_{i}}{10^{i+1}} = \frac{19}{89} ,$$

$$\begin{bmatrix} 1 \\ 3 \\ 4 \\ 7 \\ 111 \\ 18 \\ 29 \\ 47 \\ 76. \\ \vdots \\ 0.2134831446 \dots \longrightarrow 19/89 \end{bmatrix} ,$$

$$(11)$$

Corollary 4: When p=2, q=1, a=0, and b=1, from theorem 1 we get a property of the Pell sequence $\{P_n\}$:

$$\sum_{i=0}^{\infty} \frac{P_i}{10^{i+1}} = \frac{1}{79} , \qquad (12)$$

that is

Corollary 5: When p=2, q=1, a=2 and b=2, from theorem 1 we get a property of the Pell-Lucas sequence $\{Q_n\}$:

$$\sum_{i=0}^{\infty} \frac{Q_i}{10^{i+1}} = \frac{18}{79} , \qquad (13)$$

that is

Theorem 2:

$$\sum_{i=0}^{\infty} \frac{W_i}{10^{2i+1}} = \frac{100a+b-ap}{10000-100p-q} \qquad (where \ p^2+q^2 \neq 0)$$
 (14)

Proof: In equation (7) putting $x = \frac{1}{100}$, we get

$$\sum_{i=1}^{\infty} \frac{W_i}{10^{2i}} = \frac{10000a + 100b - 100ap}{10000 - 100p - q} .$$

And dividing both sides of the equation by 100 we have

$$\sum_{i=1}^{\infty} \frac{W_i}{10^{2i+2}} = \frac{100a+b-ap}{10000-100p-q} .$$

Corollary 6: When p=1, q=1, a=0 and b=1, from theorem 2 we get a property of the Fibonacci sequence $\{F_n\}$:

$$\sum_{i=0}^{\infty} \frac{F_i}{10^{2i+2}} = \frac{1}{9899} , \qquad (15)$$

that is

Corollary 7: When p=1, q=1, a=2 and b=1, from theorem 2 we get a property of the Lucas sequence $\{L_n\}$:

$$\sum_{i=0}^{\infty} \frac{L_i}{10^{2i+2}} = \frac{199}{9899} , \qquad (16)$$

that is

Corollary 8: When p=2, q=1, a=0 and b=1, from theorem 2 we get a property of the Pell sequence $\{P_n\}$:

$$\sum_{i=0}^{\infty} \frac{P_i}{10^{2i+2}} = \frac{1}{9799} , \qquad (17)$$

that is

Corollary 9: When p=2, q=1, a=2 and b=2, from theorem 2 we get a property of the Pell-Lucas sequence $\{Q_n\}$:

$$\sum_{i=0}^{\infty} \frac{Q_i}{10^{2i+2}} = \frac{198}{9799} , \qquad (18)$$

that is

References

- 1. A. F. Horadam. "Associated Sequences of General Order." The Fibonacci Quarterly 31.2 (1993): 166-172.
- S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section. Chichester, West Sussex, England: Ellis Horwood Limited, 1989.
- Joseph Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electric Line Theory." Fibonacci Numbers and Their Applications. D.Reidel Publishing Company 1986, P.141-161.

AMS Classification Numbers: 11B83, 11B39, 11B37.