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Abstract

Let I(G) be a graphical invariant defined for any graph G. For several choices of
I representing domination parameters, we characterize sequences of positive integers
a1,az,...,an which have an associated sequence of graphs G1,G?, ..., Gn such that G;
has i vertices, G; is an induced subgraph of G;41, and I(G;) = a;.

1 Introduction

Consider a graphical invariant I(G) defined for any graph G. We are inter-
ested in determining sequences of positive integers a1, az,...,a, for which
there is an associated sequence of graphs Gy, Gs,...,Gy such that G; is
an induced subgraph of G4, for ¢ = 1,2,...,n — 1; G; has i vertices
v1,v2,...,v;; and I(G;) = a; for i = 1,2,...,n. We will refer to such
sequences as achievable (under I) and all other sequences as unachievable
(under I). Also, we will use the subscript ¢ to specify objects associated
with G;. Thus, I{G;) often will be written I;.

This work was motivated by that of Harary and Kabell [4] who answered
the question posed for monotonic sequences involving vertex connectivity,
edge connectivity, minimum degree, maximum degree, chromatic index,
diameter, and number of edges. They point out that the restriction to
monotonic sequences is unnecessary.

ARS COMBINATORIA 57(2000), pp. 13-31



A different type of graph sequence has been studied by Rasmussen [8]

and Odom and Rasmussen [5]. They deal with sequences Go, Gy,..., Gk
where k& = g' — ¢, G; has order n for all i, Gy has size ¢, and G;4, is

obtained from G; by adding an edge. The sequence of edges added is called
a P-completion sequence, where P is some graphical property, if each graph
G; has P. Their work examines the existence of P-completion sequences
for various categories of graphs Gp.

A great deal of research has involved the domination number and its
many associated versions. This is partially due to the importance these
parameters play in applications. In work which is somewhat related to that
presented here, Vasumathi and Vangipuram [9] have demonstrated graphs
which, given a positive integer r, have r as the domination number, edge
domination number, total domination number, or total edge domination
number. A deeper concern, however, is the changes domination related
parameters undergo when an application being modeled by a graph loses
the equivalent of a vertex, so studies of possible sequences involving these
parameters become interesting. This paper initiates one such study by
taking I to be a domination related parameter. In general, the graphs G;
have no restrictions imposed on them, other than those which are a part
of the definition of the problem. For some of our results, however, we will
insist that the G; be connected.

2 Three Domination Numbers

In this section we investigate three choices of I: the domination number
(@), the independent domination number v;(G), and the connected dom-
ination number v.(G) of graph G. A set of vertices in G dominates the
graph G if every vertex in G is either in the set or is adjacent to a vertex
in the set. The domination number is the minimum size of a set of vertices
which dominates. The independent domination number is the minimum
size of an independent set of vertices which dominates. The connected
domination number is the minimum size of a dominating set in G which
induces a connected graph. When considering connected domination num-
bers, the graphs G; are necessarily connected. It is straightforward to show
that 1 < +; < and ;41 < v+ 1, with corresponding inequalities applying
to vr;. The second inequality also holds for connected domination, but the
first changes to 1 < v, < ¢ —2,if ¢ > 3. Our first result shows that any
sequence, limited only by these elementary restrictions, is achievable under

3.

Theorem 1 Any sequence which satisfies 1 < a; <i and @iy < a; +1 is
achievable under .
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Proof. Given a sequence satisfying the two criteria, we inductively con-
struct the associated graphs G; in such a way that each G; will have a;
components, each dominated by a single vertex. Clearly a; = 1 and G,
is an isolated vertex. Now suppose we have a graph G; which consists of
a; components, each dominated by one vertex. Let a;+; = a; — k where
—1 <k £ a; — 1. To construct G;+1, arbitrarily choose k& + 1 components
and add a new vertex v;y; with edges to all vertices of each of the cho-
sen components. Thus, if kK = —1, that is, a;4; = a; + 1, then the new
vertex vi41 is isolated, forming a new component, and v;4; = 7 + 1. If
k > 0, then v;;; dominates in G;; a single component consisting of v;4;
and the vertices of the k& + 1 chosen components. Each of the remaining
v — (k + 1) components is left unchanged and so is still dominated by one
vertex. Hence, y;41 =14 v — (k + 1) =; — k as required. O

Notice that this construction actually produces a minimum independent
dominating set. Thus, we have the following corollary.

Corollary 2 Any sequence which satisfies 1 < a; <i and a4 <a;+1 is
achievable under vy.

The case of connected domination is only slightly more complicated.

Theorem 3 Any sequence which satisfiesa; = a3 =1,1<a; <i-2 for
i >3, and a;41 < a; + 1 is achievable under ..

Proof. The graph G; will include a path, P;, with end vertices L; and
R;, where possibly L; dominates a subgraph distinct from the path. For
the special case i = 1, we have a; = 1 and G, is the isolated vertex, v,
called L; for the left end of the path. To construct G, we connect the
next vertex, vg, with an edge to L;. Set L, equal to L; and Rz to vs;
50, Ye,2 = 1. Our restrictions also imply a3 = 1 and we obtain G3 by
connecting a new vertex, vg, to La, setting L3 and R3 equal to Ly and Ry,
respectively, and renaming v; as s.

For 3 £ i € n— 1, we assume that G; is as in Figure 1 where there
are a; + 1 vertices along a path, P;, from L; to R; inclusive. The subgraph
H; consists of one or more vertices all with edges to L; and includes the
vertex s which is not adjacent to any other vertex in P;. The above con-
struction establishes this form when 7 = 3 with v3 being the only vertex in
Hj;. Observe that the vertices of V(P;) — {R;} form a minimum connected
dominating set of G; when ¢ = 3, and this property will be retained for
larger indices.

If a;yy = ai, we set L;y; equal to L;, R,y equal to R; and connect
the new vertex, vit1, to Liy1. If ai41 = a; + 1, viy) is connected to R;
and becomes R;,, while L;4; equals L;. The domination number increases
by one because R; must be added to the connected dominating set to
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dominate R;y;. Finally, if a;41 = a; — k with k£ > 0, then v;4, is added to
the graph with edges to all vertices in H;, to L;, and to k£ + 1 consecutive
vertices along P; beginning with the vertex adjacent to L;. In addition,
vi41 becomes L;.; and H;;y now includes H;, L;, and the next k£ former
path vertices.

Figure 1: G;. Note that dotted edge is not present before any decreases in
the sequence.

Note that the dotted edge shown in the figure from a vertex of H;
to the vertex of P; adjacent to L; is not present until the first decrease
in the sequence of a;’s. After any such decrease, H;,; still contains s
which is not adjacent to any vertex in V(Piy1) — {Li4+1}. Furthermore, any
connected dominating set must include every vertex in Piy1, except Ri4)
and L;y;. At least one more vertex also must be included to dominate
s, and L;y; does this. Since L;;; also dominates H;4, it and the path
vertices other than R;;; form a connected dominating set for G;;,. Thus,
Yei+1 = ai — (K + 1) + 1 = az41. It is straightforward to see that Giyy
still satisfies the properties indicated by Figure 1 and the result follows by
induction. O

3 Domination Number and Connected Graphs

In this section we restrict our attention to the domination number (G) of
graph G with the additional constraint that each of the graphs G; must be
connected. This restriction might correspond to a step by step construction
of a communication network that remains connected at every stage.

In this situation, a; = <;, and we need the following results from Ore
[6] and Payan and Xuong [7].

Theorem 4 For any graph G with n > 2 vertices,
1. [6] 7(G) < | %] i G has no isolates, and
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2. [7] if v(G) = %, then each component of G is the cycle Cy or the
corona H o K; for some graph H.

Theorem 4, Part 1, indicates that all achievable sequences must have, in
addition to the standard restriction on the domination number of a;; <
a; +1, that 1 < g; < L5 L] ifi > 2. We designate such a sequence as
legitimate and restrict our attention to sequences of this type. Notice that
any legitimate sequence with three or more entries must begin 1, 1, 1. In the
following lemma, we employ the notation ,B(G) for the size of a maximum
independent set of edges in a graph G such that each edge in the set is
incident to a degree one vertex (we call a vertex of degree d a degree d
verter).

Lemma 5
1. For any graph G, ﬁ(G) <Y(G).

2. If viy1 < v, then viy1 must be in any minimum dominating set of
GH-I-

8. If yiy1 < 7, then Bip1 < yig1 — 1.

4- If Yiy1 < v and Yig14x = Yig1 + k for all k > 0, then fiyx <
Yi+1+k — 1 for all k > 0.

Proof. A unique vertex is required to dominate the degree one vertex of
each edge in the set counted by B(G), which proves Part 1. For Part 2,

suppose 2 minimum dominating set of G;; exists which does not contain
Vi+1. Then some <;4, vertices of G; dominate G4 and hence also G;, a
contradiction to the fact that 4; > v;4+1. Using Part 2 we know Vi1 is in
every minimum dominating set of Git+1 which implies vi+1 can not have
degree one. Also, v;4; can not have a degree one neighbor since then that
neighbor would have been isolated in G;. Thus at most y;4; — 1 vertices in
the dominating set can dominate degree one vertices and Part 3 is shown.

Finally, the result of Part 4 is true when k = 0 by Part 3. For each increase
of k by one, ﬁ can increase by at most one while the domination number
increases by exactly one. O

- Using the previous lemma, we can show that certain legitimate se-
quences are not achievable.

Lemma 6 If the sequence contains an index i such that Yi+1 < v; and
Y2(it1—vip1) =t + 1 — Yiq1, then the sequence is unachievable.
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Proof. Observe that the hypothesis ;4.1 < 7; can occur only if ¢ > 4. The
index 2(i+1—";41) is i+1—27;41 greater than the index +1. Furthermore,
Yigr + (E+ 1 = 2vi41) = i + 1 —yi41. Thus, if Yo(ip1-9yy) =2+ 1 — Vit
it means 'y,+1+k =41 +kfor 0 <k <i+1-—2vy;. By Lemma 5 Part
4, ﬂg(,_H_.h iv1) < Y2(i+1-viq) — 1, contradicting Theorem 4 Part 2 which

reqlnres ﬂ2(l+l—7x+!) = 72(t+1—‘7,+1) a

As an example, notice that Lemma 6 can be used to show that the
sequence 1,1,1,2,2,3,2,3,4,5 is unachievable by letting i = 6. We will
show that the only legitimate sequences which are unachievable are ones
of the type covered by the lemma. Toward this end we present the follow-
ing algorithm which we will show correctly generates the graphs G; for any
achievable sequence. We partition the vertices of G; into sets D; containing
a current minimum dominating set, P; containing vertices which are po-
tential dominating vertices of G411, and U; containing vertices which may
not become dominating vertices of G;41. We also define D; g to be the set
of vertices in D; which have no degree one neighbor.

Algorithm for generating the graphs G;

1. Set Gy to be an isolated vertex v;. Set D; = {v1} and Dy = P, =
U, =0.

2. Obtain G2 by adding a pendant vertex vp to v;. Set Dy = D,
Uz = {v2}, D2o = P2 =0.

3. For i > 2, obtain G;;; from G; by adding a vertex v;4; according to
the following steps:

(a) If vi4+1 = 7, add pendant vertex v;4 adjacent to any vertex
w € D; with the added proviso that w must be selected from
D;¢ if Djo # 0. Let M be the neighbors of w which are in
U;. Set Dy = Dy, Dig10 = 0, Py =P UM, and U;4q =
(Ui = M) U {viya}.

(b) If yi4+1 = i + 1, add pendant vertex v;;; adjacent to any vertex
w € P;. Set Dy = D; U {w}, D10 = Do, Piy1 = P - {w},
and Uiy = U; U {'Ui+1}~

(c) If yi41 = vi—k for k > 1, define D to be a set of any k+1 vertices
of D; with the added proviso it must include any vertex in D; o,
N to be Uzep Nlz] — (Ds — — D), y to be a degree one vertex in
N, and z to be y’s neighbor. Add vertex vi4+1 adjacent to all
vertices in N. Set Diy1 = {vit1} U (D; — D) Dit10 = {vit1},
Piy1 = P,UN — {y,2}, and U1 = (U; — - N)u{y,z}.
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We will show that the algorithm correctly generates all legitimate se-
quences of graphs except for the type described in Lemma 6. We require
the following lemma.

Lemma 7 After each step of the ezecution of the algorithm, |D;g| < 1.
For i > 2, every vertex in D; — D; o is adjacent to a pendant vertez in U

and f; > v; — 1. Pinally, if %ir1 = %, then Biy1 = yis1.

Proof. By construction |Djo| = |Dz,0| = 0. For i > 2, either D;y10 =0
or Diy1,0 = {vip1} or Diy19 = Djo. Thus |D;4;,0| <1 by induction. For
1 =2, Dy — Dyg = {v1} and vz is a pendant vertex in U. Vertices are
added to D; — D; ¢ only in Step 3b which simultaneously adds an adjacent
pendant vertex in U. Step 3a assures every vertex already in D; — D; ¢
has a pendant vertex in U. Hence, for ¢ > 2 every vertex in D; — D;y is
adjacent to a pendant vertex in U by induction. Given that every element
of D; — D; o is adjacent to a pendant vertex, |D; | < 1 implies §; > v; — 1.
If vi41 = 1, Gy is obtained using Step 3a; hence, [D;41,0| = 0 which in
turn implies ,B,;H > 7i+1. Equality follows from Lemma 5. O

The next lemma is needed to justify our construction of D;.

Lemma 8 After each step of the execution of the algorithm, D; is a min-
imum dominating set.

Proof. The result is immediate from Steps 1 and 2 for i < 2. Suppose
that D; is a minimum dominating set. If G;,, is obtained via Step 3a,
the result follows by induction since adding a pendant vertex to a member
of a minimum dominating set leaves the same minimum dominating set.
Suppose G; 1 is obtained via Step 3b. By Lemma 7 every vertex in D;—D; o
is adjacent to a pendant vertex in Uj; hence, w ¢ U; implies all of these
vertices are also in a minimum dominating set of G;4;. By construction, w
also is adjacent to a pendant vertex and thus can be placed in any minimum
dominating set. Further, if the vertex y exists due to an earlier execution
of Step 3¢, meaning D; g # @, it is not adjacent to w or any of the vertices
in D; — D; ¢ so one additional vertex is required to dominate it. The result
now follows. Finally, suppose that G;41 is obtained via Step 3c. As before,
every vertex in D; — D is adjacent to a pendant vertex in U; which is also
a pendant vertex in U;y;. None of these vertices are adjacent to y; hence,
they and v;4+; form a minimum dominating set and once again the result
follows. O

A straightforward count reveals that the minimum dominating sets gen-
erated by the algorithm are all of the correct size, that is, 7; = a;. All that
remains is to determine conditions which terminate the algorithm, which
we do in the following theorem.
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Theorem 9 When each G; is connected, every legitimate sequence is achiev-
able under v except any in which, for some j, Yj+1 <V and Va(j+1—v;41) =
J+1-"41.

Proof. Suppose that we have generated a sequence of graphs up to G;.
Clearly, we will be able to generate G;y1 if vi4+1 = 7i- Suppose Y41 = vi—k
with k£ > 1. In this case, |Dio| < 1 and ¥+ 1 > 2 imply, by Lemma 7,
that at least one vertex in D is adjacent to a degree one vertex. Thus, the
vertex y always exists and we will be able to generate Gi41.

The only remaining possibility, 4i+1 = i +1, can be executed as long as
P; is not empty. Notice that the set U; always contains exactly one degree
one vertex adjacent to each vertex in D; — D; o and, when D; o is not empty,
contains two additional vertices adjacent to the vertex in D;gq. If ,[§,~ =
then every vertex is D; has a degree one neighbor. Therefore, D; g is empty,
|Ui| = v and |P;| = i — |Us| —vi = 4 —2v;. If P; is empty we have v; = i/2.
Hence, i is even, and ;41 = §/2+1 = | 2| +1 which violates the condition
on legitimate sequences given in Theorem 4, Part 1. On the other hand, if
B; = v — 1, then D; ¢ is not empty and |U;| = 8; +2 = ; + 1. In this case,
|P)| =i — |Ui| =% = i— 27; —1 = i+ 1 — 2734 and there exists an index j
such that ;41 < <y; followed by a strictly monotonic increase (possibly of
zero terms) in the sequence values. Letting k be the number of increments
in the monotonically increasing sequence, we have i +1 = j + 1+ k and
Yig1 = Yi+1+k. If |Pi] =0, then j4+1+k = 2vi41 = 2(YVj+1+K) = 254 14k-
From the equality involving the first and third terms of the previous string,
we see that k = j+1—2v;41. Substituting this value for & in the preceding
equalities we obtain i +1 = 2(j +1—Yj4+1) = 2Vi41 = 2V2(j41-n;41)- Hence,
J+ 1 = 7941 = Ya(j+1—v;41) Which is the case excluded by the hypothesis.
O

4 Total Domination Number

The results for total domination, the invariant discussed in this section,
are similar to those considered in the previous section for domination of
connected graphs. A total dominating set of graph G = (V, E) is a subset
D of V such that every vertex of V, including those of D, has a neighbor in
D. The cardinality of a smallest total dominating set is the total domination
number of G, denoted v;(G), and we are interested in those sequences for
which a; = Vt,i-

Note that any achievable sequences must begin with i = 2 since any total
dominating set must contain at least two vertices. This fact also shows that
each of the graphs G; must be connected. If this weren’t the case, there
would be a first G; which is disconnected. This G; must have a component
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composed of v; alone, and this vertex cannot be totally dominated. As a
vertex is added, the total domination number can either decrease by any
amount as long as the result is at least two, stay the same, or increase by
one. To verify this last statement, suppose that < ;41 > :,; and let D be
a total dominating set of G;. Clearly no vertex of D is adjacent to v;41. If
w is any neighbor of v;4; in Gij1, then D U {w} is a total dominating set
of Gi+l-

An upper bound for the total domination number of a connected graph
has been found by Cockayne, Dawes, and Hedetniemi [2] to be [2n/3].
It follows that we must restrict attention to sequences such that 2 < a; <
[2¢/3] and a;41 < a;+1. Asin Section 3, we call such sequences legitimate
and we will show that not all legitimate sequences are achievable.

The motivation for the present proof is found in the characterization
of connected graphs for which v = [2n/3] and n = 2 (mod 3) given by
Brigham, Carrington, and Vitray [1].

Theorem 10 A connected graph G with n = 3k + 2 vertices has v, =
|2n/3] if and only if G is Cs or is obtained from a connected graph L on
k + 1 vertices by identifying an end vertez of a distinct Ps with each of k
vertices of L and identifying one vertez of a Py with the remaining verter
of L.

When constructing the sequence of Gis, we may eliminate the Cs pos-
sibility by using P; as our graph with total domination number three when
n = 5. This choice allows us to assume that all the graphs in our sequence
fit the general characterization given in Theorem 10. Note that the graphs
characterized by the theorem have a minimum size total domination set
composed of all vertices of degree at least two. In particular, this set is
constructed from two vertices from each of the P3’s and one from the single
Ps.

Motivated by the structure of the graphs given in the theorem, we
define a P, formed by a pendant vertex to be a pendant P; with the vertex
adjacent to the degree one vertex being called the base vertez. Similarly,
a P; having a degree one vertex with an adjacent degree two vertex is a
pendant P3, the neighbor of the degree one vertex is the central vertezr of
the P, and the remaining vertex of the P; is the base vertez. In either a
pendant P, or Ps, the degree one vertex is called an end vertez.

Suppose a graph G has a maximum size subgraph of the form sP, U
tP; where the paths are restricted to be pendant ones with distinct base
vertices. We define a parameter r of G, denoted 7(G), by 7(G) = s+2t. In
any total dominating set of G, we may include without loss of generality
all of the r(G) base and central vertices of the pendant Py’s and Ps’s. For
an extremal graph having 3k + 2 vertices of the type described by Theorem
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10, it is easy to see that 7(G) = ¥(G) = 2k + 1. In the following lemma
we derive a number of important facts regarding r, 7, and their relation
to each other. As before, we use subscripts on graphical parameters to
indicate properties of G; so, for example, r; = 7(G;). The following basic
results will be fundamental to our argument.

Lemma 11
1. For any graph G, r(G) < v(G).
2. For any legitimate sequence, Ti+1 < 7; + 1.

3. If yi41 < Wi, then viy1 must be in any minimum dominating set of
Gi+1 and no neighbor of viy1 has degree one in G;11.

4o If vei1 < Yeir then ropr < vpig1 — 1.

5. If Yesit1 < Vi and Yeip1ek = Y41 +k for all k >0, then rip1pp <
Yeit14+k — 1 for all k > 0.

Proof. Part 1 follows from comments before the lemma. Part 2 is immedi-
ate from the fact that r can increase only by appending v;4; either to the
end vertex of a pendant P, or to a vertex not in a pendant P, or P;, and
in both cases r increases by 1. For Part 3, if D is a minimum total domi-
nating set of G;;1 which does not include v; 4+, then D totally dominates
G, contradicting the fact that -y, ;41 < . Furthermore, no neighbor »
of v;+1 can have degree one, for then « would have been isolated in G;.
To show Part 4, notice that v;;; can not be the base vertex of a pendant
P, or P;. The former is banned by Part 3. The latter also is impossible
because, for that situation to occur, v;;; must be adjacent to an end vertex
of a P, which must form a component in G;, an impossibility since ¢ must
be greater than three if the total domination number is to decrease. The
result of Part 5 is true for £k = 0 by Part 4. The domination number, by
hypothesis, increases by one for each increase of k by one, and, by Part 2, r
increases by at most one for each increase of k by one. Thus Part 5 follows
by induction. O

Lemma 11 can be employed to show certain legitimate sequences are
unachievable.

Lemma 12 Any sequence which contains an index ¢ such that v ;41 < Vi,
and
Y.3Gi=vei41)+2 = 2(8 = Ye,i41) + 1 45 unachievable.
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Proof. The index 3(¢ — ¢,i41) + 2 is 20 + 1 — 37 ;41 greater than the
index 4 + 1. Furthermore, ¥ 41 + 26 + 1 — 3v;441 = 2(5 — Ye441) + 1.
Since ¥,3(i—yy..p1)+2 = 2(8 — Y,i+1) + 1, it follows that v ;4144 = Ve,i41+ K
for 0 <k <2i+1- 37,41, By Lemma 11 Part 5, T3(i—vyeip)42 <
Y,3(i-vi41)+2 — 1 = 2(8 = Yg,i41) + 1 —1 = 2(¢ — y;,;41). However, a graph
with 3(7 —:,441) + 2 vertices and total domination number 2(i — vz ;+1) + 1
satisfies the conditions of Theorem 10. Since the total domination number
cannot decrease unless the graph has at least five vertices, G;;1 cannot be
Cs and the comments following Theorem 10 indicate that r3(_y, .,,)+2 =
2(i — 1,i4+1) + 1 which provides our desired contradiction. O

We present an algorithm which generates the graphs G; for all legitimate
sequences except those described by Lemma 12. For each i, we construct
a minimum dominating set D; which is partitioned into four subsets D; g,
D;1, D;2, and D;¢. We will show that D;; is composed of the base
vertices of pendant P»’s in G;, and D; 2 similarly contains the base vertices
of pendant P3’s whose central vertices are the members of D; ¢. The set
D; ¢ is the set of remaining vertices of D;. We will also demonstrate that,
for i > 4, |D;o| < 1, and, if D;p contains a vertex, it will be adjacent
either to a vertex of degree two, or to a vertex of degree three which is
in D;;. We call this vertex which is adjacent to the vertex in D;gq the
constrained verter. If the constrained vertex has degree three, then its
degree one neighbor is called the constrained neighbor. The neighbor of the
constrained vertex which is not the constrained neighbor and not the vertex
in D, is the reserved neighbor. Finally, we define a fifth set Q; to be the
set V; — D; minus the end vertices of pendant P;’s, the reserved neighbor
and the constrained neighbor. The algorithm generates G;4; from G; by
adding a single vertex, v;4.1. Note that we begin with ¢ = 2 since there is
no total dominating set for a graph with one vertex.

Algorithm for generating the graphs G;

1. Set G2 = P, with end vertices v; and ve, Dy = {v1,v2}, and all
other sets to empty.

2. For © > 3 add vertex v;4+; according to the following rules, where
all vertex sets in G;41 not explicitly mentioned are set equal to the
corresponding sets in G;, except for @Q); which always is assumed to

be as defined above:

(a) If v 5+1 = 74, add a pendant vertex v;y; to a vertex w of
D; — D; ¢ where the order of selection is a vertex in D; g, a
vertex in D; o, and finally a vertex in D; ;. In addition,
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i. ifw € D;p, set Diy10 = Di,o - {'w} and Dj41,, = D U

{w}; then remove any existing designation of a constrained
vertex, a constrained neighbor, and a reserved neighbor,

ii. if w € D; 2, let u be the central vertex of the P; in G; which

has w as its base and set Diy12 = Di2 — {w}, Diy11 =
Di,l U {w,u}, and D'H-I,C' = Di,C - {u}

(b) If 4341 = i + 1, add pendant vertex v;41 to any vertex w € Q;
with the proviso that a vertex with degree at least two is selected
if it exists. In addition,

i.
ii.

if w has degree at least two in Gy, set Diy1,1 = D;1 U {w},

if w has a single neighbor v in G;, then

A. if w is the only degree one neighbor u, set D;y12 =
D; 2 U {u}, D11 = D;i1 — {u}, and Djyy,c = Dic U
{w},

B. if u has at least two degree one neighbors, set D;y11 =
D;,u {w}

(€ Uvyipa=v—-kforl1<k<y:—2, define D to be a set of k+ 1
vertices selected from D; according to the following ordering:
the vertex in D, g if it exists, both the base and central vertices
of the same pendant P; repeated as long as unused pendant Ps’s
remain and at least two more vertices must be placed in D, and
then vertices in D; ;. If a single vertex remains for inclusion into
D and only pendant Pj’s remain, that is, D;; is empty, select
the base vertex of a Ps. Define N to be U,ep,-pN(z), that

is, N is the set of vertices dominated by D; — D. Add vertex
v;+1 adjacent to all vertices of V(G;) - —N. Thus, v;4; dominates
all vertices not dominated by D; — D. If vy, is not dominated
by D; — D, add an edge between v;4; and a vertex of D; — D,
chosen from D; ; if possible, in order to totally dominate v;4;.
In addition,

i

ii.

jii.

iv.

set Diy1,0 = {vit1} and Dip1,2 = Dip — D,

if D contains a base vertex of a P; but not the associated

central vertex u, set D;4+11 = (Di;1 -—D)U{u} and D,.H c=
Dic — (D U {u}), otherwise, set D;y11 = D;) — D and

Diy1c =Dic — D,

remove any existing designation of a constrained vertex, a

constrained neighbor, and a reserved neighbor,

select the constrained vertex w to be a vertex in V(G;) — N
which has degree two if possible and otherwise has degree
three with a pendant vertex,
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v. if the vertex w in Step 2(c)iv has degree three, select the
pendant vertex adjacent to w as the constrained neighbor,

vi. select the neighbor of the constrained vertex found in Step
2(c)iv which is neither v;1; nor the constrained neighbor to
be the reserved neighbor.

Notice that, in Step 2a, Diy1 = D;; in Step 2b, D;yy = D; U {w}; and,
in Step 2c, D;y1 = (D; — D) U {v;41}. An easy check reveals that neither
w in Step 2b nor v;4; in Step 2c is a degree one vertex in G;+;. Also, Dy
contains no degree one vertices which leads, by induction, to the following.

Observation 13 Fori > 4, D; contains no degree one vertices.

Our first task is to show that the above algorithm correctly generates a
sequence of graphs having the desired total domination numbers. We begin
with the following lemma which justifies our descriptions of D; 0, D;,1, Dj,2,
D‘i,C) and Di.

Lemma 14
1. For i > 2, the sets Dy, Di1, Di2, and D; ¢ partition D;.

2. For i > 2, every vertex in D;a is the base verter of a pendant P
whose central vertez is in D;c, and every vertex in D;; is the base
vertex of a pendant P;.

Proof. An easy check verifies that the lemma holds for i € {2,3}. We
proceed by induction on 7. Assuming the result holds for some i > 3, we
consider three cases depending on the step used to generate G;,., from G;.
In all three cases it is straightforward to check that, if D; g, D; 1, D; 2, and
D; ¢ partition D;, then D;y10, Dit1,1, D;y1,2, and D;4,c also partition
D41 which implies Part 1.

1. If ¢ ,i+1 = i, we obtain G;11 by adding a pendant vertex to w €
D; — D; c. By construction, w is the base vertex of a pendant P, in
Git1 whose end vertex is v;41 and, if Step 2(a)ii is employed, u is
the base vertex of a pendant P,. Thus, by induction, every vertex in
Dj;1,1 is the base vertex of a pendant P,. By Observation 13, w is
not a degree one vertex. It follows that a path is a pendant P3 in G;
if and only if it is a pendant P3 in G;y;, with the possible exception
of a pendant P; in G; having w as its base vertex. Therefore, if v is
in D;;1,2, then by construction v € D; 5 and hence is the base vertex
of a pendant P; in G; which is also a pendant P3 in G;4+;. Further,
w is not in D; 1 2; hence, the central vertex of the pendant P; which
is in D; ¢ must also be in D;1; ¢ and Part 2 follows.
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2. If v541 = ,i + 1, we obtain G;4, by adding a pendant vertex vy
to w € @;. If w has degree at least two or w has degree one and N(w)
has at least two degree one neighbors, then D;y1; = D;1 U {w}. As
before w is the base vertex of a pendant P, whose other vertex is
vit1. All of the other corresponding sets are equal and the results
of the lemma follow. Alternatively, suppose w has degree one in G;
with u as its only neighbor. The path (u,w,v;+1) is a pendant P; in
Gi41 with u as its base and w as its central vertex. In this case, u is
placed in D;4; 2 and w is placed in Di41,c and the result follows by
induction.

3. Finally, suppose that v¢,i+1 = 72,s — k for £ > 1. If v € Diyy,2, then

v € Do — D and so is the base vertex of a pendant P; in G; with
central vertex ¢ € D; ¢ and degree one vertex m € V; — D;. By
construction, since v is not in b, neither is ¢ nor can c be the central
vertex u of Step 2(c)ii. Thus, ¢ € D; ¢ —D—{u} = D;y1,c. Further,
neither ¢ nor m is adjacent to v;41; hence, v is still the base vertex
of a pendant P3 in Gi41. It follows that every vertex in Diy; 2 is
the base vertex of a pendant P3 in G;y; whose central vertex is in
Dic.
If v € D;41,1, then, from Step 2(c)ii, either v € D;; — D or v is the
central vertex of a pendant P3 in G; whose base vertex b is in D. In
the first case, v is the base vertex of a pendant P» in G; whose end
vertex m is in N and is not in D;. Hence, m is not adjacent to v; 4}
and v is still the base vertex of a pendant P, in G;;1. In the second
case, v;41 is adjacent to both b and v but not to the end vertex of
the pendant P; and once again v is the base vertex of a pendant P,
in Gi41. Thus, every vertex in D;41,) is the base vertex of a pendant
Ps.

It will be helpful to have a notation for those indices which may be part
of a subsequence which leads to an index of the type described in Lemma
12. To this end, we partition the indices of the sequence into two sets, PN
(potentially nonachievable) and PA (potentially achievable). An index j
is in PN if and only if there is an index ¢ < j such that v ;41 < 7, and
Y.j = Yti+1 +J —t — 1, that is, the value of v has increased by one at
each step since its last decrease. This definition leads immediately to the
following observation.

Observation 15 For any sequence,

1. if ~ie1 = i, theni+1 € PA,
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2. if Y441 =i+ 1, theni and i + 1 are either both in PA or both in
PN, and

S i < Vi, then i+ 1€ PN,

We can use Observation 15 to obtain the following useful lemma regard-
ing D‘i,O-

Lemma 16 Fori > 4, the graph G; generated by the algorithm has | Dol =
1 ifi is in PN and |D;o| = 0 otherwise.

Proof. We proceed by induction on %, the result being true when i = 4
for which |D; o| = 0. After Step 2a of the algorithm, D; ¢ is the empty set.
Furthermore, by Part 1 of Observation 15, i + 1 € PA. Note that, in Step
2b, [D; 0| = |Diy1,0] and, by Part 2 of Observation 15, i +1 € PN if and
only if i € PN. Finally, Step 2c sets D; o to {v;41} so |Diol =1 and, by
Part 3 of Observation 15, i+ 1 € PN. O

We need one additional fact regarding D; o.

Lemma 17 For i > 4, if |D;o| = 1 then the constrained vertez ; €G; is
not adjacent to any vertex in D; — D; .

Proof. We proceed by induction on %, the result being vacuously true
when i = 4 for which |D;p| = 0. If G4 is generated from G; via Step
2a of the algorithm, then Lemma 16 implies |Dit1,0] = 0 and the result
is again vacuously true. If Gy, is generated from G; via Step 2b, then
|Di0] = |Dit1,0]- If they both have size 0, we are done. Otherwise, by
Lemma 16, we have that |D;o| = |Dit1,0| = 1. Further, the neighborhood
of the constrained vertex in G; consists of the vertex in D;o = Djit1,0, the
reserved neighbor, and the constrained neighbor if one exists. Thus, none
of the neighbors of the constrained vertex are in Q;. It follows that the
constrained vertex satisfies the conditions of the lemma for Gi+1. Finally,
suppose G is generated from G; via step 2c. In this case the constrained
vertex satisfies the conditions of the lemma by construction. O

The above lemmas leads to the following theorem.

Theorem 18 Fori> 2,
1. D; is a minimum total dominating set of G; and

2. the algorithm correctly alters the total domination number in each of
Steps 2a, 2b, and 2c.

Proof:
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1. As has been pointed out previously, there exists a minimum total
dominating set which contains every base vertex of a P;, every base
vertex of a Ps, and every central vertex of a P3. Hence, by Lemma 14,
there exists a minimum total dominating set which contains D;; U
D; 2UD; ¢. Furthermore, if | D; 0| = 1, then the existence of r; implies
by Lemma 17 that the minimum total dominating set must contain
at least one more vertex, and the element in D; o serves this purpose.
All that remains is to show that D; actually totally dominates G;.
This follows easily by induction since v;1 is dominated by w in steps
2a and 2b while, in step 2c, every vertex not dominated by D; — D
is dominated by v;4; and some vertex of D; — D dominates vi41.

2. In Step 2a, D;;1 = D;; hence, by Part 1, ;441 = 71,:- In Step 2b,

D41 = D; U {w} where w € Q;. By the definition of Q;, the vertex

w is not in D;; hence, v;i+1 = W, + 1 since Lemma 14 guarantees

that the vertex dominating w in Gj is still in the total dominating set

in G;;1. Finally, in Step 2¢, Diy1 = (D; — D) U {vi41}. Thus, since

|D| = k41 and v;41 is not in D;, we have |D;y1| = | Ds| — |D|+1=
vi—(k+1)+1=7v—-k.

We are left with the task of determining those sequences for which the
algorithm can be executed. Notice that Steps 2a and Step 2c can always
be accomplished. On the other hand, Step 2b can be completed only if the
set Q; is nonempty. The next lemma shows this is indeed the case for any
legitimate sequence if D; o is empty and for any sequence not eliminated
by Lemma 12 if D; ¢ contains a vertex.

Lemma 19

1. Ifi € PA and y; < 2i/3, then |Qs] > 0.

2. Ifie PN and v < 2(i+2)/3 -2, then |Q;| > 0.
Proof.

1. By definition, |Q;| = i — 1,; — |Di2|. Since |D; | < 7¢,:/2, we have
|Qil =i —Ye;i — Yei/2=1—37,:/2>0.

2. Clearly Q; is nonempty if it contains the constrained vertex. Other-
wise the constrained vertex is in D;; and the constrained neighbor
exists. In this case, it follows that |Q;| = ¢ — ¥,i — |Di2| — 2 and
|D; 2| € v.:/2 — 1. Hence, we have |Q; > & —7z,i — (1ni/2-1)-2=
i—3m.i/2-1>i—(3/2)[2/3(: +2)-2]-1=i-i-2+4+3-1=0.0
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Combining the results in the previous lemmas leads to the following
characterization theorem for sequences associated with the total domina-
tion number.

Theorem 20 Every legitimate sequence is achievable except any in which,
Jor some index i, v iv1 < Ve,i ONE Ve 3(i—vyi00)+2 = 2(8 — Y2,i+1) + 1.

5 Domatic Number and Other Domination
Related Parameters

First we consider I to be domatic number, d(G), defined by Cockayne and
Hedetniemi [3] to be the maximum number of disjoint dominating sets in
G. Like domination number, the domatic number can increase by at most
one with the addition of a vertex. To see this, let Dy, Ds,..., Dyg,,,) be a
maximum collection of dominating sets of G;4+;. At most one of these sets
contains v;4+; and the rest dominate Gj; so, d(Git+1) < d(G;) +1. We show
the same sequences are achievable for d(G) as for ~.

Theorem 21 Any sequence which satisfies 1 < a; <1 and ai41 < a; +1
is achievable under d(G).

Proof. Again, we inductively construct a sequence of graphs associated
with a given sequence beginning with a; = 1. As always, G; is an isolated
vertex and the only dominating set is the vertex itself. Thus, d(G;) = 1.
Now assume we have a graph G; containing i vertices and with d(G;) = a;.
If a;+1 = a; + 1, we add the new vertex, v;y;, with edges in G;q; to
all vertices of G;. All of the d(G;) dominating sets of G; also dominate
Git1, and {v;4,} forms an additional dominating set. If a;yy = a; — k,
0 < k < a;—1, then v;4, is joined to exactly one vertex in each of a; —k—1
dominating sets of G;. Each of these a; — k& — 1 sets now dominates G; 11
and is disjoint from the union of v;4; with the vertices of the other k¥ + 1
sets, a union which also forms a dominating set for G;;.1. Thus, d(Gi+1) =
a; — k. Suppose d(Gi;1) > a; — k + 1. By disjointness, at most one of the
dominating sets in a maximum collection includes v;41, so at least a; — k of
them do not. However, the degree of vi41 is a; — k—1; hence, at least one of
the sets not containing v;4 fails to dominate v;4;. Thus, d(Git+1) < a;i—k
and the result follows. O

Our approach yields results for a number of additional parameters. The
independence number, B(G), is the maximum size of a maximal independent
sct while the lower independence number, i(G), is the minimum size of such
a sct. The upper domination number, I'(G) is a maximum size minimal
dominating set. A set S of vertices is irredundant if v € S implies N[S] —
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N[S — {v}] # 0. The irredundance number, ir(G), is the minimum size of
a maximal irredundant set. The upper irredundance number, IR(G), is the
maximum size of a maximal irredundant set.

As first noticed by Cockayne and Hedetniemi [3], these parameters along
with domination number are related by the following string of inequalities:

ir(G) < 7(G) <i(G) < B(G) <T(G) < IR(G).

Theorem 22 Any sequence which satisfies 1 < a; < i and a;4y < a; +1
is achievable under ir(G) and under i(G).

Proof. In both cases we use the construction in the proof to Theorem 1.
Notice that any maximal irredundant set and any maximal independent
set must contain at least one vertex from each component. Thus, ir(G) <
7(G) implies the result for ir(G). Also, the dominating vertices from the
construction form a maximal independent set which implies the result for
i(G). O

The sequences which are achievable under 8(G), ['(G), and IR(G) are
monotonically nondecreasing. To see this, note that any independent set
in G; is also independent in G;4;, any set which dominates G; dominates
Giy1 with the possible exception of v;41, and a set which is irredundant in
G; remains so in G4 ;.

Theorem 23 Any sequence which satisfies 1 < a; < i and a; < ai4) <
a; + 1 is achievable under B(G), I'(G), and IR(G).

Proof. We again begin with an isolated vertex which is a maximum in-
dependent set, a maximum minimal dominating set, and a maximum ir-
redundant set. If a;+; = a;, we add v;4; with edges to all vertices of G;,
maintaining the same values for 8, T, and IR. If ;11 = a; + 1, then v;4;
is added as an isolated vertex and thus must be included in any maximal
independent set, minimal dominating set, or maximal irredundant set. O

As seen in Section 3, characterizing sequences achievable under 7 be-
came substantially more complicated when graphs were constrained to be
connected. Interestingly, however, the upper domination number is just as
simple when graphs are connected and, in fact, once again, the same se-
quences are achievable under all three upper parameters, 8(G), I'(G), and
IR(G), for connected graphs. These sequences differ from those achievable
under the same parameters for unrestricted graphs only that for connected
graphs with n vertices, any independent set, minimal dominating set, and
irredundant set contains no more than n — 1 vertices.

Theorem 24 Any sequence which satisfiesa; =1 and1<a; <i—1 for
i 2 and a; < a;4q < a; + 1 is achievable under B(G), I'(@), and IR(G)
where cach Gy is connected.
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Proof. The proof is the same as that for Theorem 23 except, if a;4; =
a;+1, then v;, is pendant to a vertex which is not contained in at least one
maximum independent set (maximum minimal dominating set or maximum
irredundant set). O

Work is in progress regarding sequences for the lower parameters ir(G)
and i(G) for the connected graph case which, so far, appear more difficult.
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