On 1- Z_m -well-covered and strongly Z_m -well-covered graphs

Rommel Barbosa*

Department of Mathematics
Universidade Federal do Mato Grosso
Cuiabá- MT- Brazil
e-mail: rommel@acm.org

ABSTRACT. A graph G is Z_m -well-covered if $|I| \equiv |J| \pmod m$, for all I, J maximal independent sets in V(G). A graph G is a $1\text{-}Z_m$ -well-covered graph if G is Z_m -well-covered and $G\setminus \{v\}$ is Z_m -well-covered, $\forall v\in V(G)$. A graph G is strongly Z_m -well-covered if G is a Z_m -well-covered graph and $G\setminus \{e\}$ is Z_m -well-covered, $\forall e\in E(G)$. Here we prove some results about $1\text{-}Z_m$ -well-covered and strongly Z_m -well-covered graphs.

1 Introduction

We start with some basic definitions and notation. We denote the vertex set of a graph G by V(G). N(v) is the set of vertices adjacent to v in G. A set $I \subset V(G)$ is independent if no two vertices of I are adjacent. A graph G is well-covered if every maximal independent set of vertices of G has the same cardinality. These graphs were introduced by Plummer [10] in 1970. Although the recognition problem of well-covered graphs in general is Co-NP-complete [5,13], it is polynomial for some classes of graphs, for instance, claw-free [15], graphs with girth ≥ 5 [7], and chordal [12]. The reader is referred to Plummer [11], and more recently, Hartnell [8] for survey articles and further references to work on well-covered graphs. A graph H is a parity graph if every maximal independent set of vertices of H has the same parity. Finbow and Hartnell [6] gave a characterization of parity graphs with girth > 5. A graph G is a Z_m -well-covered graph if $|I_1| \equiv |I_2| \pmod{m}$ for all maximal independent sets I_1 and I_2 in V(G). Caro [4] proved that the

^{*}The author was partially supported by CAPES-Brazil. This work was done during his visit to Saint Mary's University, Halifax, Canada.

recognition problem of well-covered graphs is Co-NP-complete even for Z_m -well-covered graphs which are $K_{1,3m+1}$ -free. In [1] it is shown that claw-free Z_m -well-covered graphs must be well-covered. Caro and Hartnell [3] give a characterization of Z_m -well-covered graphs of girth > 5.

Staples [14] defined a 1-well-covered graph G as a graph that is well-covered and $G\setminus\{g\}$ is also well-covered for any $g\in V(G)$. Pinter [9] defined a strongly well-covered graph G as a graph that is well-covered and $G\setminus\{e\}$ is well-covered for any $e\in E(G)$. In a similar way we define a $1\text{-}Z_m$ -well-covered graph G as a graph that is Z_m -well-covered and $G\setminus\{g\}$ is Z_m -well-covered, $\forall g\in V(G)$. A graph G is strongly G-well-covered if it is G-well-covered and $G\setminus\{e\}$ is G-well-covered and $G\setminus\{e\}$ is G-well-covered, G-well-covered and $G\setminus\{e\}$ is G-well-covered and $G\setminus\{e\}$ is G-well-covered and $G\setminus\{e\}$ is G-well-covered and $G\setminus\{e\}$ is G-well-covered and G-well-covered graphs. Figure 4 gives an example of a strongly G-well-covered graph that is not strongly well-covered.

A clique of a graph G is a maximal complete subgraph of G. A vertex v of a graph is a simplicial vertex if it appears in exactly one clique of the graph. A clique of a graph G containing at least one simplicial vertex of G is called a simplex of G. A graph G is a simplicial graph if every vertex of G is a simplicial vertex of G or is adjacent to a simplicial vertex of G. A graph G is chordal if every cycle of G of length four or more has a chord.

In [2] a sufficient condition is given for a graph to be a \mathbb{Z}_m -well-covered one:

Theorem 1. If for each $g \in V(G)$, $\exists l \in N$ such that g belongs to exactly (ml+1) simplices, then G is a Z_m -well-covered graph.

The following results are also proved in [2]:

Theorem 2. If G is a Z_m -well-covered simplicial graph, then for each vertex $g \in V(G)$, $\exists l \in N$ such that g belongs to exactly (ml+1) simplices.

Theorem 3. G a chordal Z_m -well-covered graph $\Longrightarrow G$ is simplicial.

2 Results

Proposition 1. If G is Z_m -well-covered, then $\alpha(G) \equiv \alpha(G \setminus N[v]) + 1 \pmod{m}$, $\forall v \in V(G)$.

Proof: Let I be a maximal independent set in $G \setminus N[v]$, with $|I| = \alpha(G \setminus N[v])$. $I \cup \{v\}$ is a maximal independent set in G, and since G is a Z_m -well-covered graph $\alpha(G) \equiv |I \cup \{v\}| = \alpha(G \setminus N[v]) + 1 \pmod{m}$.

Theorem 4. If G is 1- Z_m -well-covered, then $G \setminus N[v]$ is 1- Z_m -well-covered, $\forall v \in V(G)$.

Proof: Since G is 1- Z_m -well-covered, $G \setminus v$ and $G \setminus N[v]$ are also Z_m -well-covered. Now, suppose there is a $w \in V(G)$ such that $(G \setminus N[v]) \setminus w$ is

not Z_m -well-covered. Then there are maximal independent sets I_1 , I_2 in $(G\backslash N[v])\backslash w$ such that $|I_1|\not\equiv |I_2|\pmod m$. In this case, $I_1\cup \{v\}$ and $I_2\cup \{v\}$ would be maximal independent sets in $G\backslash w$ (note that $G\backslash w$ is Z_m -well-covered for all $w\in V(G)$), with $|I_1\cup \{v\}|\not\equiv |I_2\cup \{v\}|\pmod m$, a contradiction.

Theorem 5. If G is strongly Z_m -well-covered, then $G \setminus N[v]$ is strongly Z_m -well-covered, $\forall v \in V(G)$.

Proof: G strongly Z_m -well-covered \Rightarrow G is Z_m -well-covered \Rightarrow $G \setminus N[v]$ is Z_m -well-covered, $\forall v \in V(G)$. So we have only to show that $(G \setminus N[v]) \setminus e$ is Z_m -well-covered, $\forall v \in V(G)$, $e \in E(G)$.

Suppose that $\exists v \in V(G)$, $e \in E(G)$ such that $(G \setminus N[v]) \setminus e$ is not Z_m -well-covered. Then $\exists I$, J maximal independent sets in $(G \setminus N[v]) \setminus e$ such that $|I| \not\equiv |J| \pmod{m}$, but then $I \cup \{v\}$ and $J \cup \{v\}$ would be maximal independent sets in $G \setminus e$, with $|I| \not\equiv |J| \pmod{m}$, a contradiction since G is strongly Z_m -well-covered.

Now, we give a sufficient condition for a graph to be a 1- \mathbb{Z}_m -well-covered one.

Theorem 6. Given a graph G, if every vertex of G belongs to exactly ml+1 simplices and each simplex has more than one simplicial vertex, then G is a $1-Z_m$ -well-covered graph.

Proof: Observe that if every simplex has more than one simplicial vertex, then when we delete a vertex g of any simplex S, $S\setminus\{g\}$ is also a simplex. Therefore every vertex of $G\setminus\{g\}$ will belong to exactly ml+1 simplices and by Theorem 1 $G\setminus\{g\}$ is Z_m -well-covered.

For chordal graphs this condition is also necessary.

Theorem 7. If G is a chordal graph which is $1-Z_m$ -well-covered, then every vertex of G must belong to exactly (ml+1) simplices and each simplex has more than one simplicial vertex.

Proof: Since G is Z_m -well-covered and chordal it must be simplicial (Theorem 3), and hence every $g \in V(G)$ belongs to exactly ml+1 simplices. Suppose there exists a vertex $g \in V(G)$ and a simplex S such that $g \in S$ and S has only one simplicial vertex s. Then when we remove the vertex s from G, the graph $G \setminus \{s\}$ remains chordal, but g will belong to ml simplices in $G \setminus \{s\}$, so $G \setminus \{s\}$ is not Z_m -well-covered, a contradiction.

This result is not true for simplicial graphs as shown by the example of Figure 1.

Figure 1. A simplicial Z_m -well-covered graph

Corollary 1. K_1 and K_2 are the only connected 1- Z_m -well-covered trees.

Proof: K_1 and K_2 are 1- Z_m -well-covered graphs. Every tree is a chordal graph, so by Theorem 3 every vertex must belong to exactly (ml+1) simplices, each one with more than one simplicial vertex, so the graph must have at least triangles and cannot be a tree.

We prove later a more general result. It is proved that there is no vertex of degree 1 in any $1-Z_m$ -well-covered graph that has at least 3 vertices.

Lemma 1. Let G be a chordal graph and s_1 a simplicial vertex of G. Then $G\setminus (s_1,g)$ is also chordal, $\forall g$ adjacent to s_1 .

Proof: Suppose there exist $s_1, g \in V(G)$, s_1 simplicial, such that $G \setminus (s_1, g)$ is not chordal. Then there is a $C_4 = s_1 a g b$, but in this case, since a is not adjacent to b, s_1 would not be a simplicial vertex in G, a contradiction. \square

The result above is not true for simplicial graphs as shown by Figure 2.

Figure 2. A simplicial graph

Proposition 2. K_1 and K_2 are the only connected chordal strongly Z_m -well-covered graphs.

Proof: K_1 and K_2 are strongly Z_m -well-covered graphs. Suppose $G \neq K_1$, K_2 is a chordal strongly Z_m -well-covered graph. Let S_1 be a simplex of G, and $s_1 \in S_1$, a simplicial vertex. Let g be an adjacent vertex of s_1 in G and let $e = (g, s_1)$. By Lemma 1 $G \setminus e$ is chordal, and s_1 is also simplicial in $G \setminus e$. We have to consider the following cases:

- 1) g is not simplicial in $G \setminus e$. In this case, when we remove e, g will not belong to S_1 and g will belong to no simplex in $G \setminus e$ or to exactly ml simplices.
- 2) g is simplicial in $G \setminus e$. In this case, there exists $h \in N(g) \cap N(s_1)$ and h belongs to exactly (ml+2) simplices in $G \setminus e$.

Proposition 3. K_1 and K_2 are the only simplicial connected strongly Z_m -well-covered graphs.

Proof: Let G be a simplicial strongly Z_m -well-covered graph, $G \neq K_1, K_2$. Let S be a simplex in G and s one of its simplicial vertices. Let $g \in N(s)$ and e = (s, g). Then we can have the following cases:

- 1) g belongs only to simplex S. Let $x \in N(s) \cap N(g)$. Let I_1 be the maximal independent set in $V \setminus (s,g)$ built with x and the simplicial vertices not adjacent to x. Let I_2 be the maximal independent set in $V \setminus (s,g)$ built with s, g and the simplicial vertices not adjacent to s nor g. Then $|I_1| = |I_2| 1$, and $G \setminus e$ is not Z_m -well-covered.
- 2) g belongs to simplex S and to another ml simplices. In this case, when we remove the edge (s,g) from G, $G\setminus (s,g)$ remains simplicial and g belongs to exactly ml simplices in $G\setminus e$, so $G\setminus e$ cannot be Z_{m} -well-covered.

Given a graph G, a critical line e in G is an edge such that $\alpha(G \setminus e) = \alpha(G) + 1$.

Lemma 2. If $G, G \neq K_2$, is a Z_m -well-covered graph and e is a critical line in G, then $G \setminus e$ is not Z_m -well-covered.

Proof: Let e = (u, v). Since $G \neq K_2$, at least one of u and v, say u, is not a leaf, so there exists $x \in V(G)$, with $x \sim u$ and $x \neq v$. Since G is Z_m -well-covered, there exists a maximal independent set I_1 such that $|I_1| \equiv \alpha(G)$ (mod m), and $x \in I_1$. Since e is a critical line in G, $\alpha(G \setminus e) = \alpha(G) + 1$. But I_1 is also a maximal independent set in $G \setminus e$, so $|I_1| \equiv \alpha(G \setminus e)$. Then $\alpha(G) \equiv |I_1| \equiv \alpha(G \setminus e)$ (mod m), a contradiction.

Staples [14] proved the following result:

Theorem 8. If G is well-covered and $u \in V(G)$ such that $G \setminus u$ is also well-covered, then there is a vertex v adjacent to u such that (u, v) is a critical line.

This result is not true, in general, for Z_m -well-covered graphs. The graph of Figure 3 is a parity graph in which $G \setminus u$ is also parity. Observe that

 $\alpha(G) = \alpha(G \setminus (u, v)), \forall v \in N(u),$ and there is no critical line e in G such that e is incident to u.

Figure 3. A graph G with an m-critical line

Given a graph G, we define an m-critical line e in G as an edge such that there is a maximal independent set I in $G \setminus e$ such that $|I| \not\equiv \alpha(G)$ (mod m), so every critical line is an m-critical line. Now we can prove the following result:

Theorem 9. If G is a Z_m -well-covered graph and $u \in V(G)$ such that $G \setminus u$ is also Z_m -well-covered, then there is a vertex $v \in N(u)$ such that e = (u, v) is an m-critical line.

Proof: Extend $\{u\}$ to a maximal independent set I_1 in G, so $|I_1| \equiv \alpha(G)$ (mod m). We also have $\alpha(G \setminus u) = \alpha(G)$ (If not, $\exists I$ a maximal independent set in $G \setminus u$ with $|I| > \alpha(G)$, and I would also be a maximal independent set in G).

Then $(I_1\backslash u)$ is not a maximal independent set in $G\backslash u$. By hypothesis, $G\backslash u$ is a Z_m -well-covered graph, so there exists a maximal independent set I_2 in $(G\backslash u)$ such that $(I_1\backslash u)\subset I_2$.

$$|I_1\backslash u|\equiv \alpha(G)-1=\alpha(G\backslash u)-1$$
, so

$$I_2 = (I_1 \setminus u) \cup \{v_1, v_2, \dots, v_{km+1}\}, v_i \in G \setminus u.$$

If $v_i \not\sim u \ \forall i=1,\ldots,km+1$, then $I_2 \cup \{u\}$ is independent in G and $I_1 \subset I_2 \cup \{u\}$, a contradiction because I_1 is maximal in G.

Therefore we must have $v_i \sim u$. Then, $I^* = I_1 \cup \{v_i\}$ is a maximal independent set in $G \setminus e$ with $|I^*| \equiv \alpha(G) + 1 \pmod{m}$, and therefore e = (u, v) is an m-critical line.

Lemma 3. If $G, G \neq K_2$, is a Z_m -well-covered graph and e is an m-critical line, then $G \setminus e$ is not Z_m -well-covered.

Proof: Let e = (u, v) be an *m*-critical line in G, so there is a maximal independent set I in $G \setminus e$ such that $|I| \not\equiv \alpha(G) \pmod{m}$. Let $x \sim u$ and

 $x \neq v$. Extend x to a maximal independent set I_1 in G. Since G is Z_m -well-covered $|I_1| \equiv \alpha(G) \pmod{m}$. I_1 is also a maximal independent set in $G \setminus e$, so $|I_1| \not\equiv |I| \pmod{m}$ and therefore $G \setminus e$ is not Z_m -well-covered. \square

Theorem 10. K_1 and K_2 are the only connected graphs that are strongly Z_m -well-covered and $1-Z_m$ -well-covered.

Proof: By Theorem 9 if G is $1-Z_m$ -well-covered it must have an m-critical line e, but by Lemma 3 if e is an m-critical line, then $G \setminus e$ is not Z_m -well-covered, so there is no other graph, besides K_1 and K_2 , with both properties.

Figure 4. A strongly Z_2 -well-covered graph

Theorem 11. If G is a 1- Z_m -well-covered graph with at least 3 vertices, then $\delta \geq 2$.

Proof: Suppose G has a leaf x. We will prove that $G\setminus\{x\}$ is not Z_m -well-covered. Let v be the unique vertex in G adjacent to x. Since G is Z_m -well-covered, there exist I_1 , I_2 maximal independent sets in V(G) such that $x\in I_1$, $v\in I_2$ and $|I_1|\equiv |I_2|\pmod m$. Now, $J_1=I_1\setminus\{x\}$ and I_2 are also maximal independent sets in $G\setminus\{x\}$, but $|J_1|\not\equiv |I_2|\pmod m$, so G is not 1- Z_m -well-covered, a contradiction.

References

- [1] R. Barbosa and B. Hartnell, Almost parity graphs and claw-free parity graphs, Journal of Comb. Math. and Comb. Comp. 27 (1998), 117-122.
- [2] R. Barbosa and B. Hartnell, Characterization of Z_m -well-covered graphs for some classes of graphs, submitted.
- [3] Y. Caro and B. Hartnell, A Characterization of Z_m -well-covered graphs of girth 6 or more, J. Graph Theory, to appear.

- [4] Y. Caro, Subdivisions, parity and well-covered graphs, J. Graph Theory 25 (1997), 85-94.
- [5] V. Chvátal and P.J. Slater, A note on well-covered graphs, Quo Vadis, Graph Theory?, Ann. Discrete Math. 55 (1993), 179-182.
- [6] A. Finbow and B. Hartnell, A characterization of parity graphs containing no cycle of order five or less, Ars Combin. 40 (1995), 227-234.
- [7] A. Finbow, B. Hartnell and R. Nowakowski, A Characterization of well covered graphs of girth 5 or greater, J. Combin. Theory B 57 (1993), 44-68.
- [8] B. Hartnell, Well-covered graphs, Journal Comb. Math. Comb. Comp. 29 (1999), 107-115.
- [9] M.R. Pinter, Strongly well-covered graphs, *Discrete Math.* 132 (1994), 231-246.
- [10] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970), 91–98.
- [11] M.D. Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993), 253-287.
- [12] E. Prisner, J. Topp and P.D. Vestergaard, Well covered Simplicial, Chordal and Circular Arc Graphs, J. Graph Theory 21 (1996), 113– 119.
- [13] R.S. Sankaranarayana and L.K. Stewart, Complexity results for well-covered graphs, Networks 22 (1992), 247–262.
- [14] J.W. Staples, On some subclasses of well-covered graphs, Ph.D. Dissertation, Vanderbilt University, 1975.
- [15] D. Tanhus and M. Tarsi, Well-covered claw-free graphs, J. Combin. Theory B 66 (1996), 293-302.