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Abstract.

In this paper we extend the definition of pseudograceful graphs given by
Frucht [3] to all graphs G with vertex sct V(G) and edge set E(G) such that

| V(G)| <|E(G)| +1 and we prove that if G is a pseudograceful graph, then
GUK mn is pscudograceful for m,n 22 and (m, n) # (2, 2), and is graceful
for m,n>2. This cnables us to oblain scveral new familics of graceful dis-
connccted graphs.

Introduction.

All graphs in this paper are finite, simplc and undirected. We lollow the
basic notations and terminology of graph theory as in [1].

A graph G with vertex set V(G) and cdge sct E(G) is said to be graceful
if there cxists an injective function called a graceful labelling f : V(G) —»
{0.1,....|E(G)|} such that the induced function { * L E(G) > {l2.....|E(G)|}
defined by

¥ (xy) =|1(x)- (y)| forall  xyel(G)

is an injcction. The image of £ (Im(f)) is called the corresponding sct of vertex
labels. A graph which is not graceful is called a disgraceful graph. A survey
about the present status of graceful graphs can be found in [5].

This paper is divided into two scctions. In Section 1 we introduce the
concept of pseudograccful graphs, extending the definition given by Frucht
[3] to all graphs G with vertex set V(G) and edge set E(G) such that

| V(G)| <|E(G)|+1, and we investigate this new concept. In Section 2 we
obtain our main theorem, Theorem 2.1, which states thatif G is a pscudo-
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Proposition 1.2,

Lct G be a graccful graph that has a graceful labeling [ such that
lelm(l) or |E(G)|—l elm(f), then G is pseudograccful graph.

Proof.

Let G and [ be as stated in the proposition. If 1 ¢Im(f), then
|E(G)|+1-{ is a pscudograccful labelling of G and if |E(G)|-1&Im(f),
then 1+ is a pscudograceful labelling of G. [

We also have the following criterion for pscudograceful Eulerian graphs
similar to that for graceful Eulerian graphs given by Rosa |7]. The proof of this
proposition parallels that for graceful Eulerian graphs in |7] and we omit it.

Proposition 1.3,
If G is a pscudograceful Eulerian graph, then | E(G)|=0 or 3 (mod 4). [

Now we cxtend the class of known pscudograccful graphs given by Frucht
13] in the following proposition.

Proposition 1.4,
(a) C,, C,. C, and Cy arc pscudograccful graphs.
. (b) K is pseudograceful if and only il m €{l,3, 4} .

(c) K m < n is pseudograccful if and only if m 22 or (i, n)=(l, 2).

m,n’

(P, + E“ is pseudograceful if and only if
(Hhm=z22and n21 or (2) (m,n)=(1, 2).

Proof.

(a) For all C ,n23, let V(Cn) ={u;,u,,....u .} where u; u; eE(C,) if
and only if i-j=+l (mod n), then the following functions are
pscudograccful labellings of C,, C,. C, and Cy respectively:

[:V(Cy)—>{0,1,2,4}

fu)=1, f(u,)=2 ., f(u;)=4.
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£:V(C,)—>{0,1,2,3.5}

flup)=1, fuy)=3 , f(uy)=2 , [(uy)=5.

£:V(C;)—>{0,1,2,....6,8}
f(u)=1, f(uy)=4 , f(uy)=0 . [(u,)=5,
f(ug)=3 , [ug)=2 . f(v,y)=8,

[:V(Cy)-> 40,1 2,.... 7.9}
fu)=1, flu)=7 . f(uy)=6 . f(uy)=4,

f(ug)=0 . f(ug)=5 . f(u))=2 . Mug)=9.

(b) Supposc that K is pscudograceful for somc m =1 and let f be a pseudo-

graceful labelling for this K, then (I;) +lelm(l) forces 0 ¢ Im(f) and

f—1 is a graceful labclling of K . hence m <4 |6]. It is trivial to scc
that K, is pscudograccful while K, is not. K =C, is pscudograccful by

part (a) and K, is pseudograccful via any function [:V(K,)—>
{0,1,2,...,5 7} such that Im(f)=41,2,5,7}.

(c) Since K= Py, then K, , is pseudograccful [3, Theorem 3.2] and K, |

is not pseudograccful for n>3 [3. Theorem 4.1] and K, =K, is not
pscudograccful by part (b). Therc remains to prove that K, - is pscudo-

graceful for m,n22. Let V(K V,UV, where V,, i=12 are

m.n ) =
independent  sets of vertices where Vi =tu,....,u _} and V, =H{venvy i}
and m, n 2 2. Definc the function

f:V(Km_n)—->{0, I....mn-1, mn+l}
by
l'(ui)=ni+l , Igi€m
f(v;)=i . Igign
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then [ is injcctive and [* is injective as desired.
(d) By virtuc of part (c) we have only to show that P+ En is pscudograccful

il m22 and nz1 Let V(P ) ={u,...., U where uju; eE(P,) if

and only if [i~ j|=1 and let V(K,)={v,,...v,}, then ,E(Pm+En)|=

m n + m — 1. Define the function

f: V(Pm+—l'('")—-> {0,1,....m(n+ -2, m(n+1)}

by
f("2i+,)=(lll—i)(|l4-|) . ()sig[mz_lJ
i . | m
f(uy) =i(n+1) . ]SlS[TJ
fivp) =i . I<jsn

then fis injective and f* is injective as desired. []
2. New Famiilies of Graceful Disconnected Graphs.
We (irst cstablish our main theorcm.

Theorem 2.1,

Let G be a pscudograceful graph, then:

(@) GUK,, , is pscudograccful if m,n =2 and (m, n)#(2,2).
(b) GUK,, ,, is graceful if m,n22.
Proof.

E(G)| and

Let £ be a pscudograceflul labelling of a graph G and put q =

let V(K )=V, UV2 where V;, i =1, 2 are independent scts of vertices where

m,n

V, ={u,..u and V, ={v,,..., v} and assumec that m,n 22.

(a) Define the function

f:V(GUK,. )= {0.1....mn+q-Lmn+q+1}

mn
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by

l:(ui) =ni+q+l1 . Ii€<m
l:(vi) =i . Igign
r =n+1+f

V()

Note that we must have m =2 and (m,n)#(2,2) since n+l+q+le
f(V(G)).

Observe that [ is injective since q glm (f) and n>2. Then " is injective
as cquired.

(b) Recasoning similar to that in part (a) shows that the function

f:V(GUKm.n)—>{(),l.....mn+q}
defincd by
l:(ui) =ni+q . Igism
fv;) =i-1 . I<isn
!_‘V(G)=n+f

is a graceful labelling of GUK 0

m,n’

Note that the restrictions on m. n in the statcment of Theorem 2.1 are
necessary since, for example, C, is pscudogracclul by Proposition 1.4 part (a)
but C;UK,, is neither pseudogracclul nor graceful as can be casily checked.

Howcver, we do not know the answer to the following question (we conjecture
that the answer in no).

Question: If G is a pseudograceful graph. is GUK, , pseudograceful?

Theorem 2.1 can be used to producc numerous families of gracclul
disconnected graphs. We shall be mainly concerned with the familics

.
_UlK . C,UK , and K UK

m.,.n m,n mmn’
= 1”7
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Corollary 2.2,
r

K , r2l,m..n. 22 for all 1<i<r and (m., n.)=(2,2) for

1 '“i'"i 1 ] 1 1

3<i gr is graceful.
Proof.

If r=1, K mn is graceful [6, 7] and if r =2, our assertion follows from
Proposition 1.4 part (c) and Theorem 2.1.

If r23, by virtue of Theorem 2.1, the result follows by induction. [

We next consider the family C UK We shall need the following

m,n’
lemma.
Lemma 2.3.
(a) If GUK3, G=K,, is graceful with graccful labelling f, then
0 el(V(Q)).
() If GUKLr is graceful with graccful labelling f, then 0 e [(V(G)).

(c) mK, UnKL is disgraceful forall m,n, r21.

r

Proof.
(a) Suppose that [ is a graccful labelling of GUK,. G#K,, such that

0ef(V(K,)) andlet q =|E(GUK3)|.Then q—lelm(f') gives f(V(K3 )=
{0,q.1} or {0,q-1q}. In both cascs f*(E(Kj))= {Lq-1l.q} and
* . .

Im(f IE(G)) is bounded by q -3 Since G=#K, and SSIV(GUKJ)ls
qg+1, wehave q-2#1 and q-2 ¢Im(f *). which is absurd.

(b) Suppose that fis a gracelul labelling of GUK]_r such that 0 e f(V(K, )}
and let q =|E(GUK“)| and let v be the center vertex of K, so
that £(v)=0 or q. Nolc that G #K, since |V(KI UKlr)I=r+2 while

|Bk, UK, )=
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Casel f(v)=10
In this case we shall prove that q-k ef(V(K“)) for 0<k<r-1
Assumc by induction that our assertion holds for all 0 <k <s<r-1, then

Im(r* b )} is boundcd by q—s—1 and since q-s elm(l *). we must have
2(G)
q-sef(V(K,,)) as desired. It follows that Im(f * . )) is bounded by
. (G

q-r-1and g-relm (f*y, which is absurd.

Case2 f(v)=q
An argument similar to that in Casc 1 shows that it is impossible to have

such a graceful labelling

(c) This follows (rom part (a) and (b).

Corollary 2.4.
Let 1<m<n, then

@ C;UK,, , is graccful if and only if m,n>2.

m,n

®) C,UK

mn is graceful if and only if m,n =2 or {m, n} = {l, 2}.

(© C, UK and Cg UK are graccful for all m, n.

n,n m,n

Proof.

Note that if m,n>2, then C UK  for re{3,4,7, 8} is graceful by

m.n

Proposition 1.4 part (a) and Theorcmn 2. 1.
(a) Observe that C, UK, , isdisgraccful for all n>1 by Lemma 2.3 part (c).

(b) Since KLZEP3 is pscudograceful |3, Theorem 3.2}, then CI,UK]‘2 is

graceful by Theorem 2.1 since C; =K, ,.
Let V(C4)={u‘,uz, u3,u4} where uiujeE(Cd) if and only if
i—j=+1 (mod 4) and let v be the center vertex of K . Suppose that, for

some n#2, C4Ul'\' is graccful and let f be a gracclul labelling of this

ILn

graph. We have q=|E(C4UK] “)|=4+n and |V(C4UKL“) =4+n+l,
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hence both f and [* are bijections. By Lemma 2.3 part (b), we have
0 ef(V(C,)) and we may assumc that f(u,)=0and f(u;)=q. Since

Im(r* « ) is bounded by ¢-2.wegetq-lef *(E(C ) and we have
E In

{wo cascs:
Casel fu;)=q-1

In this case Im(f* ) is bounded by ¢ -3 and q -2 ef"(E(C,))
E(K 4
(K,

n

gives f(u,)=2. Hence lm(f"ll ‘ )) is bounded by q -4 and [(v)=1 or
i( In

q-3.
If f(v) =1, then q -3 €[ (E(C,)NI"(E(K, ) . which is absurd.

If f(v)=q-3#2, then n#land q~2, q-4(#2 since n#2) arc

both vertex labels of K, and [* is not injective which is absurd.

ILn

Case 2 flu,)=1
In this case lm(f‘l ) is bounded by q—3 and q -2 ef*(E(C4))
E(K,

-0

gives f(u,)=q-2 Hence Im(f * ) isbounded by q —4 and f(v)=3
! E(K
1

orq-1.
If f(v)=3#q-2, then n=1 and2. 4 (#q=2 sincc n=2) arcboth

vertex labels of K, and f* is not injective. which is absurd.

In
If f(v)=q-1, then q -3 el*(E(C NI (E(K, ). which is absurd.

(c) C.,UKL“ and CgUK,  ~are graceful forall n21 [2].

,n
We now consider the family K UK .
Corollary 2.5

Let 1€ m < n, then

(@) K,UK is graceful ifand only if m,n2>2.

m.n
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() KoUK, is graceful ifand only if m,n 22 and (m, n)#(2,2).
© Ky UKm." is graceful if and only if m,n2>2.
(d) K UK, is graceful for all m. n.

Proof.

If m,n=2 then K; UK
part (b) and Theorem 2.1.

m.n for i €{l, 3.4} is graccful by Proposition 1.4

(2) Note that IV(K|UKIn)|=n+2 and IE(KIUKLn) =n, hcpcc

KUK, , is trivially disgraceful.

(b) K, UK, , is disgraceful by Corollary 2.4 part (b).

Suppose 2<m<n and (m,n)#(2,2) and let V(K )=V,UV,, where

V;. i=1,2 are independent scts of vertices where |Vl| =m. |V2| =n.

Dcfinc the function

[:V(K,UK )= {0L....mn+1

m.n

such that

vy ={ni+l: 1<i<my},
(v, =4 : 0gjsn-1},
and

[(V(K,))={mn mn-1},

then [ is clearly a graceful labelling of K, UK

m.n -’

(c) This follows from Corollary 2.4 part (a).

(d) By Theorem 2.1. wc nced only to consider the case where m=1. Let v
)—>

be the center vertex of Kin. n2l and definc f :V(K4UKM

{0,1,...,n+6} such that f(V(K4))=»{0.l,n+4.n+6}. f(v)=n+5 and

f((V(K )= {3.4....n +2,n+5}, then [ is casily seen to be a gracclul

labelling of K UK, . 0
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Finally we supplement the result about the gracefulness of the family
K UK included in Corollary 2.5 by the following proposition.

r m.n

Proposition 2.6

(@) KgUK, , is graccful for all n.

Ln

(b) KoUK, is graccful if and only if n €{1, 3} .

Ln

Proof.

Let v be the center vertex of K .
(a) For n=>1 define
f: V(KSUKI'n)—> {0,1,..., n+10}
such that
f(V(Ks ) ={0,1,4,n+8 n+10},
f(v) =2,

and

f(VK, )»={2.7.8,....n+5.n+7},

ILn

then [ is casily secn (o be a graceful labelling of K UK, .

(b) Define
I':V(K()UKLn)—>{(), l,....,n+15}
such that
[(V(K)) ={0.L4, n+8 n+13. n+15).
f(v) =n+12,

and
$2,6.7.9,10,....n+4. 0+6,n+12} . n25
N=4{2.6,7,n+6,n+12} . n=4
12.6,n+12} . n=2

f(V(K
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so that £*(E(K)={L 2.....5 7o+ n+7 0 +8. n+9, n+1l... n+15}

then, £* BOK is injective for n24 and n =2 and
(K,

{6.8.....0+3. n+5.n+6, n+10} . nz5
[*(E(K, ) ={{6.n+5n+6,n+10} . n=4
{n+6, n+10} , n=2

then, f* « is injective for n24 and n=2 also, and since
E(Ky)

l'*(E(KG))ﬂ f*(B(K, ) =¢. then * is injective as desired.

ILn

K¢UK,, is disgraceful by [8]. To verify that KGUKM is disgraceful
supposc that [ is a graccful labelling of K(;UKI.3~ then Lemma 2.3 (b)

gives 0ef(V(K,)) and hence 18ef(V(K,)). Also 17elm(f™) gives | or
17 ef(V(K()) and 16 elm(f') further shows that cither {0,18,17,2} ¢
[(V(K)) or {0, 18,116} (V(KG)). We will rule out the first casc. The
sccond casc is ruled oul similarly. Assuimc {0, 18,172} <[ (V(K,)), then

l4elm(f*) gives 14ef(V(K,)) or {LlS}gf(V(Km)) and f(v)=1 or 15.

If 14 ef(V(Ky)), then 13elm(f’) gives {3,16} < f(V(K, ;) and
f(v)=3 orl6and 11 elm(f*) further shows that {5. 3, lG}gf(V(Km))
and f(v)=16, then 10 e Im(f™) finally gives M(V(K, ;))={6,5.3.16} and
5eIm(f"), which is absurd.

If {l, lS}gf(V(KL})) and f(v)=15. then 13 elm(f*) forces 13 €
[(V(K ) (since 5 ef(V(Ky)) gives 10 g Im(f"). which is absurd) and

12 elm(f") forces 3 €M(V(K, ;) and 10 elm(f") forces 5 €[(V(K, 3)),
hence f (V(KU)):’ 1,3,5.15} and 9 ¢ Im(f *) , which is absurd.
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If 1,15} ¢ f(V(Kw)) and f(v)=1, then 13 elm(f') givesSor 13 €
f(V(K()) or l4ef(V(KL3)). Alsoa 5ef(V(K,)) gives 4¢Im(f"), which
is absurd, and 13ef(V(K,)) gives 12 ¢ Im(l *). which is absurd as well.
Then 14 €f(V(K,4)) and 12 elm(f") gives 6 or 12 ef(V(K,)) or
13 ef(V(Kl_3 ). A 6ef(V(K,)) gives 5 ¢ Iin(f *), which is absurd, and

12 ef(V(Ky)) gives 11 gIm(f *), which is absurd as well. Then
f(V(K,3))=1{1,13. 14,15} and 4 ¢ lm(f*) , which is absurd.
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