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ABSTRACT. In this paper we introduce a new parameter related
to the index of convergence of Boolean matrix — the general-
ized index. The parameter is motivated by memoryless com-
munication system. We obtain the values of this parameter for
reducible, irreducible and symmetric matrices.

1 Introduction

The set, Bn of n x n Boolean matrices forms a finite multiplicative semi-
group of order on?,

Note that we use Boolean arithmetic when calculating the powers of
a matrix. Let A € B,. Since the sequence of powers A° = I, A, A%, ...
forms a finite subsemigroup (A) of By, then there exists a least nonnegative
integer k = k(A) such that A* = A*** for some ¢ > 0, and there exists a
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least positive integer p = p(A) such that A¥ = A**P, We call the integer
k = k(A) the index of convergence of A and the integer p = p(A) the period
of A.

A matrix A € B, is reducible if there is an n x n permutation matrix P
such that

2 _[B 0O
PAP _[C D],

where B and C are square (nonvacuous) matrices. The matrix A is irre-
ducible if it is not reducible. Let I B,, and RB, denote the set of irreducible
and reducible matrices of order n, respectively.

If A € B, (n > 1) is irreducible, then p(A) = 1 if and only iff A is
primitive and in this case k(A) is just the primitive exponent of A, i.e., the
least positive integer k such that A* is the matrix of all 1’s. Let P, denote
the set of primitive matrices in By,.

There is a natural 1 —1 correspondence between the set of n x n Boolean
matrices and the set of labeled digraphs of order n. We associate with the
matrix A = (ai;) the digraph D = D(A) with vertex V(D) = {1,2,...,n}
and arc set {(7,7): a;; # 0}. Thus the study of the properties of Boolean
matrices can be turned into that of the corresponding associated digraphs.
The index of convergence, period of A are called the index of convergence,
period of D(A), and is denoted by k(D(A)) and p(D(A)) equivalently. It is
well known that if A is irreducible, then p(A) is the greatest common divisor
of the distinct lenghts of the circuits of D(A), and that if A is reducible,
then p(A) is the least multiple of p(A,),...,p(Am), where Ay,..., A, are
the irreducible constituents of A. It is also well known that Boolean matrix
A is irreducible if and only if D(A) is strongly connected.

Let A = (aij) € Bn. The (4,7)-entry of A™ is denoted by ag"). Then
a7 # 0 if and only if there is a walk of length m from i to j in D(A).

Recently, R.A. Brualdi and Bolian Liu [1] introduced generalized expo-
nents of primitive matrices from memoryless communication system. Note
that an adjacency matrix of a network need not be primitive. In this paper
we introduce a new parameter that is a generalization of the exponent for
the sequence of powers of Boolean matrices in [1].

Let D be a digraph with period p = p(D) where D = D(A) for some
A = (aij) € Bn. Define kp(i,7) := min{k: for any integer m > k, there
exists a walk of length m from ¢ to j in D if and only if there exists a walk
of length m 4+ p from i to 7 in D}.

Clearly, if A is primitive, then kp(%, 5) is the local exponent in [1].

kp(i,7) is called the local index of convergence (or simply local index)

from 7 to j. Clearly, kp(i,7) is the integer k& such that the sequence

(k) ie.,

{ag“): m = 0,1,2,...} is with period p from a beginning term q;;”,
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kp(i,7) is the least nonnegative integer k such that a.g.) = a§;+p) for all
t > k. Clearly k(D) = maxi<i j<n kD (3, 7) (see [2]).

Let D = D(A) where A = (a;;) € Bn. The least positive period of the
sequence {ag") :m =0,1,2,...} is called the local period from ¢ to j of
digraph D, denoted by p;;. Clearly p;;|p(A).

For:=1,2,...,n, define

kp (i) = max;ep kp(i, 5);

pp(i) ;= min{p: there exists a walk of length m for every integer m >
kp(i,7) from i to j in D if and only if there exists a walk of length m +p
from i to 7, 7 € {1,2,...,n} in D}.

kp(i) and pp(i) are called the index and period of vertex 7 of D respec-
tively.

Lemma 1. ([2) Let
g, 31,82, -3 0m,- -+ (1)

be a sequence with period d (> 0) from a beginning term amn,, i.e., mq is
the least nonnegative integer such that ay q = a, for all t > mq. If djp,
and (1) is also with period p from a beginning term am,, then mg = mp.

Since pi;|p(A), pa(i)|p(A) holds. It follows from Lemma 1 that the se-
quence {ag") :m =0,1,...} is with period pa(¢) and p(A) from the same
beginning term. Hence we use period p(A) to define ka(%, 7) and ka(3).

The numbers kp(z) have an interpretation in terms of a memoryless com-
munication system associated with D. Suppose that at time ¢ = 1 each
vertex of D with some information passes the information to each of its
neighbours (those vertices reachable by a walk of length 1) and then for-
gets its information. But it may receive information from another vertex.
The system continues in this way. Vertex ¢ always passes the information to
the same vertices, the set of which is denoted by N(z), every period of time
after £ = to. This time ¢o is kp(i). The period of time is pp(z). Clearly if
N(i) = V(D), then kp(i) is the generalized exponent in [1].

We choose to order the vertices of D in such a way that

kp(1) < kp(2) £--- < kp(n),

and call kp(i) the ith generalized index of D, denoted by k(D),i). We
write k(A, 1) = k(D(A),1) for any A € B, with 1 <1 < n and call k(4,7)
the ith generalized index of A. Clearly k(A, %) is the smallest nonnegative
integer k such that i rows of A* and A**? are equal.

Thus for all n x n Boolean matrices A,

k(A,n) = k(4) = k(D(A) < (= 1) + 1. (see [1], [5)
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Define k(n,i), k®(n,4), and k’(n,i), k5(n,i) to be the maximum of
k(A,i) where the maximum is taken over all Boolean matrices, all re-
ducible Boolean matrices, all irreducible Boolean matrices and all sym-
metric Boolean matrices of order n, respectively.

The numbers k(n, i), kB(n,i), k/(n,i), kS(n,i) are called generalized
index of the corresponding classes of Boolean matrices of order n.

2 ki(n,i)
We first establish the following.

Lemma 2. There exists a matrix 'y, € 1By, such that k(T'n,i) = n2—3n+
2+iforl1 <i<n.

Proof: By Theorem 2.3 of [1], there exists 'y € P, C IB, such that
k(Tn,i) = kr, (i) = expr, (i) = n?> — 3n+ 2+ i. Thus Lemma 2 follows O

Lemma 3. ([2]) Suppose that A is an irreducible Boolean matrices with
period p, and the length of a shortest circuit of D(A) is s, then

k(A) <n+ s(% -2).

Theorem 1. k/(n,i) =n?-3n+i+2,1<i<n

Proof: For any A € IB,, let D(A) be the associated digraph of A. We
consider the following two cases.

Case 1. A € P,. By Theorem 34 of [1},
K(A, i) = k(D(A),i) <n? -3n+i+2.

Case 2. A € IB,\P,. Then p = p(A) > 2 and D(A) is strongly connected.
Let s be the length of a shortest circuit of D(A). By Lemma 3,

k(A, 1) < k(A,n) = k(A)

n
<n+s(=-2

(p )
<n+n(s -2)
<n?-3n+3

<n?-3n+i+2

Summarizing the above conclusions, we have k(4,i) < n? —=3n+i+2
for any A € IB,, and by Lemma 2 there exists a I, € IB, such that
k(Cp,i) =n—3n+1:+ 2. Hence

k!(n,i) = max k(A,i)=n—3n+i+2.
A€IB,
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3 kf(n,)
Lemma 4. ([2]) If X € B, has the following form

X = [B o] ’
a a
where B is an (n — 1) x (n — 1) Boolean matrix. Then

k(B) < k(X) < k(B) +1 ifa=0,
k(B) < k(X) < max{k(B),n—1} ifa=1.

We now show the following.
Theorem 2. k?(n,i)=(n-3)n—-2)+i,1<i<n,n>2.

Proof: By Lemma 2, there exists a strongly connected digraph G = (V, F)
(of order n — 1) with vertex set V = {1,2,...,n — 1} such that k(G,i) =
(n—2)(n—3)+iforalll <i<n-—1. Let G’ be (of order n) obtained
from G by adding a new vertex named n and an arc (n,n — 1) to G. Then
G’ is not strongly connected, and it is easy to verify that

k(Gi) = k(G i)=n-2)(n—-3)+1i ifl<i<n-1,
T kG- +1=(n—-2)(n-3)+n ifi=n,

That is k(G",1) = (n - 2)(n —3) + i for all 1 < i < n. Thus Theorem 2

follows immediately from the following

Theorem 2. If A is a reducible Boolean matrix of order n, then k(A,1) <
m-2)n—3)+iforalll <i<n.

Proof: We use induction on n to prove the theorem. Theorem 2’ is true
for all reducible Boolean matrices of order less that n and p = p(4).
Claim 1. k(B,%) < (|B| —=1)(|B| —2) +1i, 1 <1 < |B|, for any Boolean
matrix B of order less than n. (Here we use |B| to denote the order of B
for convenience). To justify this claim, if B is irreducible, then Claim 1
follows from Theorem 1; otherwise if B is reducible, then Claim 1 follows
from the induction hypothesis. (Theorem 2’ holds for |B| < n).

The proof is now divided into the following three cases.
Case 1. There exists an n x n permutation matrix P such that PAP~! =

[g 2] , where B is an (n — 1) x (n — 1) matrix. Then, for all £ > 1,

PA'P1 = [ B’ 0]
«

B'4aa¥!"2Bi of"
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Since k(A, 1) is the smallest nonnegative integer k such that i rows of A* and
A**P are equal, k(A,9) < k(B,i) < (n—2)(n—-3)+iforall1<i<n-1.
(The last inequality follows from Claim 1). Also by Lemma 4 and Claim 1,
k(A,n) <max{k(B,n—1)+1,n—-1} < (n—-2)(n—3) +n.

Case 2. There exists an 7 x n permutation matrix P such that PAP~! =
[g 5] , where B is an (n — 1) x (n — 1) matrix. Then, for all ¢ > 1,

PAtP—l —_ I:Bt (1 - a)Bt—lﬁa(Z:—__-; Bt)ﬁ]
0 a )

Since the nth row of PA'P~1 is independent of ¢ > 1, we have k(4,1) < 1.
Recall that B is an (n — 1) x (n — 1) matrix. Thus, for all 2 <: < n and
t > max{k(B,i — 1)+ 1,n -1}, X2y B = 72 B and so

pAtP-1_ [Bt (1-a)B* 18+ a(Yry B")ﬂ]
; :

a

Since k(A,1) is the smallest nonnegative integer k such that i rows of A*
and A¥*? are equal, k(A, i) < max{k(B,i—1)+1,n-1} < (n—2)(n—3)+1.
for all 2 < i < n. (The last inequality follows from Claim 1).

Case 3. A does not satisfy the conditions in Cases 1 or 2. By [2, Lemma
7), k(A,3) < k(A) <n?-5n+9< (n—-2)(n—3)+iforall3 <i<n.
Now suppose 1 < 7 < 2. Since A is reducible, there exists an n x n
permutation matrix P such that PAP™! = g 10)] , where C and D are
square matrices woth orders at most n» — 2. Then n > 4. By Claim 1,
K(C,i) < (IC]-1)(|IC|-2)+i<(n-3)(n—-4)+2 < (n—2)(n —3) +1.
Again since k(A, 7) is the smallest nonnegative integer k such that i rows of
A¥ and A*tP are equal, k(A4,7) < k(C,i) < (n—2)(n—-3)+ifor1 <i<2.

Combining the above three cases, we complete the proof of Theorem 2’ O

It follows from Theorems 1 and 2 that
k(n,i) = max{k’(n,1),k®(n,9)} =n? - 3n+2+1
foralll <i<n.

4 k5(n,s)

We turn to discuss symmetric irreducible matrices. Let I.SB,, be the set of
symmetric irreducible matrices and let

k'S(n, i) := max{k(A,i): A € ISB,}.
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Lemma 5. ([1]) IfA is an nxn symmetric primitive matrix, then k(A,1i) <
n — 2+ i and there is an n x n symmetric primitive matrix A such that
k(A,))=n—2+1.

By the way, we want to point out a minor error in Figure 2 of [1]. Its
labeling of vertices (n,n —1,...,1) should be (1,2,...,n).

Note that if A € I18B,\P,, then p(A) = 2, and the length of any circuit
of D(A) is even.

Lemma 6. ([4]) Let A € ISB,\P,. Then k(A) <n —2.

By Lemmas 5 and 6, for any A € ISB,, we have k(4,i) <n—2+1iif
A is primitive and k(A, 1) < k(A,n) = k(A) <n -2 <n—2+1i otherwise.
And by Lemma 5 again, there is a matrix Ao € ISBp N P, such that
k(Ao,1) =n — 2+ 1. Hence we have

Theorem 3. k/S(n,i)=n—-2+1.

Theorem 4. For any A € ISBy\P,, k(A,1) < [252] +i — 2, where [z]
denotes the smallest integer greater than or equal to x.

Proof: Let A € ISB,\P,. Then p(A) = 2. And let T be a spanning tree
of D(A). Then T has one or two centres (see [6] page 27), one of which is
labeled u. Let d = max,ev(p)d(u,v), where d(u,v) denotes the distance
from vertex u to v in T, and D = D(A).

Now we consider kp(u). Take any vertex v € V(D).

If there is a walk W of length d—1 from u to v in D, then there is a walk
of length d — 142 =d+1 from u to v by attaching a circuit of length 2 to
%%

On the other hand, if there is a walk of length d + 1 from » to v in
D, since d(u,v) and d + 1 have the same parity and d(u,v) < d, we have
d(u,v) < d—1. Assume d — 1 = d(u,v) + 2b for some nonnegative integer
b. By attaching circuits of length 2 to a path of length d(u, ) from u to v,
we obtain a walk of length d(u,v) + 2b =d — 1 from u to v.

Hence there is a walk of length d — 1 from u to v in D if and only if there
is a walk of length d — 14+ 2 = d + 1 from u to v. By the arbitrary of v,
we have k(A,1) < kp(u) < d —1 < [3d(A)] — 1, where d(A) denotes the
diameter of D(A).

And we show that k(A,1) < k(A,i—1)+1 (2 < i < n) as follows.

Suppose k(A, j) = kp(v;) for j =1,2,...,i — 1. Since A € ISBy,, D is
strongly connected. There is an arc from some vertex v € V(D)\{v1,v2,...,
v;—1} to some vertex v; € {v1,v2,...,%-1}. So kp(v) < k(A,i—-1)+1,
which implies that k(A,i) < k(A,i—1)+1for2<i<mn.
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This follows that
k(A,d) < k(A1) +i—1
< [ad(A)] ~ 1441
<T5n—1)]+i-2

0

Remark: We consider the digraph D; obtained from an indirected path
of order n with any edge uv replaced by arcs (u,v) and (v, u). The matrix
A with associated digraph D satisfies d(A) = n — 1, [1d(A4)] = [251],
k(A4,1) = [§d(A)] -1 =[271] - 1.

Finally, we show our main result in this section.
Theorem 5. k5(n,i) =n—2+1i.

Proof: Let A € B, is symmetric. If A € ISB,, then by Theorem
3, we have k(A,i) < n — 24 14. Suppose A is reducibe. Denote by
Dy, Dy, ...,D; (t 2 2) all strong components of D(A), the number of ver-
tices are ny,ng,...,n;, respectively. Then for every D; (1 < j < t), there
is no walk from any vertex of D; to any vertex of another component. We
choose to order the vertices of D; (1 < j <) such that

kp,(19) < kp,(29) < --- < ij(ngj)).

By Theorem 3, we have kD,.(T‘(j)) <Snj—-2+r<n-2+4rfor1<j<t,
1 < r < n; with 7) € V(D;), which implies that k(A,3) = k(D(A),i) <
n—2+4+ifor1<i<n

Hence we have k(A, i) < n — 2+ 4 no matter A is irreducible or not. By
Lemma 5, ther is a symmetric matrix A in By, such that k( Ay, 1) = n—2+1.
It follows that kS(n,i) =n — 2+ 1.

We complete the proof. a
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