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Abstract

Let {G(n, k)} be a family of graphs where G(n, k) is the graph
obtained from K, the complete graph on n vertices, by removing
any set of k parallel edges. In this paper the lower bound for the
multiplicity of triangles in any 2-edge coloring of the family of graphs
{G(n, k)} is calculated and it is proved that this lower bound is sharp
when n > 2k 4 4 by explicit coloring schemes in a recursive manner.
For the cases n = 2k + 1,2k + 2 and 2k + 3 this lower bound is
not sharp and exact bound in these cases also are independently
calculated by explicit constructions.

1 Introduction and background results

If F and G are graphs, define M(G, F) to be the minimum number of
monochromatic G that occur in any 2-coloring of the edges of F. M(G, F )
is called the multiplicity of G in F. A. W. Goodman [2] proved that

M(Ks3, K,) = u(u—1) (u—2) if n=2u,
u(u—1) (du+1) if n=4u+1,

u(v+1) (du—-1) if n=4u+3,

WINDWIN W=

where u is a nonnegative integer. A set of k edges in a graph is said to be
parallel if no two of them have a vertex in common. Let {G(n,k)} be a
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family of graphs where G(n, k) is the graph obtained from K, the Cf)mplete
graph on n vertices, by removing any set of k parallel edges. In this paper
we determine

1. A lower bound for multiplicity of triangles in the family of graphs
{G(n,k)}-

2. We also prove that the lower bound calculated is sharp for all n >
2k + 4 by explicit constructions.

3. For the cases n equals 2k + 1,2k + 2 and 2k + 3 we determine sharp
lower bounds separately and we give the corresponding constructions.

The case n = 2k has been dealt with in earlier paper [5] where it was

proved that
M(K3,G(2k,k)) = 8M (K3, K)-

The idea of proof in this paper is similar to the one used in the papers
of Goodman (2] and Sauve [4] but somewhat more complicated due to the
fact that we are not dealing with complete graphs. We follow the method
of weights given in [4]. For the basic definitions and notations used in this
paper, we follow [1].

2 Method of Weights

Let G = G(n,k) . Our aim is to determine the minimum number of
monochromatic triangles that exist when the edges of G are colored with
two colors. For this we give weight to each pair of edges at every vertex p
of G. Let A(p) be the set of all pairs of edges at a vertex p in G. Suppose
a € A(p). We define W (a) = 2, if both the edges are of the same color and
W (a) = —1 otherwise. For every vertex p of G we define W(p), the weight
at the vertex p, to be Z W{(a). Let W(G) = Z W (p), where V(G)
a€A(p) p€V(G)

is the vertex set of G. We define the weight of the graph G as W(G).

Let B be the set of all subgraphs of G induced by any three of the
vertices of the graph G. As any pair of edges at a vertex p of the graph G
lies in exactly one subgraph of G induced by three vertices we get W(G) =

z W (B). These subgraphs in B fall under any one of the following 4 sets.
BeB

1. S, the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 3 edges of the same color.

2. Sy, the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 3 edges, not of the same color.
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3. Sj, the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 2 edges of the same color and a nonedge.

4. 84, the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 2 edges of different colors and a nonedge.

Clearly
W(B) = 6, if BedS,
WB) = 0, ifBeS,
W(B) = 2, ifBeS;
W(B) = -1, ifBe€S,
Hence

W(G) = 6|51| + 2|Ss| — [S4l,
where for any set X, [X| denotes the cardinality of the set X. Thus

1
511 = & (W(G) — 2ISs] +|54l) -

Let S3(p) be the number of elements of the set S3 where the two edges
of the same color are incident at p and S4(p) be the number of subgraphs
of the set S4 where the two edges of opposite colors are incident at p. It is

easy to see that |S3| = z S3(p) and |Sy| = Z Sa(p). Therefore we

PEV(G) PEV(G)
get,

Si=x( S we-2 3 s+ Y s@].
6

PEV(G) PEV(G) PEV(Q)

We call the above equation (1) as Weight Equation. We will fre-
quently refer to this Weight Equation in the following sections. Also what-
ever the coloring of the graph G may be, S3(p)+ S4(p) is a constant, as this
is precisely the number of pairs of edges {pv,pw} such that vw ¢ E(G),
where E(G) is the edge set of G. Therefore at any vertex p, maximizing
S3(p) is equivalent to minimizing S4(p). From equation (1) the graph G
will have the minimum number of monochromatic triangles if it satisfies
the following two conditions.

(*)1 At every vertex p of G, almost equal number of edges of each color
are incident with p.

(*)2 At every vertex p of G, whenever v;v; is a nonedge, the edges pv; and
pvj; are of the same color.
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If a graph G with 2-coloring of the edges has the minimum number of
monochromatic triangles then that coloring of G is said to be a minimal
coloring. From the foregoing discussion we get the following Proposition.

Proposition 2.1 Let G be a graph on finite number of vertices. A two
coloring of the edges of G will be a minimal coloring if the coloring satisfies
the conditions ()1 and (*)2.

3 Multiplicity of Triangles in G(n, k)

Let the vertices of K, be vy, v},v2,v5,...,Vk, Vj; T1,T2 - - - Tn—2k- Suppose
we remove the edges v v}, vav5, . . ., Uk}, to get G(n, k). We shall color the
edges of G(n, k) with the two colors red and blue. Let A be the subgraph
of G(n, k) induced by

V1, V), V2, Vb, . o, Uk, Vg
and let B be the subgraph of G(n, k) induced by
T1,T2y--+yTn—2k-

In the graph G(n, k), the degree of each vertex of A is n—2 and the degree
of each vertex of B is n — 1. Clearly S3(p) can take maximum value k — 1
for any vertex p in the subgraph A and k for any vertex p in the subgraph
B. When S3(p) is maximum, S4(p) is minimum and is equal to 0 for all
vertices p.

We begin by determining lower bound of the number M (K3, G(n, k)).
For n > 2k+4, this bound will be shown to be sharp in Section 4 by explicit
recursive constructions.

Theorem 3.1

M(K;3,G(n,k)) 2 % (u —1)(u? — 2u - 3k) if n=2u,
> % (8ud — 6u® — 2u(1+ 3k) +3k) if n=4u+1,
> %(u(4u2+3u—(3k+1)) if n=4u+3,

where u is a non-negative integer.

Proof : We prove this theorem by considering three cases.

Case 1 : n = 2u, where u is a non-negative integer.
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The degree of each vertex in A is 2u—2 and the degree of eth err.tex in
B is 2u — 1. By Condition (*);, the weight of each vertex in A is minimum
when its degree pair is (u — 1,u — 1) and the weight of each vertex in B
is minimum when its degree pair is (u,u — 1) or (x — 1,u). So, from the
Weight Equation,

61Si > (2u—2k) {2 (g) + 2 (“;l) - u(u-—l)}

+2k {2 (";l) + 2 (“;1)- (u-1)2}
— 22k (k—1) + (2u-—2k) k)

(u — 1) (2u® — 4u — 6k)

2 (u—1) (u? —2u—3k).

%(u —1) (u® —2u - 3k).

Y

Thus, |S|

Case 2 : n =4u+ 1, where u is a non-negative integer.

The degree of each vertex in A is 4u — 1 and the degree of each vertex
in B is 4u. By Condition (x);, the weight of each vertex in A is minimum
when its degree pair is (2u — 1, 2u) or (2u,2u — 1) and the weight of each
vertex in B is minimum when its degree pair is (2u,2u). So, from the

Weight equation,
(4u +1 - 2k) {2 (22“) + 2 (22") — 2u(2u) }

+2k {2 (22") + 2(2“2_ 1) - 2uu-1) }
= 2{2k(k-1) + (4u+1-2k) k}
= 16u® — 12u? — 4u(l + 3k) +6k.

Thus, |Si| > %(szﬁ — 6u? — 2u(l+3K) + 3k).

6].51]

v

Case 3 : n =4u+ 3, where u is a non-negative integer.

The degree of each vertex in A is 4u+1 and the degree of each vertex in
B is 4u + 2. By Condition (*);, the weight of each vertex in A is minimum
when its degree pair is (2u + 1, 2u) or (2u, 2u + 1) and the weight of each
vertex in B is minimum when its degree pair is (2u + 1, 2u + 1). Since the
number of vertices of B is odd, all vertex pairs of B cannot have degree
2u + 1, which is odd. So, to attain the next possible minimum, one vertex
of B should have degree pair (2u,2u + 2) or (2u + 2,2u). So, from the
Weight Equation,
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6151

v

(4u + 2 — 2K) {2 (2“;1) + 2 (2“;’1) = (2u+1)2}
+1 {2 (22“) + 2 (2";2) _ 2u(2u+2)}
+2k {2 (2;‘) + 2(2“; 1) ~ 2u(2u+1) }

-2 {2k (k—1) + (du+3—2k) k}
= 4u4u® + 3u — Bk+1).

Thus, |Si| > §u(4u2 +3u — (3k + 1)).

Hence the theorem. o

4 Exact Determination of M(Kj3, G(n,k))

In this section we show that for all n > 2k + 4, the lower bound found in
Theorem 3.1 is sharp by explicit coloring schemes. We deal with the four
cases

k =0 (mod 4),1 (mod 4),2 (mod 4)and3 (mod 4).

In all the discussions below, { is a non-negative integer.

We would like to inform the reader that the proofs are tedious though
they only involve recursive construction. For example, for the case £ =
0 (mod 4), Lemma 4.3 is the ‘basis’ of induction and Lemma 4.4 is the
‘induction step’. Similar considerations apply to the other three cases.

We construct only the subgraph with red edges in all these
cases, i.e. whenever we say that xy is an edge, it means that xy
is an edge in the graph G(n, k) and is colored red.

Observation 4.1 By Proposition 2.1, a coloring of G(n, k) will be a min-
tmal coloring if it satisfies Conditions (x); and (x)2. To satisfy Condition
()2, the construction is made as follows.

Whenever v;v; is an edge of color red(respectively blue), where v; and v;
are vertices of the subgraph A, the edges 'u;v;-,v,-v;,v;v,- are also colored red
(respectively blue). This means that in the subgraph induced by A all the
vertices will have even degree and the number of red edges and the number
of blue edges are multiples of four. Also for each vertez z; in B and for
each vertez v; in A, the edges x;v; and ;v are given the same color.
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4.1 The case k=0 (mod 4)

We follow the convention outlined in the beginning of Section 3 with A and
B respectively denoting the set of vertices

(2
{v1,v},v2,v%,...,04,v} and {z1,Z2,...,Tn-si}

Observation 4.2 It is possible to construct a graph on 4l vertices such
that 21 vertices have degree 2l and the other 2l vertices have degree 2/ — 1.

It is easy to check this as follows: Let z1,Z2,...,Zu and y1,¥2,. ..,y be
the 41 vertices. Join the edges z;y; for 1 < i,j < 2l and i # j. Also join the
edges x,T2,Z3Ty,...To—1Z2. Now the vertices z1,z,...zy have degree
2l and y1,¥2,- . .,y have degree 21 — 1.

Condition C1 : Let k& = 4l and n = 2k + 4m, for some m > 1. Then
any 2-coloring of G(n, k) is said to satisfy Condition C1 if the degrees of
the vertices are as given below:

(a) the vertices of A have degree 4l + 2m — 1;
(b) 2m vertices of B have degree 4/ + 2m — 1;
(c) the remaining 2m vertices of B have degree 4l + 2m.

Lemma 4.3 When k = 4l and n = 2k + 4 there ezists a minimal coloring
of G(n,k) satisfying Condition C1.

Proof : Consider G(n, k). Let A; be the subgraph induced by the vertices
V1,2, ..., vy and Az be the subgraph induced by the vertices v}, v},..., vy
By Observation 4.2, we construct A; and A, such that the vertices

'} / !
V1,V2,...,Un and v, vp,...,vUy
have degree 2! and the vertices
d ! ] !
V2141, V2042, - - -, Vgt AN Vpyy ), Uppyoy..-, Uy

have degree 2/ — 1. Also, to get a minimal coloring, we construct the
subgraph induced by A as dictated by Observation 4.1. Thus vertices of A
have degrees 4/ or 4/ — 2 in the subgraph induced by A.

Now z1,z9,z3 and x4 are the vertices of the subgraph B. Join z; with

' ' ’
U1,0p,02,,. -y V2t, Vg
Join z3,z3 and z4 with

' ! '
V2t+15Vopy1, V2042, Vopq 2, - - -, Vat, Uyy-
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Join z3 with z; and z4 with z2. Finally join 3 and z4.

So, each vertex in A has degree 4{+1, the vertices z; and z2 have degree
4] + 1 and the vertices r3 and z4 have degree 4l + 2. This construction for
G(n, k) satisfies (*); and (*)2 and hence this is a minimal coloring. Also
this construction satisfies Condition C1. O

Lemma 4.4 If there exists a minimal coloring of G(n, k), where k=4l
and n = 2k + 4m for some m > 1 satisfying Condition C1 then,

(a) there exists a minimal coloring of G(n, k) for n = 2k +4m+1;
(b) there exists a minimal coloring of G(n, k) for n = 2k +4m + 2;
(c) there exists a minimal coloring of G(n, k) forn =2k +4m +3;

(d) there exists a minimal coloring of G(n, k) for n = 2k+4m+4 satisfying
Condition C1.

Proof : We prove this lemma in the following four steps where the output
of each step is the input of the next step. In each step 1, where 1 <1 < 4,
a new vertex is added to B.

Step 0 : Suppose that there exists a minimal coloring of G(n, k) for n =
2k+4m satisfying Condition C1. This automatically means that all vertices
of A have degree 4l +2m — 1 and 2m vertices of B say, T1,%2,-..,Z2m have
degree 41+2m—1 and the other 2m vertices of B say, Tom+1,T2m+2,- -+ Tdm
have degree 4 + 2m. Also condition (*); is satisfied.

Step 1 : Let n = 2k + 4m + 1. In any minimal coloring of G(n,k) for
n = 2k +4m+ 1, the vertices of A should have degree 4/+2m —1 or 4/+2m
and the vertices of B should have degree 4l + 2m by Condition ().
Add the vertex T4m4: to the coloring given above. Join this with the
vertices

‘U],'Ui,'l)z,vé,- . 'aUQIsv‘Zl:, and Z1,Z2,---,T2m-

It then follows that the vertices v;,v! where, 1 < i < 2l of A have degree
4l + 2m and the remaining vertices of A still have degree 4l 4 2m — 1. Also
all the vertices of B have degree 4/ + 2m. Also Condition (*); is satisfied.
So, by Proposition 2.1 this is a minimal coloring for n = 8/ + 4m + 1.
Step 2 : Let n = 2k + 4m + 2. In any minimal coloring of G(n,k) for
n = 2k + 4m + 2, the vertices of A should have degree 4/ + 2m and the
vertices of B should have degree 4/ + 2m or 4! + 2m + 1 by Condition (*);.
Add the vertex Z4m+2 to the coloring obtained in Step 1. Join this with
the vertices

' ! )
V21415 Ugpqe15 V20425 V425 - - - s Val, Uy and Zam41,T2m+2;- > Tdm+1-
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Tt then follows that all the vertices of A have degree 4l +2m. The vertices
z;s of B, 1 < i < 2m, have degree 4l + 2m and the remaining vertices of B
have degree 41+ 2m + 1. Also Condition (%) is satisfied. So by Proposition
2.1 this is a minimal coloring for n = 81 + 4m + 2.

Step 3 : Let n = 2k + 4m + 3. In any minimal coloring of G(n,k) for
n = 2k44m+ 3, the vertices of A should have degree 4l +2m or 4l+2m+1
and the vertices of B should have degree 4l + 2m + 1 by Condition (*);.
The number of vertices of B is odd and so each vertex of B cannot have
degree 4l + 2m + 1. Hence to achieve the next possible minimal coloring,
one vertex of B will have degree 41 + 2m or 4l + 2m + 2. Add the vertex
Z4m+3 to the coloring obtained in Step 2. Join this with the vertices

] ’ !
v1,V],V2, Vg, ..., V20, Vy and I1,To,...,ZTam.

It then follows that the vertices v;,v! where, 1 < ¢ < 2! of A have degree
4l + 2m + 1 and the remaining vertices of A still have degree 4l + 2m. Also
all the vertices in B have degree 4/ + 2m + 1 except the vertex T4,43 which
has degree 41 + 2m. Also Condition (*); is satisfied. So, by Proposition 2.1
this is a minimal coloring for n = 8! 4+ 4m + 3.

Step 4 : Let n = 2k + 4m + 4.In any minimal coloring of G(n,k) for
n = 2k + 4m + 4, the vertices of A should have degree 4! 4+ 2m + 1 and the
vertices of B should have degree 41 + 2m + 1 or 41 + 2m + 2 by Condition
(*)1. Add the vertex Z4;,44 to the coloring obtained in Step 1. Join this
with the vertices

! 1 '
V2141, Vg 41, Vou+2, V9425 - - -, Val, Uy, T1, T2, - - -, T2m41 and ZTqm43-

It then follows that all the vertices of A have degree 4 + 2m + 1. The
vertices x;,1 < 7 < 2m + 1 and z4m44 of B have degree 4l + 2m + 2 and
the remaining vertices of B have degree 4/ +2m + 1. Also Condition (), is
satisfied. By Proposition 2.1, this is a minimal coloring for n = 8/ +4m +4.
Also this construction satisfies Condition C1.

Hence the lemma. a

For the sake of clarity, each step of the above lemma is explained in
each column of Table 1 at the end of Section 4. We explain the similar
lemma of the remaining cases k = 1 (mod 4), 2 (mod 4) and 3 (mod 4) in
Tables 2, 3 and 4.

Using Lemmas 4.3 and 4.4 and by induction hypothesis, we get the
following result.

Theorem 4.5 When k = 4l and n > 2k + 4, equality is attained in Theo-
rem 3.1.
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4.2 The case k=1 (mod 4)

Let A and B respectively denote the set of vertices

{vla v'l y U2, vlz’ A ;v4l+1:vzlu+1} and {mlax‘Za oee ’zn-81—2}-
Observation 4.6 It is possible to construct a graph on 41+ 1 vertices such
that all the vertices have degree 2l.

This follows from Observation 4.2. Just take a new vertex and join it to
all the vertices of degree 21 — 1.

Condition C2 : Let k = 4/+ 1 and n = 2k + 4m, for some m > 1. Then
any 2-coloring of G(n, k) is said to satisfy Condition C2 if the degrees of
the vertices are as given below:

(a) the vertices of A have degree 4! + 2m;
(b) 2m vertices of B have degree 4l + 2m;

(c) the remaining 2m vertices of B have degree 4/ + 2m + 1.

Lemma 4.7 When k = 4l + 1 and n = 2k + 4 there ezists a minimal
coloring of G(n,k) satisfying Condition C2.

Proof : Let A, be the subgraph induced by the vertices vy, vs,...,va141
and A, be the subgraph induced by the vertices v},vs,...,v4,,- By Ob-
servation 4.6, we construct A; and A, such that the vertices

V1,02,...,V41+1

have degree 2! and the vertices

’ / !
'Ul,vz, . ..,'U4,+l

have degree 2I. Also, to get a minimal coloring, we construct the subgraph
induced by A as dictated by Observation 4.1. Thus vertices of A have
degrees 4/ in the subgraph induced by A.

Now z,z2,z3 and x4 are the vertices of the subgraph B. Join z; and
T with

/ ! !
V1,Vq,02,V9,...,U2¢,Vy.

Join z3 and z4 with

' ! !
V2i+1, v2!+1 » V2142, v2[+2) <oy Vdl41, v4[+1 .

Now join z3 with z; and z4 with z. Finally join z, and z,.
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So, each vertex in A has degree 4l +2, the vertices z, and z; have degree
41 + 2 and the vertices x3 and z, have degree 4l + 3. This construction for
G(n, k) satisfies (*); and ()2 and hence this is a minimal coloring. Also
this construction satisfies Condition C2. m}

Lemma 4.8 If there ezists a minimal coloring of G(n, k), where k =4l +1
and n = 2k + 4m for some m > 1 satisfying Condition C2 then,

(a) there exists a minimal coloring of G(n, k) forn=2k+4m +1;
(b) there exists a minimal coloring of G(n,k) for n =2k +4m +2;
(c) there exists a minimal coloring of G(n,k) for n =2k +4m + 3;

(d) there exists a minimal coloring of G(n, k) for n = 2k+4m-+4 satisfying
Condition C2.

Proof : The proof is similar to the proof of Lemma 4.4. This is explained
in Table 2. o

Using Lemma 4.7 and Lemma 4.8 and by induction hypothesis, we get
the following result.

Theorem 4.9 When k = 4l + 1 and n > 2k + 4, equality is attained in
Theorem 3.1.
4.3 The case k =2 (mod 4)

Let A denote the set of vertices vy,v],v2,v3,...,V442,Vy,, and B denote
the vertices z,,x2,...Tpn—-g1—4-

Observation 4.10 [t is possible to construct a graph on 4l + 2 vertices
such that 2l vertices have degree 2l and the remaining 2l + 2 vertices have
degree 21 + 1.

This follows from Observation 4.6. Just add a new vertex and join it
with 2/ + 1 vertices.

Condition C3 : Let £k =4/+2 and n = 2k + 4m, for some m > 1. Then
any 2-coloring of G(n, k) is said to satisfy Condition C3 if the degrees of
the vertices are as given below:

(a) the vertices of A have degree 4 + 2m + 1;
(b) 2m vertices of B have degree 4l + 2m + 1;

(c) the remaining 2m vertices of B have degree 4! + 2m + 2.
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Lemma 4.11 When k = 4l + 2 and n = 2k + 4 there ezists ¢ minimal
coloring of G(n, k) satisfying Condition C3.

Proof : Let A; be the subgraph induced by the vertices v, vs,...,v4142
and A, be the subgraph induced by the vertices v{,v3,.. .,V By Ob-
servation 4.10, we construct A; and A, such that the vertices

! i !
v1,V2...V9 and v),Vp,...,Uy
have degree 2! and the vertices
d ! ! !
Vi1, U242, -+«  Val+2 ANA Vgpyq,Vgpp0y- -+ VUsgt42

have degree 2L + 1. Also, to get a minimal coloring, we construct the
subgraph induced by A as dictated by Observation 4.1. Thus vertices of A
have degrees 41 or 41 + 2 in the subgraph induced by A.

Now z;,%2,z3 and z4 are the vertices of the subgraph B.
Join z;,z2 and z3 with

' 1 1
V1, V), V2,Vg,- .., V2, Uy
Join x4 with

' ! ]
V2l41, V41 V2042, Vgrq2y -+ s Val+1, Vgi g1 -

Join z3 with vy, and vy, ,. Now join 2 with 2,73 and 4. Also join z2
with z3 and z4.

So, each vertex in A has degree 41+ 3, the vertices z; and z3 have degree
4l + 3 and the vertices z3 and z4 have degree 4/ + 4. This construction for
G(n, k) satisfies (*); and ()2 and hence this is a minimal coloring. Also
this construction satisfies Condition C3. m]

Lemma 4.12 If there exists a minimal coloring of G(n, k), where k = 41+2
and n = 2k + 4m for some m > 1 satisfying Condition C3 then,

(a) there exists a minimal coloring of G(n, k) for n =2k +4m + 1;
(b) there exists a minimal coloring of G(n, k) for n = 2k + 4m + 2;
(c) there ezists a minimal coloring of G(n, k) for n = 2k + 4m + 3;

(d) there exists a minimal coloring of G(n, k) for n = 2k+4m+4 satisfying
Condition C8.

Proof : The proof is explained in Table 3. 0

Using Lemma 4.11 and Lemma 4.12 and by induction hypothesis, we
get the following result.

Theorem 4.13 When k = 4l + 2 and n > 2k + 4, equality is attained in
Theorem 3.1.
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4.4 The case k = 3 (mod 4)

Let A denote the set of vertices
' ] ]
Uy, V;,V2,Vgy. .- ,’U4[+3,'U4[+3

and B denote
1,22y Tn—-8l—6-

Observation 4.14 [t is possible to consiruct a graph on 41 + 3 vertices
such that 4l + 2 vertices have degree 2l + 1 and the remaining one vertez
has degree 21 or 21 + 2.

This follows from Observation 4.10. Add a new vertex and join it with
the vertices of degree 21.

Condition C4 : Let & = 41+ 3 and n = 2k + 4m, for some m > 1. Then
any 2-coloring of G(n, k) is said to satisfy Condition C4 if the degrees of
the vertices are as given below:

(a) the vertices of A have degree 4! + 2m + 2;
(b) 2m vertices of B have degree 4l + 2m + 2;

(c) the remaining 2m vertices of B have degree 4! + 2m + 3.

Lemma 4.15 When k = 4l + 3 and n = 2k + 4 there exists a minimal
coloring of G(n, k) satisfying Condition C4.

Proof : Let A; be the subgraph induced by the vertices v, vs,...,va143
and let A; be the subgraph induced by the vertices v{,v,...,v},,3. By
Observation 4.14, we construct 4, and A» such that the vertices

o !
V1,V2y...,V41+2 and UpyUgy ... Uy o

have degree 2! + 1 and the vertices vq;43, vy +3 have degree 2. Also, to get
a minimal coloring, we construct the subgraph induced by A as dictated
by Observation 4.1. Thus vertices of A have degrees 4/ + 2 or 4l in the
subgraph induced by A.
Now z1, 2,23 and z4 are the vertices of the subgraph B. Join z; and
o with
V1, U1, U2, Vgy -+ oy V2L, Vg -

Join z3 and z4 with

! ' 1
U2l4+1, Vo141, V2i+2, Vo425 - -+, Val42, Ugppa.
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Now join x1,Z2,23 and x4 With v4i43 and v}, 3. Also join 7, with z3, 2
with z4 and z3 with z4.

So, each vertex in A has degree 4] +4, the vertices z; and z2 have degree
4l + 4 and the vertices z3 and z4 have degree 4/ +5. This construction for
G(n, k) satisfies (¥); and ()2 and hence is a minimal coloring. Also this
construction satisfies Condition C4. O

Lemma 4.16 If there ezists a minimal coloring of G(n, k), where k = 4143
and n = 2k + 4m for some m > 1 satisfying Condition C4 then,

(a) there ezists a minimal coloring of G(n,k) forn=2k+4m+1;
(b) there ezists a minimal coloring of G(n, k) for n =2k +4m + 2;
(c) there exists a minimal coloring of G(n, k) for n =2k +4m +3;

(d) there exists a minimal coloring of G(n, k) for n = 2k+4m+4 satisfying
Condition CJ.

Proof : The proof is explained in Table 4. O

Using Lemma 4.15 and Lemma 4.16 and by induction hypothesis, we
get the following result.

Theorem 4.17 When k = 4l + 3 and n > 2k + 4, equality is attained in
Theorem 3.1.

Theorem 4.18 (¢f. Goodman’s result) When n > 2k + 4,

1
M(K3,G(n, k) = 5(u—1)(u2—2u—3k) if n=2u,
1
= —3-(8u3—6u2-—2u(1+3k)+3k) ifn=4u+1,
2 2
= g(u (4u® + 3u — (3k+ 1)) if n=4u+3,

where u is a non-negative integer.

Proof : Follows immediately by combining Theorems 4.5, 4.9, 4.13 and
4.17.
(]
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Degrees of Vertices when n is equal to

Vertices 2k + 4m % +4m+1 | 2k+4m+2 | 2k+4m+3 | 2k +4m +4
v aAd+2m -1 4+ 2m 4+ 2m ad+2m+1 4d4+2m+1
v} 4+2m-1 4+ 2m 4l 4+ 2m 442m+1 | d+2m+1
vy 4] 4+2m -1 41 +2m 4 + 2m d+2m+1 | d+2m+1
v, 4+2m-1 4l + 2m 4l 4+ 2m d+2m+1 | d+2m+1
Vol41 44+2m—-1| 4d+2m -1 4+ 2m 4 +2m 4d+2m+1
oo |A42m-1|dl+2m-1| 4+2m dl42m | dl+2m41
v4t d4+2m—-11| 4l +2m -1 4l +2m 4l +2m 4l +2m +1
vy ad+2m-1| 4 +2m -1 41+ 2m 4l +2m 4 +2m+1
I 41 +2m —1 4l 4+ 2m 4l +2m d+2m+1 4d+4+2m+2
T2m 4d+2m-1 41+ 2m 4l +2m 4l+2;n+1 4l+2:rn+2

Tom+1 4! +2m 4 +2m 4+2m+1 a4 +2m+1 4ad+2m+2

Tom42 4+ 2m 4l + 2m d+2m+1 | d+2m+1 | d+2m+1
T4 Al +2m Al+om | M+2m41 | M42mtl | dl42mt1

Tadm+1 - 4l 4+ 2m 4d+2m+1 ad+2m+1 4d+2m+1

Tam+2 - - 4d+2m+1 aA+2m+1 ad+2m+1

Tam43 - - - 4l 4+ 2m 4+2m+1

Tam44 - - - - 4l +2m+ 2

Table 1 : The case k = 41
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Degrees of Vertices when n is equal to

Vertices 2k + 4m 2%k+4m+1 | 2k+4m+2 | 2k+4m+3 | 2k+4m +4
n 4l +2m 4i+2m+1 ad+2m+1 4l4+2m+2 aA+2m+2
v 4l +2m dA+2m+1 | d442m+1 | dl+2m+2 | 4l +2m +2
vgy 4l 4+ 2m d+2m+1 | d442m+1 | dl+2m+2 | d+2m+2
v, 4l +2m 4d+2m+1 | d+2m+1 | Add+2m+2 | dL+2m +2

Vi1 4l +2m 4 + 2m 4d+2m+1 4+2m+1 4 +2m+2

"’21+1 4l +2m 4 +2m A4+2m+1 | d+2m+1 | d+2m+2

Var41 41 +2m 4l +2m A+2m+1 | d+2m+1 | d+2m +2

Vg 4l +2m al+2m | d+2m+1 | dl+2m+1 | d4+2m+2
) 4 +2m 4d+2m+1 aAd+2m+1 44+2m+2 4+4+2m+3
Tam 4l +2m 4 +2m+1 4d+2m+1 4 4+2m+2 4+2m+3

T2m+1 44 +2m+1 444+2m+1 ad+2m+1 aA4+2m+2 4d+2m+3

Tom+2 Ad4+2m+1 | dl+2m+1 A4+2m+2 | d+2m+2 | 4+2m+2
Tom | A+2m+1 | Al+2m4l | Al42m42 | dl42m42 | d+2m 2

Tam+1 - 4l +2m 44+2m+1 | d+2m+2 | d44+2m+2

Tam+42 - - 44 +2m+2 4+2m+2 4 42m+2

Tam+3 - - - A4A+2m+2 | d+2m+2

Tam+4 - - - - 4+2m+3

Table 2 : The case k =41+ 1
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Degrees of Vertices when n is equal to

Vertices 2k + 4m % +dm+1 | 2k+4m+2 | 2k+4m+3 2k +4m +4
vy dl+2m+1 | dl+2m+2 | 4 +2m+2 a+2m+3 | dl+2m+3
v} Al+2m+1 | Al+2m+2 | d+2m+2 | d+2m+3 4 +2m+3

vmsy | M+2mal | d4ome2 | dl4oma2 | 442m+3 | A42m 43

v121+l d+2m+1 | dd+2m+2 | d+2m+2 | dl+2m+3 | i +2m+3

Va2 4d+2m+1 | d+2m+1 ad+2m+2 444+ 2m +2 4+2m+3

v{”“ d+2m+1 | Al+2m+1 | dl+2m+2 | dl+2m+2 | 4 +2m+3

Vai42 d+2m+1 | Al+2m+1 | dd+2m+2 | 4l+2m+2 | d+2m+3

vf“+2 d+2m+1 | d+2m+1 | d+2m+2 | 4l+2m+2 | 4 4+2m+3
T dA+2m+1 | d4+2m+2 | dl+2m+2 | 4dl+2m+3 | 4l4+2m +3
Zam 4d+2m+1 a4+2m+2 4 4+2m+2 ad+2m+3 44+2m+3

Z2m+1 d+2m+2 | dd+2m+2 | 4+2m+3 W+2m+3 | 44+2m+3

ZTam+2 d+2m+2 | 44+2m+2 | A +2m+3 | 4l+2m+3 | dd+2m + 4
Tam ad+2m+2 | d+2m+2 | Al+2m+3 | l+2m+3 | Al +2m + 4

Tam+1 - 4o+ 2m+2 44+2m+3 44 +4+2m+3 a4+2m+4

Tam+2 - - 4 +2m43 4d+4+2m+3 4 +2m +4

T4m+3 - - - 4d+4+2m+2 | dl+2m+3

T4m+4 - - - - 4 +2m+4

Table 3 : The case k =41+ 2
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Degrees of Vertices when n is equal to

Vertices 2k + 4m 2k+4m+1 | 2k+4m+2 | 2k+4m+3 | 2k +4m +- 4
7 4l+2m+2 | dl+2m+3 | d+2m+3 | d+2m+4 | A +2m+4
v A+2m+2 | +2m+3 | dl+2m+3 | dl+2m+4 | d+2m+4

vaer | A+2m42 | 42m43 | dl42m43 | Mr2mtd | Al4omrd

Vpgr | A42m+2 | dl+2m+3 | A4+2m+3 | 4+2m+4 | A+2m+4

vargr | M+2m+2 | dl+2m4+2 | Al+2m+3 [ A +2m+3 | Al+2m+4

Vpyo |M+2m+2 | d+2m+2 | d+2m+3 | A+2m+3 [ A +2m+4

vass | dl42m+2 | d42m+2 | 42mas | dt2me3 | dtomta

Vyso |4+2m42 | 4dl4+2m+2 | 4+2m+3 | d+2m+3 | 4 +2m+4

vares | dl+2m+2 | d+2m+3 | A+2m+3 | +2m+4a | A +2m 44

”Ql+3 d4+2m+2 | dl+2m+3 | 44+2m+3 | dl+2m+4 | L +2m + 4
z al+2m+2 | dl+2m+3 | d+2m+3 | dl+2m+4 | A +2m+4

Tomo1 | Al+2m+2 | dlrom+3 | dl42me3 | di4omaa | dromd
Tom 44+2m+2 | 4+2m+3 | dl+2m+4 | dl+2m+4 | d+2m+4

Tomt1 | A+2m+3 | 444+2m+3 | dl+2m+4 | d+2m+4 | d+2m+4

Tomtz | U+2m+3 | 44+2m+3 | dl+2m+4 | d+2m+4 | di+2m+5
Tam | U +2m+3 | A42m 43 | A42md | dl42mid | d42m+s

Tam+1 - dA+2m+4 | d+2m+4 | d+2m+4 | d+2m+5

Tam+2 - - ad+2m+3 | dl+2m+4 UA+2m+5

Tam+3 - - - 4+2m+4 | d+2m+5

Tam+4 - - - - 4l 4+2m +4

Table 4 : The case k =41+ 3
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5 The cases n=2k+1,2k+ 2 and 2k + 3

These cases could not be contained in Section 4 as 2k is very close to n.
We construct only the red graph in all these cases.

Case1: n=2k+1
Sub-case (a) : k=40

In this case n = 8! + 1. In any minimal coloring, the vertices of A
should have degree 4/ — 1 or 4/ and the vertex of B should have degree 41.
Also S3(p) should be 4/ — 1 for all p in A and 4{ for all p in B. This can
be achieved and hence the minimum number of monochromatic triangles
is given by Theorem 3.1. A minimal construction is as below.

Construct the subgraph A in such a way that the vertices

! ! !
'U],'Ul,'vz,1)2, PN ,'Uz[,le
have degree 4/ and the vertices
! ! ’
V2i+1, Ugp41, V242, Vapq2y - -+, V4L, Uy
have degree 4/ — 2. Now join z; with
! ! !
V241, V2p41> V2042, V2r4.2, - - - V4L, Uy
This is a minimal coloring.
Sub-case (b) : k=4l+1.

In this case n = 8/+3. In any minimal coloring, the vertices of A should
have degree 4/ or 41+ 1 and the vertex of B should have degree 4{ or 4/ + 2.
Also S3(p) should be 4! for all pin A and 4] + 1 for all p in B. This can
be achieved and hence the minimum number of monochromatic triangles
is given by Theorem 3.1. A minimal coloring is as below. Construct the
subgraph A in such a way that all the vertices

' ' '
V1,V,V2,Vg, ... ,’U4[+1,’U“+1
have degree 4l. Now join z; with
7 ’ /
VU1, V;,Y2,Vg, ..., V2, Vg

This is a minimal coloring,
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Sub-case (c): k=4l +2.

In this case n = 8/+5. In any minimal coloring, the vertices of A should
have degree 41 + 2 or 4/ + 1 and the vertex of B should have degree 4] + 2.
Also S3(p) should be 4l + 1, for all p in A, and 4l + 2, for all p in B. This
can not be achieved and the reason is as follows. Suppose the vertex z, of
B is to be joined to 4! + 2 vertices, say

i ] 1
V1,V1,V2,Va,- -, V2041, Vg1

In the induced subgraph of A all vertices should have even degree by Ob-
servation 4.1. Hence the vertices

’ ’ ’
V1,V1,V2, V2, -, V241, V241

have degree 4! and the remaining 4 + 2 vertices of A have degree 4/ + 2 in
the induced subgraph of A. But, this is not possible since the number of
edges in A should be a multiple of 4.

Hence the next possible minimum number of monochromatic triangles
is obtained as follows. The vertex of B will have degree 4l or 4 + 4.

Now 6[S1| > (80+4) {2 (‘”;1) +2 (4’;2) - (4z+1)(4z+2)}

+1 {2 (‘g) + 2(4’ ; 4) — @)@+ 4)}
—2((81 +4)(41 + 1) + 1(4l + 2)).
Thus, |Si| > %(6413 + 24i% — 161).

A minimal coloring is given as follows. Color the edges of A in such a
way that 4l vertices, say

') ! !
V1,V,V2,V9,...,V2(, Uy
have degree 41 and

! ] !
V2i+15 Vgp415 V2U425 Vg2 » + +  V4l42, Vg g2

hafvc? degree 4‘l + 2. Now join z; with v1,v],v2,v5,...,v9;,v}. This is a
minimal coloring.

Sub-case (d) : k=4l +3.

In this case n = 8/+ 7. In any minimal coloring, the vertices of A should
have degree 4! + 2 or 4/ + 3 and the vertex of B should have degree 4/ + 2
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or 41 + 4. Also S3(p) should be 41+ 2 for all pin A and 4l +3 for all p in B.
This can not be achieved because the vertex x; of B has to be joined with
41+ 2 or 4l + 4 vertices of A and so all the vertices of A should have degree
41 +2 in the induced subgraph of A. This implies that the number of edges
in A is not a multiple of 4. Hence the next possible minimum number of
monochromatic triangles is obtained as follows. The vertex of B will have
degree 41+ 2 or 41 +4 and two vertices of A will have degree 4/+1 or 4l +4.

Now 6|Si| > (8l+4) {2 (‘”;2) + 2 (41;3) - (4z+2)(4z+3)}

+2 {2 (4’;1> +2(4’;'4) -(4z+1)(41+4)}

+1 {2 (4’;2) +2(4l;4) —(4z+2)(41+4)}
—2((81 + 6)(4l + 2) + 1(41 + 3)).
Thus, |S1] > %(6413 + 720 + 8).

A minimal coloring is given as below. Color the edges of A in such a
way that 8! + 4 vertices say

' ' , '
V1,U,02,Vp,. .., U4l+27v4[+2

have degree 4/ + 2 and vy43, vy, 3 have degree 4.
Now join z; with

7 ] 1 !
U1, Yy, V2,Yy, - - -, V21, Uy, V4143, Vg4 3-
This is a minimal coloring.

Case 2: n=2k+2.

Elaborate explanations in most cases are omitted as these are very sim-
ilar to the situation n = 2k + 1 handled earlier.

Sub-case (a) : £k =4l.

In this case n = 8/ + 2. In any minimal coloring the vertices of A should
have degree 4/ and the vertices of B should have degree 4 or 4/ + 1. Also
S3(p) should be 4/ — 1 for all p in A and 4/ for all p in B. This can be
achieved and hence the minimum number of monochromatic triangles is
given by Theorem 3.1. A minimal coloring is as below.
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Construct the subgraph A in such a way that the vertices
! (] ]
vl,vl,vg,vz, ..y V2L, Uy
have degree 4! and the vertices
' !
V2i+1, v;l.{.l y V2042, Vgp 425+« V41, Uy
have degree 41 — 2. Join the vertices 1 and zo with
! ! !
V2l41, v2l+1 y V2142, v2[+‘21 coey V4L, Vyy-

This is a minimal coloring.
Sub-case (b) : k=4l +1.

In this case n = 8] +4. In any minimal coloring the vertices of A should
have degree 4l +1 and the vertices of B should have degree 4/ +1 or 4! +2.
Also S3(p) should be 4! for all p in A and 4/ + 1 for all p in B. This can
not be achieved and the next possible minimum number of monochromatic
triangles is obtained in the following manner. One vertex of B will have
degree 4l and the other will have 41 + 2.

Now 6|Si| > (81+2) {2 (4’;1) + 2 (41;1) - (4l+1)2)}

+1 {2 (41;“2) +2(4l;’1) —(4z+2)(4l+1)}

+1 {2 (42’) + 2(‘”;3) — (D)l + 3)}
—2((81 + 2)(4l) + 2(41 + 1)).

Thus, |S;] > %l(u?—l).

Construct the subgraph A in such a way that the vertices

7 ! '
V1,V1,V2, Vg, - .., Va1, Vg

have degree 4{. Join the vertex z; with the vertices

! ! !
V1,V1,V2,Vg,... » U21, Vg

and the vertex z, with

! 7
V2U4+1,Vgp 41, V2042, V425 - - - Val41, Val41-
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This is a minimal coloring.
Sub-case (c) : k=4l +2

In this case n = 81+ 6. In any minimal coloring the vertices of A should
have degree 41+ 2 and the vertices of B should have degree 4/ +2 or 4+ 3.
Also S3(p) should be 4/ +1 for all pin A and 4/ +2 for all p in B. This can
not be achieved and the next possible minimum number of monochromatic
triangles is obtained as follows. Both the vertices of B will have degree
4d+1ordl+4.

Now 6|S;| > (81+4) {2 (‘“;'2) + 2 (41;2) - (4l+2)2)}

+2 {2 (‘“;’ 1) +2(4’;4) i+ 1)(4z+4)}
—2((81 + 4)(4l + 1) + 2(4] + 2)).

Thus, |S:| > %(6413 + 4812 — 41).

A minimal coloring is given as below. Color the edges of A in such a
way that 4l vertices say

] ! !
V1, V}, V2, Vg, .. -, V21, Ugy
have degree 4! + 2 and

! ] !
V2141, Vo415 V2142, Vot 420 - - - V442, Ygp 40
+

have degree 41. Now join ; and z; with

! / /
V2U+1, U1, V20425 V2142s - - - » Val4+25 Vg4 2-

Sub-case (d) : k=414 3.

In this case n = 8!+ 8. In any minimal coloring the vertices of A should
have degree 4/ + 3 and the vertices of B should have degree 4/ + 3 or 4/ +4.
Also S3(p) should be 4/ +2 for all p in A and 4!+ 3 for all p in B. This can
not be achieved and the next possible minimum number of monochromatic
triangles is obtained as follows. Two vertices of A will have degree 4 + 2
or 4l + 4.
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Now 6|S;| > (8L+4) {2 (41'2*3) + 2 (41;3> - (4l+3)2}

+2 {2 (‘“;’2) +2<4l;’4) - (4l+2)(4l+4)}

+2 {2 (‘“'2*3) +2<4l;4) _ (4l +3)(4l+ 4)}
—2((81 + 6)(4l + 2) + 2(4l + 3))-

Thus, |S;| > %(6413+9612+321).

A minimal coloring is given as below. Color the edges of A in such a
way that 8 + 4 vertices say

’vl,’Ui,‘Ug,Ué, e ,1)4[+2,’U.'“+2
have degree 41 + 2 and vg43, vy 43 have degree 4l. Now join z; with
v1, v}, V2, . . -, V2141, Ugiq)
and with vg43 and vy, ; and join z2 with
Val+2, U§z+2,’02t+3,v§:+37 “ee ,'U4z+3,vfu+3°
This is a minimal coloring.
Case 3 : n=2k+ 3.
Sub-case (a) : k= 4l.

In this case n = 8]+ 3. In any minimal coloring the vertices of A should
have degree 4l or 41 + 1 , two vertices of B should have degree 4/ + 1 and
one vertex should have degree 4! or 4 + 2. Also S3(p) should be 4l — 1
for all p in A and 4! for all p in B. This can be achieved and hence the
minimum number of monochromatic triangles is given by Theorem 3.1. A
minimal coloring is as below.

Construct the subgraph A in such a way that the vertices

! ! '
V1,V,),V2,Vg, ..., V21, Vy
have degree 41 — 2 and the vertices

! ! ]
V2141, VUgp415 V2142, Ugpq05 - - - » Val, Uy
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have degree 4/. Now join 71 and z2 with
! ! ]
U1,V;,V2,V2; - - s Vat, Vo
and z3 with
! ' '
V2i+1: VY2141 V2142, v2!+2s ceey V4L, Yy -

Join z; and z2. This is a minimal coloring.
Sub-case (b) : k=4l+1.

In this case n = 8/+5. In any minimal coloring the vertices of A should
have degree 4/ + 1 or 4! + 2 and the vertices of B should have degree 4/ +2.
Also S3(p) should be 4l for all p in A and 4l + 1 for all p in B. This can
not be achieved and the next possible minimum number of monochromatic
triangles is got as follows. Two vertices of B will have degree 41 + 1 and
the other will have 4! + 2.

Now aisit > @2 {2 (U77) +2 (77) - @wenwea)

+2 {2 (41;1) +2<4l;’3) —(4l+1)(4l+3)}
+

+1 {2 (4’2 2) +2(4l;'2) - (4z+2)2}
—2((81 + 2)(41) + 3(4l + 1)).
Thus, |Si| > 21(3212 +120-2).

Construct the subgraph A in such a way that all the vertices have degree
4[. Join the vertices z; and z, with the vertices
1)1,1};,’02,'0;, ... :v2lyvél

and 3 with
! ' 1
V2141, Vgpp15> V20425 Ugpp2r « - o s Va1, Vgggr -

Finally join z; with z5. This is a minimal coloring.
Sub-case (c) : k=41+2

In this case n = 8!+ 7. In any minimal coloring the vertices of A should
have degree 4! + 2 or 41 + 3 and the vertices of B should have degree 4 + 3.
Also S3(p) should be 4/ + 1 for all p in A and 4/ + 2 for all p in B. This can
be achieved and hence the minimum number of monochromatic triangles
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is given by Theorem 3.1. A minimal coloring is as below.
Color the edges of A in such a way that 4l vertices, say
V1, V], V2, 0y, ..., Vo, Uy
have degree 4/ + 2 and

Val11, Vs V22, Vargay -2 Val42, Ufu+2
have degree 41. Now join z; and z, with
V241, véu_l » V242, U§1+z, e ,vql,vfu-
Also join z, with vy, v}, +1 and z2 with va42,v), ,. Also join z3 with
V2141, Uéz.,.l y V2142, v§l+2a e ,’1741+2,Uf11+2~
Finally join z; and z, also. This is a minimal coloring.
Sub-case (d) : k=4l +3

In this case n = 8/+9. In any minimal coloring the vertices of A should
have degree 4l + 3 or 4/ + 4 and the vertices of B should have degree 41 + 4
Also S3(p) should be 4+ 2 for all p in A and 41 + 3 for all p in B. This can
be achieved and hence the minimum number of monochromatic triangles
is given by Theorem 3.1. The minimal coloring is as below.

Color the edges of A in such a way that 41 + 4 vertices say
Vi, v;,vg, v;, ooy U442, ’U"u+2
have degree 4/ + 2 and vy43, ), +3 have degree 4. Now join z; with

! ’ ’
01, V),V2,0y,... av2l+lav2l+1

and with =443 and z/, and join x5 and z3 with
+ al+3

! ] !
V2042, V942, V2143, Uy 35 - - -y Val43, Vgp 4 3-

This is a minimal coloring,.

Next we summarise the results obtained in this section.
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Theorem 5.1 Following is the summary of the results obtained in all the
above cases.

(i) Whenn=2k+1,
M(K3,G(n, k)

(ii) Whenn=2k+2,
M(K3’G(na k))

(i1i)) Whenn =2k +3,
M(K3,G(n,k))
Acknowledgment

1]

Ii

L (6413 — 721% + 81)
1(641® — 241% - 161)
1(641% + 241 — 161)

1(6413 + 7212 + 81)
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if k=4,
ifk=4l+1,
ifk=41+2,

ifk=41+3.

if k=4,
ifk=4l4+1,
ifk=4l+2,

ifk=41+3.
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