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Abstract
In this paper, it is proved that an abelian (351,126, 45)—difference set
only exists in the groups with exponent 39. This fills two missing entries
in Lopez and Sanchez’s table with answer "no”. Furthermore, if a Spence
difference set D has Character Divisibility Property, then D is one of
the difference sets constructed by Spence.

1. Introduction

Let G be a multiplicative group of order v, a k-element subset D of G
is called a (v, k, A)-difference set if each nonidentity element of G can be
written as d;d;’l, with d;,d; € D and d; # dj, in exactly X different ways.
Using the notation of the group ring Z[G], D is a difference set iff D =
Y acp d as an element of Z[G] , satisfies the equation:

DDCY = n 4G

where D1 = ¥, ,d™! and n = k — X is the order of D. we refer
the reader to Jungnickel[1] and Jungnickel & Schmidt[2] for more about
difference sets.

The question that was mostly considered in the study of difference sets
is: given a parameter family seires (v, k, A), which group can contain differ-
ence sets with these parameters. Most results on this question were got by
using character theory and algebric number theory, and self-conjugacy con-
dition plays an important role in the study. An integer m is self-conjugate
modulo w if for each prime divisor p of m there exists a nonnegative integer
j, such that p! = —1 (mod w,), where w, is the largest divisor of w such
that w, primes to p .

Spence[6] has given a construction for a family of difference set with the
parameters (v,k, A, n) equal to (34+!(39+! — 1)/2,34(39+! +1)/2,34(3% +
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1)/2,3%?). The construction is given for the abelian groups with elementary
abelian Sylow 3-subgroup. For an abelian group G, when the condition “3
is self-conjugate modulo v*, where v* is the exponent of G” holds, based
on a theorem of Turyn[7], it is easy to know that if G admits a Spence
difference set in it, the Sylow 3-subgroup of G must be elementary abelian.
But for the cases where the self-conjugacy condition does not hold, there is
still no result on it.

Recently, Ma[4] and Schmidt[8] have developed some tools to deal with
the cases where the self-conjugacy condition does not hold. Following the
method of Ma[4], in this paper, we shall investigate the groups which con-
tain (351, 126, 45)-difference set. Our main result is that such a group must
have exponent 39. We thus fill two missing entries in Lopez and Sanchez’s
table with answer “no”. Furthermore, if a Spence difference set D in G
has Character Divisibility Property( if D is a difference set with the order
n = 42, D is said to have the Character Divisibility Property if for each
nontrivial character x, x(D) is divisible by u ), then the Sylow 3—subgroup
of G must be an elementary abelian group, and the difference set just is
one of the difference sets constructed by Spence.

2. Preliminaries

In this section, we will state some lemmas about the ‘structure’ of an
algebric integer with given modulo and how we can determine the structure
of y € Z[G] from the values of x(y) for some character of G.

Throughout this paper, we use &, to denote the complex wth root of
unity e2™/% and use D,, to denote the ring of algebric integers Z[£,]. oDy,
denotes the ideal that o generates in D,,.

Lemma 2.1 Let o be an algebric integer in Dy, such that a@ = p*,
where p and q are distinct odd primes. If f is the order of p modulo q, end
f is odd, then

e
a=E) ais,
1=1
where m is a nonnegative integer, e is the number of cosets of (p) in z,
Si =Y et &b (1=1,2,--,¢), where T; is the cosets of (p) in Z3.
proof. Since a@ = p*, then (aDy)(@D,) = (pD,)’. Let o be the auto-
morphism of Dy such that ¢(§,) = £, then o fixes all the prime ideals over
p, thus we have o(a)Dy; = aDy, and then o(a) = a5£§, where § = %1 and
j is an integer. Because
s

. u.

@)=/ Nattl) = =6 a7
and q is odd, we have 6/ = 1, hence § = 1. Since (j,¢q) = 1 or j = 0, we
can choose a suitable m such that o(§;™a) = £ ™. Since £q €2, )53_1
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is a basis of Z[¢,] over Z, £, ™« can be written uniquely as E?;,‘ bi€}, so
we lave b; = b, when 7, in the same coset of (p) in Zj. Collect the terms
E,’,', wlere j runs over a coset T; of (g) in Z3, together, denote the sum as
Si, then we get the equation. 0O

As to the case we will use, ¢ = 13 and p = 3 in the lemma, (3) has four
cosets in Z3, and we denote &13 + £33 + &3 by 4, and B = A®), C = A,
D= A®). We will also use A, B,C, D for the elements in group ring that
we get by replacing &3 by an element 3 of order 13.

The next two lemmas were proved in Ma[4], we list them here without
proof.

Lemma 2.2(Ma[d]) Let G be an abelian group and x be a character of
G of order w and K = Ker(x). If y € Z[G] such that x(y) = f(€w), where
F(X) is a polynomial in Z[X), then :

Ky=f(9)K + ) _(K,g"/%)z;

where qy,qa,...,q, are all the prime divisors of w, z1,%3,...,2, € Z[G],
and g is an element of G such that x(g) =

Corollary 2.3 Let {8) be a cyclic group of order q, and f(X) be a
polynomial in Z[X] such that f(fq)f(fq ) = p* then F(B)F(B)~V = p* +
u(B). Furthermore, if f(1)® = p*, then p = 0.

proof. It is a straight application of lemma 2.2. O

Lemma 2. 4(ma[4]) LetG = (a)x(ﬂ) be a cyclic group of order v = p'w,
where o(a) = p*,0(B) = w,t > 1, p is an odd prime, and (p(p—1),w) = 1. If
y € Z[G] satisfies x(y)x(y) P’ for a character x of G such that x(a) = &y
and x(8) = €w. then

P . € r
=[S | sa+ Srern e

i=1

where (1'7) is the Legendre symbol, € = 0 or 1, ¢ is an inleger, £1,2Z2,.. ., Trq1
€ Z[G], q1,92,---,¢- are all the prime divisors of w, and f(X) is a poly-
nomial in Z[X)] such that f(€,)f(E51) =p°~°. '

When w is a prime, the structure of ¥ in Lemma 2.4 can be determined
more precisely.

Lemma 2.5 Let G = {a) X (f), where o =1,B89=1, andp and q are
odd primes such that (p(p—1),q) = 1. Lety € Z[G] and yy( D = p¥ 4+ )G,
then

= f(B)a" +(a? )z,

where f(X) € Z[X] such that f(B)F(B)~1 = p* and z, € Z[G).
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proof. Let x be the character such that x(a) = &+ and x(B8) = £, then
v(n)xv(y) = p**. By lemma 2.4, we have

y= [Z( Jor'r" ] (B)a* + (o)1 + (B)ea (1)

where g(€,)g(€;") = p* ¢, and 21, 25 € Z[G]. Let x, be the character such
that x) (o) = 5,, and M(ﬂ) =1, then we have xl(y)xl( ) =p* and x1(y) €
Z{¢,], thus

x1(y) = 6p*&sh, (2)
where 6 = 1 or —1.

Ife = 1in (1), we have x;(y [E‘_l( )E1g(1)Ex: +gx1(22), together
with (2), we have

1 < -l ‘l ipt—!
x1(zz) = . |7 Eh - Z(;)g(l)f,f? ?
i=1

since p* Z0 (mod g), and {f”‘”” Y= 1,2,...,p} is a linear indepen-
dent set in Z[€,+] over Z, whatever the value of d is, the coefficients of them
in the right side of the equation can not be integer simultaneously, it is in
contradiction to that x;(z2) is an algebric integer. So ¢ # 1in (1) .

If e = 0 in (1), applying x1 to (1), we get x1(y) = g(1)&5. + gx1(z2),
together with (2), we have

—

xi(z2) = = [6p°€8 — 9(1)€5]

-y

since p* # 0 (mod g), to make x;(z2) an algebric integer, there must be
d = c and x1(22) = I§;,. By lemma 2.2,

UB)as + (B, a? "),

{B)a® + (of" )z}

(B)z2

Rewrite ¥ + = as 1, and g(B) + I{B) as f(B), we get that
y = f(B)a® + (a®' ™ zy.

Applying x; on it, we have x1(y) = f(1)&:, so f(1)* = xa(¥)x2(y) =
p**. By corollary 2.3, we have f(8)f(8)("D =p*. O
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3. Main Results

In this section, we will study the structure of the abelian groups which
contain a Spence difference set of order 81.

Theorem 3.1 If G = (a) x {B), where a®” = '3 =1, then there is no
(351, 126,45)—difference set in G.

proof If not, let D be such a difference set. Then DD(-Y) = 81 + 45G,
by lemma 2.5,

D = f(B)a" + (o°)z,

where f(3)f(8)"Y = 81, c is an integer, and z; € Z[G]. Because the
coefficients of the elements in D are 0 or 1, we know that the coefficients
in z; must be 0 or 1, the coefficients of f(X) can be —1,0 or 1. Count
the number C of identity in f(8)f(8)(~"), then C < |(8)| = 13 < 81, so
F(B)f(B)=1) can not be equal to 81. So the difference set does not exist.
a

Theorem 3.2 There is no abelian (351,126,45)-difference set in the
group of exponeni 117.

proof: If not, let G = (y) x {a) x (B) be a group of order 351, with
¥3 = a® = B3 =1, and D be a difference set in G, DD(-1) = 81 + 45G.

Let p : G — G/{y) be the canonical hormomorphism and we use T for
p(z), then p(D) = Y4 p d € Z[G/(7)] satisfies

p(D)p(D)=Y) = 81 + 135G/ () 3)

By lemma 2.5, p(D) = f(B)@ + (@®)z1, where f(X) = Yl a: X' is a
polynomial satisfying f(ﬁ)f(-ﬁ_—l) = 81 and z; € Z[G/(y})]. We can write
€1 = Y rer lkk, where R is a complete coset representation system of (&°)
in G/(y). For an element g of G/(7), l(4) refers to It such that k € R and
k(a") = g(53).

Since the coefficients of the elements in p(D) are 0,1,2,3, we know
that 0 < Iy < 3fork € R and |a;| < 3. So f(é13) = €T3(bo + 014 +
by B + b3C + by D), with [b;] < 3, i = 1,2,3,4, and f(£13)f(€(5") = 81, s0
f(€13) = 663 (3W + 3W (=1 — 3V), where § = £1 and W € {4, B,C, D},
V # W and V # WD, Then we have f(8) = 68 (3W + 3W(=1) — 3V),
thus '

p(D) = 68" (3W + 3w (=D - 3V)&°* + (@), (4)

When 6§ = 1, since the coefficients in p(D) are nonnegative and not
greater than 3, I(zaﬁ?"‘) =0forz € WUWED, and l(y’a?‘ﬁ"") = 3 for
y € V. Now we have known the values of 9 I;s, denote the set of the
others {y as N. Count the coefficient of identity in each side of equation
(3), we get >_nlx = 30 and Y I2 = 36. There are two cases:(i)N =
{3,0,0,1,1,...,1} and (z2)N = {2,2,2,1,1,...,1,0,0,0}.
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When 6 = —1, we have l,z.5m) = 3forz € Wwuw(-Y, and lyapmy =0
for y € V. Use the same notation as above, we get S vl = 27 and
Son 13 =27, hence N = {1,1,---,1}.

So whatever the value of § is, there are at most 3 of [, whose value is
2. Then in p(D) there are at most 9 elements with coefficient 2.

On the other hand, by (4) we know that whatever 6 is , there is at
least O € {A, B,C,D} such that O{y)a®+<f™, O(y)a®*<p™ C D. and
O(Y)afm (D = ¢.

Let ¢ : G — G/{va®) be the canonical homomorphism, then

$(D) = §(3W’ + 3w = SVIFTE + (o),

by the same argument as previous, we can choose O’ € {4, B,C, D} such
that O/ (ya)4(ya®)a®, 0’ " (va)*(ya®)a® C D and O'B"(ya)*(va®)(N D
=¢. Since O(7)e?tf™, O(y)ab+¢B™ are mapped to elements with
coefficients 2 in ¥(D) by ¢, they are disjoint with 0™ (ya)4{va3)a?,
O’ (ya)?(ya’)a®.

Now consider the third canonical homomorphism g : G — G/(ya®),
g maps O(y)a*+< g™, O(y)ab+ep™, 0’ " (ya)?(va®)a?, O'F" (ya)(ya®)a®
to 18 elements with coefficients 2 in (D), it is in contradiction to that there
are at most 9 elements with coefficient 2 in g(D). Thus D can not exist.
a

Now we know that (351,126,45)—difference sets only exist in 23 x Z,y3.
In [2] a new condition Character Divisibility Property(CDP) was posed to
weaken the self-conjugacy condition. In the next theorem, we consider the
Spence difference sets with CDP in H x P, where |P| = 34+1 and (|H|,3) =
1. It is proved that P must be elementary abelian group, and such difference
sets must be the difference sets which Spence has constructed.

we cite a lemma from [5] without proof.

Lemma([5]) Let p be a prime and let G = H x P be an abelian group
with a cyclic Sylow p—subgroup P of order p*. Let P; denote the unique
subgroup of order p' in G. IfY € Z[G] satisfies

x(Y) = 0mod p*

for all characters x of order divisiable by p*~" where r is some fized number
r < min{a,s}, then there are elements Xo, X1,--+, Xr, X n Z[G] such
that

Y=p*Xo+0* P X1+ +p* P Xr + Prn X.

(if r = s we delete the last term Py X)
Moreover, if Y has non-negative coefficients then we can choose the
Xi,i=1,2,...,7 such that they have non-negative coefficients.
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Theorem 3.3 If D is a (3d+|(3;+1_1), sd(ad:lﬂ), 34(3;+1))—diﬁ’erencc
setin G = P x H where |P| = 39t! and |H| = 3“2"1, then

1) P is an elementary abelian group.
2) Let H;,i=1,2,..., i%l:—l be the hyperplans of P, then there exists

integer 19, and h; € H, k; € P such that

D = (P — Hi hig)kio + Z Hihik;.
ifio

proof: 1) Suppose the exponent of P is 3 and U is subgroup of P
such that G/U = A x H, where A is a cyclic group of order 3*. Let p be
the canonical homomorphism. For each character x of G/U, there exists a
character ¢ of G, such that ¢ = xop, then x(p(D)) = ¢(D) and 3¢|x(p(D)).
By the lemma, we have

(D) =3%Xo+347 1P Xy +--- + 34 PX,

where X; € Z[G/U] with non-negative coefficients.

Let x1 be a character of G/U such that xi|p, # 1, then x1(p(D)) =
39x1(Xo) # 0, so Xo # 0. For each element in Xy, its coefficient in p(D) is
at least 3¢, but all the coefficients in p(D) cannot be greater than |U|, so

3d+1—a Z 3d.

Then s = 1, which means that P is an elementary abelian group.
Furthermore, for each element in Xy, its coefficient in p(D) is 3¢.
2).Given a hyperplan H; of P, let p; be the canonical homomorphism

from G to G/H;. Then as in 1), we have

pi(D) = 32 X; + 3% 1PY;.

where X; # 0,Y; € Z[G/H;]. The elements in X; are different from the
elements in P; X, so they have different H—component.
Let U; = p; }(X:)( D, then if Ker(x) = H;,

x(D-U;)=0. (5)

Since any two elements from U; and U;(i # j), always have different
H—component, U;’s are pairwisely disjoint.

Then

sdti_,
D= Y HUi+L
i=1

By (5), for each nonprincipal character x, x(L) = 0, then L = PL/,

where L’ € Z[G]. On the other hand, since |U;| > 1, then |L| < 39, so
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L =0, |U;| = 2 for exactly one i, and |U;| = 1 for j # 7. Thus complete
the proof.
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