Spanning trails that join given edges
in 3-edge-connected graphs

Hong-Jian Lai} Xiankun Zhang
Department of Mathematics
West Virginia University, Morgantown, WV26505

July 26, 1998

Abstract

For given edges e;,e2 in E(G), a spanning trail of G with e, as
the first edge and e; as the last edge is called a spanning (e, e2)-trail.
In this note, we consider best possible degree conditions to assure the
existence of these trails for every pair of edges in a 3-edge-connected

graph G.

INTRODUCTION

The graphs in this note are finite and loopless. For terms not defined
here, see Bondy and Murty [1]. Let G be a graph and let X C E(G). The
contraction G/X is the graph obtained from G by identifying the ends of
each edge in X and then deleting the resulting loops. If H is a subgraph of
G, then we use G/H for G/E(H). The line graph of G, denoted by L(G),
has vertex-set E(G), where two vertices in L(G) are adjacent if and only if
the corresponding edges in G are adjacent.

Given edges ey, e3 € E(G), a trail T of G with e; as the first edge and e,
as the last edge is called an (ey, e2)-trail. An (ej,e3)-trail T is a spanning
(e1, ez)-trail if every vertex of G is either an internal vertex of T or both the
origin and the terminus of T'. Lesniak and Williamson [15] showed that if G
has a spanning (e, e3)-trail, then L(G) has a hamilton (ey, e2)-path. Note
that if G = Cy, the 4-cycle, and if e; and e, are two nonadjacent edges in
C4, then Cy has an (e, e3)-trail that is spanning in C4 but L(C4) does not
have a hamilton (e1, e;)-path. This explains why a spanning (e;, e3)-trail
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is defined in the way above.

It has been shown ([11], Theorem 3) that the problem to determine if
a graph G has a spanning (e, e2)-trail, for given e;,e; € E(G), is NP-
complete. We list some other prior results below.

;From the proof of Lemma 6 in [16], we easily know that the following
theorem holds.

Theorem A (Zhan [16]) If G is 4-edge-connected, then for any pair of
distinct edges e, e2 € E(G), G has a spanning (e;, e2)-trail. O

A bond X C E(G) is called essential edge-cut if each component of
G ~ X has an edge. It is clear that if {e;,e2} is an essential edge-cut of G,
then G cannot have a spanning (e, ez)-trail.

Since that G is 4-edge-connected implies that G has 2 edge-disjoint
spanning trees, (see [10]), Theorem B below improves Theorem A.

Theorem B (Catlin and Lai [6], Theorem 4) If G has two edge-disjoint
spanning trees, then for every pair of distinct edges ey, e2 € E(G), exactly
one of the following holds:

(i) G has a spanning (e, e2)-trail.

(ii) {e1,e2} is an essential edge-cut of G. D

Theorem C (Lai and Zhang [11], Theorem 1) Let G be a simple 2-edge-
connected graph with n > 27 vertices. If for every pair of nonadjacent
vertices u,v € V(G),

2
deg(u) + deg(v) > 5 -2,

then for every pair of distinct edges e;,es € E(G), exactly one of the fol-
lowing holds:

(i) G has a spanning (e, ez)-trail.

(i) {e1,e2} is an essential edge-cut of G. O

Theorem D (Lai and Zhang [11], Theorem 2) Let G be a simple 2-edge-
connected graph with n > 33 vertices and without 3-cycles. If for every
pair of nonadjacent vertices u,v € V(G),

deg(u) + deg(v) > 3,

then for every pair of distinct edges ej,e2 € E(G), exactly one of the fol-
lowing holds:
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(i) G has a spanning (e;, ez)-trail.
(ii) {e1,e2} is an essential edge-cut of G. O

MAIN RESULTS

In this note we consider 3-edge-connected graphs. In order to exclude
essential edge-cut of size 2, a subgraph of the Petersen graph emerges. In
the rest of this paper, we let P denote the Petersen graph and let P — e
denote the subgraph of P by deleting an edge.

We say that an edge e € E(G) is subdivided when it is replaced by a
path of length 2 whose internal vertex, denoted by v(e), has degree 2 in
the resulting graph. This procedure is called subdividing e. For distinct
edges e;, e € E(G), let G(e1,ez) denote the graph obtained from G by
subdividing e; and e;. Thus

V(G(e1,e2)) — V(G) = {v(e1), v(e2)}-

The following lemmas 1 and 2 follow easily from the definitions of col-
lapsibility(See next section) and spanning (e;,e;)-trails. Proofs can be
found in [11].

Lemma 1 (Lai and Zhang [11], Lemma 3) Let G be a graph and let G’
denote the reduction of G. For vertices u,v € V(G), define u',v' to be
the vertices in G’ whose preimages contain u and v, respectively. (Note
that even u # v, it is still possible that u’ = v'). Then G has a spanning
(u, v)-trail if and only if G’ has a spanning (v’, v’)-trail. O

Lemma 2 (Lai and Zhang [11], Lemma 1) Let G be a graph with ej, ez €
E(G). G has a spanning (e, ez)-trail if and only if either G(e;,e2) has a
spanning (v(e1), v(ez))-trail, or both e; and e, are incident with a common
vertex v such that G(e;, ez) — v has a spanning (v(e1), v(ez))-trail. O

Theorem 1 Let G be a simple 3-edge-connected graph with » > 77
vertices. If for every pair of vertices u,v € V(G) with uv ¢ E(G),

deg(u) + deg(v) > 7 -2, (1)

then for every pair of distinct edges e1,e2 € E(G), one of the following
holds:

(i) G has a spanning (ey, e)-trail.

(ii) Equality holds in (1) for some vertices u, v € V(G) with uv € E(G)
and G(ey, e2) can be contracted to P — e with v(e;),v(ez) being the two
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vertices of degree 2 in P —e.

Theorem 2 Let G be a simple 3-edge-connected graph with n > 117
vertices and without 3-cycles. If for every pair of vertices u,v € V(G) with
uv € E(G),

deg(u) + deg(v) > (2)

then for every pair of distinct edges e;,e; € E(G), one of the following
holds:

(i) G has a spanning (ey, e2)-trail.

(ii) Equality holds in (2) for some vertices u,v € V(G) with uv ¢ E(G)
and G(ey, e2) can be contracted to P —e with {v(e;), v(e2)} being the only
two vertices of degree 2 in P —e.

K

COLLAPSIBLE GRAPHS AND REDUCTIONS

In this section we summarize some mechanism for the proofs. Let G be
a graph and let X C E(G). The contraction G/X is the graph obtained
from G by identifying the ends of each edge in X and deleting the resulting
loops. If H is a subgraph of G, then we use G/H for G/E(H).

Let O(G) denote the set of vertices of odd degree in G. Let R C V(G)
be a subset with |R| even. If G is connected and if O(G) = @, then G
is eulerian. A graph is supereulerian if it has a spanning eulerian sub-
graph. An R-subgraph I' of G satisfies that G — E(T) is connected and that
O(T) = R. A graph G is collapsible if for every R C V(G) with |R| even,
G has an R-subgraph. Thus by definition, K is collapsible, and cycles of
length less than 4 are collapsible. In [2], Catlin showed that every graph
G has a unique collection of pairwise vertex-disjoint maximal collapsible
subgraphs H, Hy,- -+, H, such that U{_, V(H;) = V(G). The reduction of
G, denoted by G, is the graph obtained from G by contracting each of the
maximal collapsible subgraph Hj, (1 < i < ¢), into a single vertex v;. A
graph G is reduced if it is the reduction of some graph. Each subgraph
H;, (1 < i< c),is called the preimage of the vertex v; of G’. A vertex v in
the reduction of G is trivial if the preimage in G under the contraction is a
K 1 in G.

Let a(G) denote the minimum number of edge-disjoint forests whose
union equals G. Nash-Williams [13] showed that

_ |E(H)|
)= s | e
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Let F(G) denote the minimum number of extra edges that must be
added to G so that the resulting graph has 2 edge-disjoint spanning trees.
It was shown (Catlin [3], Theorem 7) that if G is reduced, then a(G) < 2;
and if a(G) < 2, then

F(G) =2|V(G)| - |E(G)| - 2. ()

Theorem E (Catlin [2]) Let G be a graph.

(i) (Theorem 5 of [2]) G is reduced if and only if G has no nontrivial
collapsible subgraphs.

(i1) (Theorem 8 of [2]) If G is reduced, then G is simple and K3-free and
for any H C G, either H € {K1, K2} or |E(H)| < 2|V(H)| - 4.

(ili) (Theorems 2 and 7 of [2]) If F(G) = 0, then G is collapsible. If
F(G) =1, then then G is collapsible if and only if G is 2-edge-connected.

(iv) (Theorem 3 of [2]) Let H be a collapsible subgraph of G. Then G is
collapsible if and only if G/H is collapsible, and G is supereulerian if and
only if G/H is supereulerian. O

Theorem F (Catlin, Han and Lai [5], Theorem 1.3) If G is a connected
graph with F(G) < 2, then either G is collapsible, or the reduction of G is
aKyoraKs, (t>1). D

Theorem G (Chen [7], Theorem 1) If G is 3-edge-connected graph with
at most 11 vertices, then either G is collapsible or G is the Petersen graph.
a

ASSOCIATE RESULT
We need the following technique developed by Catlin [3].

Theorem H Let G be a graph, let wzyzw be a 4-cycle in G, and define
the partition # = {w,y} U {z,z}. Denote G/m to be the graph obtained
from G — {wz, zy, y2, 2w} by identifying w and y to form a single vertex
u, by identifying = and z to form a single vertex v, and by adding an extra
edge uv. Each of the following holds:

(a) (Catlin [3], Corollary 1) If G/ is collapsible, then G is collapsible.

(b) (Catlin [3], Corollary 2) If G/ is supereulerian, then G is supereu-
lerian.

(¢) If G is reduced, then F(G/7) = F(G) — 1.

Proof of (c) of Theorem H Suppose a(G/7) < 2. Since G is reduced,
we also have a(G) < 2. Apply (3) to G/7 and G to get

F(G/m) =2|V(G/m)| - |E(G/7)| -2
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and '

F(G) =2|V(G)| - |E(G)| - 2.

By the definition of G/, we have |E(G)|—3 = |E(G/x)| and |V(G)| -2 =
|V(G/)|. Combine these equalities to get F(G/n) = F(G) — 1.

Suppose a(G/7) > 2. Since a(G) = maxpce [ VEHH_I], G/7 has
a nontrivial subgraph H, satisfying |E(Hz)| > 2|V(Hz)| — 1, and hence
|E(Hy)| > 3. Since G is reduced, (i) and (ii) of Theorem E imply that
subgraph H of size at least 3 is also reduced and thus satisfies |E(H)| <
2V(H)| - 4.

Case 1 Suppose |V(Hz) N {u,v}| = k for some k € {0,1}. Define H =
G[E(Hy)]. Then |E(H)| = |E(Hz)| > 3, and |V(Hz)| = |V(H)| -k and so
|E(H)| = |E(Hx)| 2 2|V (Hz)| - 1= 2(|V(H)| - k) - 1 > 2|V(H)| - 3,

a contradiction.

Case 2 Suppose {u,v} C V(Hy). Define
H = G[E(Hy — uwv) U {wz, zy, yz, zw}].

Then a similar contradiction arises: |E(H)| = |E(Hz)|+3 > 2|V (H)|+2 =
2|V (H)| - 2.

Hence a(G/7) > 2 cann’t hold. This proves (c) of Theorem H. D

Corollary I Let G be a graph with a 4-cycle wzyzw and let u,v, G/ be
defined as in Theorem H. Let vy, v3 be two vertices (not necessary distinct)
in V(G) and let v}, vy be the corresponding vertices in G/m such that either
v; = v}, or v; € {w,y} and v; = u, or v; € {z,2} and v} = v. If G/7 has a
spanning (v}, v3)-trail, then G has a spanning (vy, vz)-trail.

Proof: If vy = w3, then Corollary I follows from (b) of Theorem H.
Hence we assume that v; # vs. Let v be a vertex not in V(G) and let
G’ = G + v1vvy. thus G has a spanning (v;, v2)-trail if and only if G’ is
supereulerian. Note also that G/m has a spanning (v}, vy)-trail implies that
G'/x is supereulerian, and so by (b) of Theorem H, G’ is supereulerian.
Thus G has a spanning (vq, v2)-trail. O

For integer i > 1, let D;(G) = {v € V(G) : deg(v) = i}.

By Theorem 2.4 in [9], an immediate corollary is given as follows:
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Corollary J If G is a 2-edge-connected reduced graph with F(G) < 3,
|D2(G)| < 3 and |V(G)| < 11, then G is the Petersen graph or one of the
following graphs:

Figure 1

Theorem K ([8], [[9], Theorem 3.2]) Let G be a connected simple graph
with |[V(G)| < 13 and 6(G) > 3. Then either G is a supereulerian graph
with 12 vertices and with an odd cycle, or the reduction of G is in {K},
K2, K12, K13, P}. O

Theorem L (Chen [7], Lemma 1) Let G be a simple 2-edge-connected
graph of order at most 7, with §(G) > 2 and [D3(G)| < 2. Then G is
collapsible. O

Theorem M (Catlin and Chen [4], Lemma 3) Let G be a simple with
&'(G) > 2, |V(G)| < 8 and |D2(G)| < 1. Then G is collapsible. O

Lemma 3 Let G be a 2-edge-connected graph with at most 9 vertices
with 2 < §(G) < A(G) < 3. If [D2(G)| £ 1, then G is collapsible.

Proof: By Theorem M, we shall consider only |V(G)| = 9. If |Dz(G)| =
0, then by Theorem K and by «'(G) > 2, the reduction of G’ must be K;
and so G is collapsible. Hence, we assume that |V (G)| =9 and |D2(G)| = 1.

Suppose that G is reduced. Since |Dy(G)| = 1 and |D3(G)| = 8,
|E(G)| = 13. By (3), F(G) = 2|V(G)| - |E(G)| — 2 = 3. By Corollary
J, G must be one of those graphs in Figure 1, contrary to the assumption
that |V(G)| = 9. Hence, G has at least one nontrivial subgraph which is
collapsible. Let H be a maximal nontrivial collapsible subgraph of G. Since
|V(H)| > 3, |V(G/H)| < 7. Since G/H is asimple graph with x'(G/H) > 2
and |Dy(G/H)| < 2, by Theorem L, G/H is collapsible and so G is col-
lapsible. O

Theorem 3 Suppose that G is a 2-edge-connected reduced graph with
at most 10 vertices with 2 < §(G) < A(G) < 3 and with Dz(G) = {v1,v2}.
If G does not have a spanning (v1, v2)-trail, then v1v; is not an edge in G
and G + vyvs is the Petersen graph P.
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Proof: We shall show first that v;v, € E(G). By contradiction, we as-
sume that v1v; € E(G). Then by Lemma 3, G/{viv,} is collapsible and so
it is supereulerian too. Since vivy € E(G), any spanning eulerian trail in
G/{v1v2} induces a spanning (v1, v2)-trail in G, contrary to the assumption
that G does not have a spanning (v1, v2)-trail.

Consider the graph G + v1v2. If G + v1v2 is not supereulerian, then
it is not collapsible either. Since G is 2-edge-connected, by Theorem K,
G +v1v; must be isomorphic to the Petersen graph P. Hence, we only need
to prove that G + v,v2 is not supereulerian.

We may assume that G + vyv, is supereulerian. Since G does not have
a spanning (v1, v2)-trail, G must be supereulerian. Since A(G) < 3, G is
hamiltonian.

Claim 1 If G does not have a spanning (vy, vy)-trail, then every edge-cut
X with | X| = 2 must consist of edges incident with a vertex in D2(G).

Proof: By contradiction, we assume that G has an edge-cut X with
|X] = 2 such that each component of G — X has at least 2 vertices. Let
G1 and G be the two components of G — X with |V(G,)| < |[V(G2)|. By
the following conditions: G is hamiltonian, |Dy(G)| = 2, v1v2 ¢ E(G) and
G has no 3-cycles (by (ii) of Theorem E), we can get |V(G;1)| > 5. Since
|[V(G)| < 10, |V(G1)] = V(G2)| = 5. Hence, G must be the following graph:

Figure 2

Obviously, G has a spanning (v1,v2)-trail, a contradiction. This proves
Claim 1.

Claim 2 G has a 4-cycle.
Proof: By contradiction and by (ii) of Theorem E, we may assume that

G has no cycles of length less than 5. (4)

Let m = |V(G)| < 10 and let C' = ujus...umuy be a hamilton cycle of G.
Without loss of generality, we assume that u; = v;. Since v;v2 ¢ E(G),

ug, um € D3(G). (5)
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Let u;,i & {1,m — 1}, be a neighbor of u,,. By (4), m—4 > i > 4, and so
m > 8. Note that since |D2(G)| =2, m# 9

If m = 8, then by (4), us = vz and usug € E(G). Since |D2(G)| = 2,
us € D3(G), and so by (4), usur € E(G). Thus a 4-cycle uzuqugurus
exists, contrary to (4).

Hence m = 10. Since u; € D2(G) and since |D2(G)| = 2, not both us
and uz are in Dy(G), and so we may assume that us € D3(G). By (4),
either usug € E(G) or usuio € E(G).

Assume first that usug € E(G). Note that by (4), the neighbors of u3o
must be in {uy, uq, us, us, g} and so G must have a cycle of length less
than 5, contrary to (4).

Thus usu1o € E(G). If ug € D2(G), then uy € D3(G) and so by (4),
uqug € E(G). Since ug € D3(G) now, uz € D3(G) and so uz must be
adjacent to uz, forming a 4-cycle ugurugusus, contrary to (4). So we as-
sume that ug € D3(G). Since usuio € E(G) and by (4), ugus € E(G).
Since |D2(G)| = 2 and uy € D3(G), either ug or ug is in D3(G). Since by
(4). the neighbors of u4 are in {us,us, ug}, and the neighbors of ug are
in {u7,uo, u4}, G must have a cycle of length less than 5, contrary to (4).
This proves Claim 2.

By Claim 2, G has a 4-cycle. Let C = zyzwz be a 4-cycle of G such
that
|[V(C)| contains as many vertices in D2(G) as possible. (6)

Define G/x, u,v as in Theorem H.
Claim 3: «'(G/7) > 2.

Proof: Since «'(G) > 2, £'(G/x) < 1 if and only if uv is a cut-edge in
G/, if and only if E(C) is an edge-cut. By contradiction, we assume that
E(C) is an edge-cut and G, and G are the two sides of G — E(C) with
w,y € V(G1) and with z, z € V(G2). Assume also that |V (G1)| < |V(G2)|-
Thus |V(G,)| < 5.

If V(G1) = {w,y}, then G cannot be hamiltonian, a contradiction. If
G) has a vertex v/ € D3(G). Since |V(G1)| < 5 and since G has no K3
((ii) of Theorem E), ' must be adjacent to some vertex in G2, contrary
to the assumption of «'(G/7) < 1. Thus V(G;) — {w,y} C D2(G). But
then since v1v2 € E(G), |V(G1) — {w,y}| = 1. We may assume that
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V(G1) = {w,y,v1}. If v2 € {w,y}, then G must have a 4-cycle containing
both vertices of degree 2 in G, contrary to the choice of Cj if v, ¢ {w, y},
then G must have a 4-cycle containing at least one vertex of {v1,v2}, con-
trary to the choice of C. This proves Claim 3.

Since |D,(G)| = 2, 3|V(G)| = 2(|E(G)| + 1). Hence it follows by (3)
that F(G) = |E(G)| — |[V(G)|. Since |V(G)| < 10, V(G/7) < 8 and
F(G) < 4. Let G’ denote the reduction of G/m. By (c) of Theorem H,
F(G') < F(G/n) < 3. Note that G/m has two vertices with degree 2. If
G’ has at most three vertices with degree 2, by Corollary J, we know that
G’ must be one of those graphs in Figure 1, namely, G’ has three vertices
with degree 2. By inspection, G’ must have a spanning (v}, vj)-trail for
any v}, v5 € D2(G’), and by Lemma 1 and Corollary I, G has a spanning
(v1, v2)-trail, contrary to the assumption that G does not have any span-
ning (vy, vg)-trails. If G’ has four vertices with degree 2, then G’ = C4 and
G /= has two collapsible subgraphs K3. And so G/7 has four vertices with
degree 2, a contradiction. Hence, G + v;v; can not be supereulerian. This
completes the proof of Theorem 3. O

THE PROOFS OF THE MAIN RESULTS

Lemma 4 If G is reduced, then
V(G)-1

2P(G)+4= ), (4-i)ID:(G)l. (7)

i=1

Proof: This follows by (3) and by counting the incidences of G. O

Proof of Theorem 1: Let G” be the reduction of G(e;, e2). Suppose first
that F(G"”) < 2. Since '(G) > 3, it follows that «'(G"”) > 2 and so by
(iv) of Theorem E, G” is collapsible if F(G") < 1. It follows by Lemma
1 that G(e1, e2) has a spanning (v(ey), v(e2))-trail. Hence by Lemma 2, G
has a spanning (ey, e2)-trail. If F(G") = 2, then by Theorem F, G = K,
for some ¢t > 2. Since £'(G) > 3, the two edges incident with each of

v(e1), v(ez) are the only edge-cuts of size 2 in G(e;,e2) and so t = 2. But
then it would follow that {e;, e2} is an edge-cut of G, contrary to «'(G) > 3.
Hence we may assume that F(G") > 3.

By Lemma 4 and since D1(G") =0, D2(G") C {v(e1),v(e2)}, we have
|Ds(G")| > 6, (8)

with equality if and only if D2(G") = {v(e1),v(e2)}, A(G”) < 4 and
F(G") = 3. By definition, G” is reduced. By (ii) of Theorem E, G” is
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simple and has no 3-cycles. It follows that if D3(G") has three trivial ver-
tices, then two of them must be nonadjacent, and so by (1), n/4 -2 < 6,
which implies that n < 32, contrary to the assumption that n > 77. Thus
we have

D3(G") has at least 4 nontrivial vertices. 9)

Claim 1: For any nontrivial vertex v € D;(G"),3 < i < 6, let H, de-
note the preimage of the v. If US_;D;(G") has one vertex (# v) whose
preimage in G includes vertex vo with 3 < deg(vo) < 6, then [V(H,)| >
2 _ (1 4 deg(vo)). In particular, if D3(G") has one trivial vertex, then

4
[V(Hu)| 2 3 -4

Proof: For any nontrivial vertex v € D;(G"),3 < i < 6, one can choose
w € V(H,) so that w is incident with at most three edges in E(G") and is
not adjacent to vp in G. Thus by (1),

|V(H,)| > deg(w) — 3 + 1 = deg(w) + deg(vo) — deg(vo) — 2 > % - 10.

Since n > 77, we may choose w' € V(H,) such that w’ is not incident with
any edge in E(G") and is not adjacent to vo in G. Hence

IV (Hy)| > deg(w')+1 = deg(w) +deg(v0) ~deg(v0) +1 > § —deg(v0) ~ 1.

Claim 2: If D3(G") has one trivial vertex vo, then US_3D;(G") has at
most four nontrivial vertices.

Otherwise, by Claim 1, (n—1) > 5(% —4) =n+ % —20. and so n < 76.

Claim 3: Suppose that |D3(G"”)] = m and all vertices in D3(G") are
nontrivial. For any v € US_3D;(G"), let H, denote the preimage of the v.

(i) If m > 6, v € D3(G") U D4(G"), then H, has a vertex that incident
with no edges in G”.

(i) If m > 7, v € D5(G"), then H, has a vertex that incident with no
edges in G”.

(iii) If m > 8, v € Dg(G"), then H, has a vertex that incident with no
edges in G”.

Proof: (i) Suppose that v € D3(G").

Let v;, (1 < i < m) denote the vertices in D3(G"), and let H;, (1 <
i < m) denote the preimages of the v;’s, respectively.
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Without loss of generality, we may assume that v = v;. If each vertex
in H; is incident with at least one edge in G, then since v; € D3(G"), it
follows that Hy = K3 and so by Claim 1, we have

m
n=33 3 IV(H) 2503 -4) = 2 ~20.

i=2 4
It follows that n < 68.
Suppose that v € D4(G").

If each vertex in H, is incident with at least one edge in G”, then since
v € D4(G"), it follows that we can find vo € V(H,) such that deg(vo) < 4.
By Claim 1,

n—lZG(-}—5)=6—n—30.

4
It follows that n < 58.
(i1) Suppose that m > 7, v € Ds(G").

If each vertex in H, is incident with at least one edge in G”, then since
v € D5(G"), it follows that we can find vo € V(H,) such that deg(vo) < 5.
By Claim 1,

n n
n—127(z—6)—7—42

It follows that n < 55.
(iii) Suppose that m > 8, v € Dg(G").

If each vertex in H, is incident with at least one edge in G"/, then since
v € Dg(G"), it follows that we can find vg € V(H,) such that deg(vo) < 6.
By Claim 1,
n—lZS(%—7)=2n-—56.

It follows that n < 55.
By Claim 2, we only need to consider the following two cases.

Case 1: D3(G") has two trivial vertices, say vy and vg, and four non-
trivial vertices.

By Lemma 4, when ¢ > 5, |D;(G")| = 0. By Claim 2, all vertices in

D4(G") are trivial. If |D4(G")| # 0, let u € D4(G"). Since G” is sim-
ple and has no 3-cycle, two vertices in {u,vg, vy} must be nonadjacent,

312



and so by (1), n/4 — 2 < 7, namely, n < 36. Hence, |D4(G")| = 0. Since
|D3(G")| = 6, by lemma 4, |D2(G”)| = 2, namely, D3(G") = {v(e1),v(e2)}-
Hence, |V(G")| = |D2(G")|+|D3(G")| = 8. By Theorem 3, G” has a span-
ning (v(e; ), v(ez))-trail. By Lemmas 1 and 2, G has a spanning (e, ez)-trail.

Case 2: All vertices in D3(G") are nontrivial.

Let v;, (1 < i < m) denote the vertices in D3(G") and H;, (1<i < m)
denote the preimages of the v;’s, respectively. By Claim 3, for each i, (1 <
i < m), H; has a vertex w; that is incident with no edges in G”. Then the
w;’s form an independent set in G.

If m > 9, then by (1),

9n

2n > 2f: \V(H:)| > Qi(deg(wf) +1) 2> (10)

i=1 i=1

a contradiction. Note that m > 6. We consider the following six subcases.

Subcase 1: F(G") = 3, |D2(G")| = 2, |D3(G")| = 6 and when i > 5,
|D:i(G")| = 0.

We first show that |D4(G")| < 2. Otherwise, for each v € D3(G") U
D4(G"), by Claim 3(i), Hy, the preimage of vertex v, has a vertex w that
is incident with no edges in G”. Then the w’s form an independent set in
G. Hence,

my2 Y WENZ2 Y e+ T
v€D3(G")UD4(G") v€D3(G")UD4(G")

a contradiction. It follows that |V(G")| < 10 and Dz(G”) = {v(e1),v(e2)}.
By Corollary J, graph G’ does not exist.

Subcase 2: F(G") = 3, |D2(G")| = 2, |Ds(G")| = 7, |Ds(G")| = 1 and
when i > 6, [Di(G")| = 0.

Since |D3(G")| = 7 and |Ds(G")| = 1, by Claim 3 (i), we similarly show
that |D4(G")| = 0. Since D2(G") = {v(e1),v(e2)}, by Corollary J, graph

G"" does not exist.

Subcase 3: F(G") = 4, |D2(G")| = 2, |D3(G")| = 8 and when i > 5,
|D{(G")| = 0.
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Since |D3(G")| = 8, by Claim 3 (i), we have that |[D4(G")| = 0. Note
that D2(G") = {v(e1),v(e2)}. Hence, |V(G")| = 10. By Theorem 3, if G
does not have a spanning (e1, e2)-trail, then (ii) of Theorem 1 must hold.

Subcase 4: F(G") = 3, |D2(G")| = 1, |D3(G"”)| = 8 and when ¢ > 5,
|D:(G")| = 0.

By Claim 3 (i), we can show that |D4(G"”)| = 0. Since |D2(G")| = 1,
by Corollary J, graph G” does not exist.

Subcase 5: F(G") =3, |D2(G")| = 2, {D3(G")| = 8, |Ds(G")| = 2 and
when i > 6, |D;(G")| = 0.

For each v € D3(G")UDs(G"), by Claim 3 (i) and (ii), H,, the preimage
of vertex v, has a vertex w that is incident with no edges in G”. Then the
w’s form an independent set in G. Hence,

mr2 Y VEI22 Y (deglw)+1) 270
vE€D3(G")UD(G") vED3(G")UD5(G)

a contradiction.

Subcase 6: F(G") = 3, |D2(G")| = 2, |Ds(G")| = 8, |Ds(G")] = 0,
|Ds(G")| = 1 and when i > 7, | D;(G")| = 0.

Similarly, we may show that graph G” does not exist. This completes
the proof of Theorem 1.0

Proof of Theorem 2: Let G denote the reduction of G(ey, ez). Similar
to the arguments in the proof of Theorem 1, we may assume that F(G") >
3, and so by (4),

|Ds(G")| > 6, (11)

where equality holds if and only if D2(G"”) = {v(e1),v(e2)}, A(G") < 4
and F(G") = 3. Since G is reduced, by (ii) of Theorem E, G” is simple
and has no 3-cycles. Thus if D3(G") has 3 trivial vertices, then two of them
must be nonadjacent and so by (2), n/8 < 6, contrary to n > 117. This
implies that

D3(G") has at least 4 nontrivial vertices. (12)

Claim 1 If vy is a nontrivial vertices in U$_; D;(G") whose preimage in
G is H, then
n
vz
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Proof: For any vertex v € V(G), let N(v) denote its neighborhood in
G. Since G is K3-free, there are a pair of nonadjacent vertices u,v € V{(H )
Without loss of generality, we assume that deg(v) < deg(u). By (2), w
have that deg(u) > n/16 Since n > 117, deg(u) > 8. Hence, we can
find two vertices v/,v' € N(u) N V(H) such that deg(v') < deg(w) (So
deg(u') > n/16). Smce G is K3-free, u'v' ¢ E(G) and |N(u) NN()| =0.
Thus by (2), |V(H)| > deg(u) + deg(u’) — 6 > n/16 4+ n/16 — 6 = n/8 — 6.
As n > 117, we may choose u,v nonadjacent in G and not incident with
any edges in G”. Since deg(u) > 8, we may choose u’,% which are not
incident with any edges in G”. Hence, |V (H)| > deg(u) + deg(u’) > n/8.

Claim 2 (i) U%_3D;(G") has at most two trivial vertices.

(ii) Let vy be a nontrivial vertex in Uf_3D;(G") whose preimage in G
is H. If U6_3D (G") has one trivial vertex with degree j, (3 < j < 6), then
V(H)| > § -2

Proof: (i) If US_3D;(G") has three trivial vertices, then two of them
must be nonadjacent and by (2), n/8 < 12, namely, n < 96, contrary to
the assumption that n > 117.

(ii) From the proof of Claim 1, we know that H contains two vertices
u, 4’ € V(G) which are not adjacent to any edge in G”. Since G is K3-free
and by (2),
V(H)| 2 deg(u) +deg(u) > 25 — ) = 7 = 2.

Claim 3 If D3(G") has one trivial vertex, then US_3D;(G") has at most
four nontrivial vertices.

Otherwise, by Claim 2, n — 1 > 5(n/4 — 6), namely, n < 116.

Hence, similar to the proof of Theorem 2, we need to consider the fol-
lowing two cases.

Case 1: D3(G") has two trivial vertices, say vy and vg, and four non-
trivial vertices.

By Lemma 4, when i > 5, |D;(G”)| = 0. By Claim 3, all vertices in
D4(G") are trivial. By Claim 2 (i), [Ds(G")| = 0. Since |D3(G")| = 6,
by lemma 4, |D2(G")] = 2, namely, Dy(G") = {v(e1),v(ez)}. Hence,
|V(G")| = |D2(G")| + |D3(G")| = 8. By Theorem 3, G" has a spanning
(v(e1), v(ez))-trail. By Lemmas 1 and 2, G has a spanning (e1, ez)-trail.
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Case 2: All vertices in D3(G"') are nontrivial.

Suppose that |D3(G")| = m. Let v;(1 < i < m) denote the vertices in
D3(G"), and let H;(1 < i < m) denote the preimages of the v;’s, respec-
tively. By Claim 1, if m > 9, then n > Y"i~ | |V(H;)| > 3, a contradiction.
Note that m > 6. We consider the following subcases.

Subcase 1: F(G") = 3, |D2(G")| = 2, |D3(G")| = 6 and when i > 5,
|D:(G")| = 0.

If there exists a trivial vertex in D4(G"), by Claim 2 (ii), n — 1 >
6(n/4 — 8), namely, n < 94, a contradiction. By Claim 1, D4(G") has at
most two nontrivial vertices. It follows that |V (G")| < 10 and D;(G") =
{v(e1),v(ez2)}. By Corollary J, graph G" does not exist.

Subcase 2: F(G") =3, |D2(G")| = 2, |D3(G")| =17, |Ds(G")| = 1 and
when ¢ > 6, |D;(G")| = 0.

If there exists a trivial vertex in D4(G") U Ds(G"), by Claim 2 (ii),
n—1> 7(n/4 — 10), namely, n < 92, a contradiction. Hence, by Claim
1, |D4(G")| = 0 and D;5(G") has a nontrivial vertex. Since Dy(G") =
{v(e1),v(ez2)}, by Corollary J, graph G” does not exist.

Subcase 3: F(G") = 4, |D2(G")| = 2, |D3(G"”)| = 8 and when ¢ > 5,
|D:(G")| = 0.

By Claim 1 and Claim 2 (ii), we easily show that |D4(G")] = 0. Note
that D2(G") = {v(e1),v(e2)}. Hence, |V(G”)| = 10. Let v; (1 < i < 8)
denote the vertices in D3(G") and H; (1 < ¢ < 8) denote the preimages of
the v;’s, respectively. By Claim 1 and by n > 117, for each i, (1 <i < m),
H; contains an edge u;u} € E(G) that is not adjacent to any edge in G”.
Since G is K3-free and by (2), we have

8 8

, 8n
n> Z=; |V (H:)| > ;(deg(“i) +deg(ui)) 2 =n,  (13)
and so for each 7, (1 < i< 8),
n
V(H:) = 5. (14)

By Theorem 3, if G does not have a spanning (e, e)-trail, then (ii) of
Theorem 2 must hold.
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Subcase 4: F(G") = 3, |D2(G")] = 1, |D3(G")| = 8 and when ¢ > 5,
|D:i(G")| = 0.

Similarly, we may show that |D4(G"”)] = 0. Since |D2(G")| = 1, by
Corollary J, graph G” does not exist. This completes the proof of Theorem
2.0

(ii) of Theorem 1 and (ii) Theorem 2 can hold. In other words, for every
pair of edges ej,€; in a simple 3-edge-connected graph G with V(G) > 77,
the best possible degree conditions to assure the existence of (e1, ez)-trail
are: for every pair of vertices u,v € V(G) with uv ¢ E(G), deg(u) +
deg(v) > n/4—2;if G is a 3-edge-connected triangle-free simple graph with
V(G) > 117, then the best possible degree conditions are: for every pair of
vertices u,v € V(G) with uv € E(G), deg(u) + deg(v) > n/8.

Let ug, vo be two vertices of degree 2 and ujuqusg, v1vov2 be two paths
with length 2 in P — e. Graph G is obtained by replacing two paths
uugug, v1vov2 in P — e by two edges ej,eq, respectively. Let s > 8 be
an integer and n = 16s. Now we construct graph G, G2 by replacing
each vertex in G by a complete subgraph K5;, a complete bipartite sub-
graph K, ;, respectively. Then for every pair of nonadjacent u,v € V(G1),
deg(u) + deg(v) > n/4 — 2; for every pair of nonadjacent u,v € V(G2),
deg(u) + deg(v) > n/8. Note that complete subgraph and complete bipar-
tite subgraph are collapsible. We easily check that for edges e;, ez € E(G1),
(ii) of Theorem 1 holds; for edges e1, ez € E(G?2), (ii) of Theorem 2 holds.
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