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Abstract
A digraph operation called pusking a set of vertices is studied with
respect to tournaments. When a set X of vertices is pushed, the orienta-
tion of every arc with exactly one end in X is reversed. We discuss the
problems of which tournaments can be made transitive and which can be

made isomorphic to their converse using this operation.

1. Introduction.

Let D be a digraph and X C V(D). We define DX to be the digraph
obtained from D by reversing the orientation of all arcs with exactly one
end in X, and say that DX is the result of pushing X.

This operation has been studied by Mosesian [10] (also see [11]), Pret-
zel (see [11]), Fisher and Ryan [4], Klostermeyer [5], and Klostermeyer, et
al. [6,7). Mosesian studied the operation in the context of ordered sets,
starting from the observation that if one takes the digraph of an ordered
set and reverses all arcs incident with a vertex of out-degree zero, one ob-
tains the digraph of a different ordered set. Pretzel studied an invariant

that characterizes when two orientations can be obtained from each other
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by reversing all arcs incident with a vertex of out-degree zero, and used
this approach to produce classes of graphs which can not be oriented as the
Hasse diagram of an ordered set. Fisher and Ryan used the equivalence
relation, &, on the set of labelled tournaments, defined by T} ~ T> if and
only if there exists X C V(T}) such that T = T to find the number of
positive tournaments (a tournament T is positive if there is a positive vector
x such that Kx = 1, where K is the £1,0 adjacency matrix of T'). Kloster-
meyer [5] proved that the problems of deciding whether a given digraph can
be made strongly connected, or Hamiltonian, or semi-connected, or acyclic
using the push operation are NP-complete. By contrast, he showed that
every tournament on at least three vertices, with two exceptions, can be
transformed into a Hamiltonian (equivalently, strong) tournament by push-
ing some subset of vertices. In [7] it was shown that if the tournament has
at least seven vertices, then the set X can be chosen to be either empty
or a singleton. It is also proved that almost any balanced bipartite tour-
nament can be made Hamiltonian by pushing some subset of vertices. An
O(n?) algorithm that decides whether a given balanced bipartite tourna-
ment can be made Hamiltonian using the push operation is described. The
authors also investigate which complete multipartite tournaments can be
made Hamiltonian. Results concerning which powers of digraphs can be
made Hamiltonian can be found in [6].

As an aside, we observe that a balanced bipartite tournament B can
be made Hamiltonian unless |V| = 2 (mod 4) and there is a homomorphism
of B to Cy. The existence of such a mapping can be tested in O(|V|*) time
(8]

This paper is mostly concerned with pushing vertices of tournaments.
Preliminaries are treated in Section two. In Section three we characterize
the tournaments that can be made transitive using the push operation. Fi-

nally we turn our attention to converses in Section four and characterize the

34



tournaments that can be transformed into one isomorphic to their converse.

2. Preliminaries.

In this section we introduce some definitions, notation, and preliminary
results. Any terms not defined here can be found in [3] or [9].

Let D be a digraph and X,Y C V(D). The subdigraph of T induced
by X is denoted <X >p. The subscript will be omitted if the digraph D is
clear from the context. If all arcs with one end in X and the other end in
Y have their tail in X, we write X — Y.

We use = to denote isomorphism, and when we want to emphasize
that this is accomplished under a particular function f, we write 2 iz

A tournament is strong if, for every pair of distinct vertices u and v,
there exists both a directed (u,v) path and a directed (v,u) path. The
vertex set of any tournament T can be partitioned into N, Vo, ..., V.},
where each set V; induces a maximal strongly connected subtournament
and, if i < j, then V; — Vi. We refer to each of V1,Va,...,V, as a strong
component of T and the list V;,V,,...,V. as the ordered list of strong
components of T.

Every Hamiltonian tournament is clearly strong. The converse, and

much more, is established in the following classic result of Moon (see [3] or

[90)-

Theorem 2.1. (Moon, 1966) Each vertex of a strong tournament T with

m 2> 3 vertices is contained in a directed k-cycle, 3 <k<m

Let T;, (respectively T,y:) be the four vertex tournament obtained
from a directed 3-cycle by orienting all remaining arcs towards (respectively
away from) the fourth vertex. The tournaments T:n and Ty, are the only
ones on three or more vertices that can not be made Hamiltonian using

the push operation. It turns out (see Corollary 3.2) that a tournament can
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be made transitive using the push operation if and only if it contains no
subtournament isomorphic to Tin nor Toy:-

We observe that for any digraph D and any X C V(D), DX = DX,
and for each positive integer m, the relation =, on the set of m-vertex
tournaments, defined by T) = T if and only if there exists a set X C V(T1)
such that T;X = Ty, is an equivalence relation.

According to [9] there are four non-isomorphic tournaments on four
vertices: the transitive tournament T}, the unique strong tournament T,
and T;, and T,yu:. The equivalence classes under = are A = {T,T,} and
B = {Tout,Tin}. Thus, for a tournament T, if X,S C V(T), with |S] = 4,
then <S>r € A if and only if <S>px € A.

Fisher and Ryan [4] proved that for n-vertex labelled tournaments, the
relation ~ has 2("7") equivalence classes. Some of these are isomorphic to
each other. The number of equivalence classes under = is the number of
non-isomorphic equivalence classes of . Fisher and Ryan used Burnside’s
Lemma to derive a formula for this quantity.

Let T be a tournament. We define n;n(T') (respectively nou:(T)) to be
the number of subtournaments of T that are isomorphic to Tj,, (respectively
Tout). We define n(T) = 0y (T) + nous(T). The following result shows that

n(T) is the same for all tournaments equivalent to 7.
Proposition 2.2. Let T be a tournament. For all X C V, n(T*) = n(T).
Proof. Let S C V(T), |S| = 4. Define

F(S) = 1 if <S> is either Ty, or T3,
0 otherwise )

Then, using the comment above,

nT)= Y &= Y f(S)=nT%)

SCV(T)|S|=4 SCV(TX),|S]=4
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Corollary 2.3. If Ty = T, then n(T1) = n(T2).

In general, the implication n(T) = n(T3) = Ty = T3 is not true. In
a personal communication, Klostermeyer provided an example of two such
tournaments on eight vertices. It follows from the results in the next section
that the implication is true when n(T) = 0. It is also true when n(T) = 1,
since the only tournaments with n(T) = 1 are T}, and Toy:.

We conclude this section with a proposition we will use several times

in the next two sections.

Proposition 2.4. If dx(v) = 0, then X = Ny (v), and if d;x(v) =0,
then X = N} (v).

3. Transitive Tournaments

In this section we determine which tournaments can be made transitive
by using the push operation. We begin by observing that neither T;, nor
Tour can be made transitive. Therefore, no tournament that contains T;,
or T,y can be made transitive. Our immediate goal is to prove that these
two forbidden subtournaments characterize the tournaments that can be

made transitive.

Theorem 3.1. A tournament T can be made transitive using the push
operation if and only if for every v € V(T) both <N*(v)> and <N~ (v)>

are transitive.

Proof. (<=) By Proposition 2.4, X = Ny (v) for some vertex v € V(T).
Suppose TX is not transitive. Then, by Moon’s Theorem, T* contains a 3-
cycle C : &,y,2,z. Since both <NF(v)>r and <Ng (v)>r are transitive,
neither contains C. Also, v € V(C) as d.x(v) = 0. Thus, without loss
of generality, either z,y € Nj (v) and z € Nf(v), or z,y € N7 (v) and

2z € Nz (v). Both cases lead to a contradiction: in the former case, z,y, v, z
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is a 3-cycle in <N$(z)>7, and in the latter case z,2,v,z is a 3-cycle in
<N7 (y)>r. Therefore, TX is transitive.

(=) Choose v € V(T). If <Nf (v)>r (respectively <Ny (v)>r) is not
transitive, then, by Moon’s Theorem, it contains a 3-cycle, and T contains
Tout (respectively Tin). Thus, T can not be made transitive. a

Theorem 3.1 yields an easy O(|V|?) algorithm for making a tournament
transitive by pushing a subset of vertices, or certifying that this is not
possible.

Tournaments in which every neighbourhood induces a transitive sub-

tournament have been previously studied by Alspach and Tabib [1].

Corollary 3.2. A tournament T can be made transitive using the push

operation if and only if T contains neither T;, nor T,,; as a subtournament.

Corollary 3.3. A tournament T can be made transitive using the push

operation if and only if n(T) = 0.

Corollary 3.4. Let Ty and T; be tournaments on m vertices. If n(Ty) =

n(Tg) = 0, then T1 =T5.

Proof. By Corollary 3.3 there exists X so that T{ is transitive, and
there exists Y so that T} is transitive. Hence, (T{*)Y is isomorphic to T5.

The result follows. 1

Corollary 3.5. A tournament T' with m > 5 vertices can be made transi-
tive using the push operation if and only if every proper subtournament of

T can be made transitive.

Proof. (=) If T can be made transitive, then for every v € V(T) both
<N*(v)> and <N~ (v)> are transitive. This property is inherited by any
subtournament of T'. Hence, by Theorem 3.1, every proper subtournament

of T can be made transitive.
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(<) Suppose every proper subtournament of T can be made transitive.
Then, for every v € V(T) neither <N~ (v)> nor <N+ (v)> contains a 3-
cycle, so T contains neither Tj, nor Toy: as a proper subtournament. Since
m > 5, T is not isomorphic to T;,; nor T,y,. Therefore, T can be made

transitive. ¥

4. Converses of Tournaments

The converse of a tournament T, denoted conv(T), is the tournament
obtained from T by reversing the orientation of every arc. If there ex-
ists X C V(T) such that TX = conv(T), then we call the tournament T
conversible. In this section we investigate conversible tournaments. We
begin by showing that either all elements of an equivalence class of = are
conversible, or none are. Then, we give a characterization of conversible
non-strong tournaments. Since each equivalence class contains a tourna-
ment that is not strong, this result characterizes the equivalence classes

that contain conversible tournaments.

Proposition 4.1. Let T be a tournament and X C V(T). Then, conv(TX)

= conv(T)*.

Proof. The tournament resulting from pushing X and then taking the
converse of TX has arcs in <X>r and <X >7 reversed, and arcs between
X and X oriented as in T'. The same tournament results when the converse

of T is taken (i.e., each arc of T is reversed) and then X is pushed. s

Corollary 4.2. Let T be a tournament and X C V(T). Then, T
conv(T) if and only if TX = conv(TX).

Proof. (=) Suppose T = cono(T). Then, TX = (TX)* = T
conv(T) = conv(T)X = conv(TX).
(<) Suppose TX = conv(TX). Then, T = TX = conv(TX) =

conv(T)* = conv(T). 1

It
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Corollary 4.3. Let T be a tournament and [T] be the equivalence class
of T with respect to =. Then either every element of [T] is conversible, or

no element of [T is conversible.

We now investigate which tournaments are conversible. We consider

tournaments that are not strong and first study the structure of the set X.

Proposition 4.4. Let T be a tournament with ordered list of strong com-
ponents Sy, Sa, ..., S;, wheret > 2, and X C V(T) is such that XNS; # 0,
and S;\ X #0 for everyi€ {1,2,...,t}, then TX is strong.

Proof. Suppose T and X are as in the statement of the Proposition.
Consider the 2t classes X NS, S\ X, XNS;, S \X, ..., Xn
S, S\X. mhTX ifi<jXnS —-XnS;, S\X - S\X,
S;\ X = XNS;, and XNS; — S;\ X. Thus, there exists a directed closed

walk containing all vertices of TX, so TX is strong. 1

Theorem 4.5. Let T be a tournament with ordered list of strong com-
ponents Sy, Sa, ..., Sy, where t > 2. If there exists X C V(T) such
that TX = conv(T) (i.e., T is conversible) then, without loss of generality,

X=5U...US5_1UY whereY C S, k<1t.

Proof. If X = V(T) or X = 0, the result follows, so suppose §§ C
X C V(T). Partition {S;,Ss,...,S:} into three classes A = {S; : S; C X},
B={S:(SinX #0)and (S;\ X #£0)},and C={S; : SinX = 0}.

Following the argument in the proofl of Proposition 4.4, there is a
strong component of TX that contains Us,esS;i. Further, each element of
A is contained in a strong component of TX | as is each element of C. Thus,
if |B| > 1, TX has fewer than ¢ strong components and so TX % conv(T).
Hence, we may assume |B| < 1.

For j =1,2,...,¢,let B; =5;NX and W; = S N X. By the above
argument, there is at most one 7 € {1,2,...,1} such that both B; # 0 and
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Wi #0.

By an interval with respect to X we mean a maximal sequence B;; =
B;, Bit1,..., By (respectively Wix = Wi, Wiy, ..., W) each element of
which is non-empty. Intervals B;; and Wy (respectively W;; and By) are
consecutive if j < k < j+ 1. Let B;j, Wi, and B,, (respectively Wij, B,
and W,,) be consecutive intervals. For any vertices b, € B, and w, € W,
there is a directed cycle in TX: b;,b;41,...,8;,br, bpg1, . .., by, W, Wet1,
..., wy, b;. Thus, there is a directed closed walk in 7% containing all vertices
of (Uizi Ba) U (U We) U (U=, Ba).

Therefore, if there are more than two intervals with respect to X, then
TX has fewer than ¢ strong components, a contradiction.

Hence there are at most two intervals with respect to X. Since pushing
X is the same as pushing X, we may assume without loss of generality that
X NSy # 8, the result follows. s

Thus, without loss of generality, X can be taken to equal the union of
the first k£ — 1 strong components of T together with some vertices from the
k-th strong component.

The main result of this section gives necessary and sufficient condi-
tions for a tournament which is neither strong nor self-converse (see [9];
there called self-complimentary) to be conversible. Since every equivalence
class under = contains a tournament which is not strong (push the in-
neighbourhood of some vertex), this also yields a criterion for whether a

strong tournament is conversible.

Theorem 4.6. Suppose T is neither strong nor self-converse. Then there
exists X C V(T) such that TX = conv(T) if and only if
HDVT)=VuVUVaUV,UVsU Vs (disjoint union), where V; — Vi if
t < j, except possibly i = 2,j = 5,

(if) <Vi>Zconv(<V3>), <Vi>Zconv(<Ves>), and
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(iii) <Vy U Vo U Vs U Vg>" 10295 conu(<Va U V3U Vo U V5>),
or
(iv) T has exactly two strong components A and B, and

(v) <A> and <B> are both self-converse.

Proof. (=) Assume there exists an X such that TX =, conv(T).
Without loss of generality, the set X has the structure described in Theorem
4.5. Let the ordered list of strong components of <X > (respectively <X>)
be Ay, As, ..., Ar (respectively By, Bs,..., By).

Suppose first that X is a union of strong components of T, so that the
ordered list of strong components of TX is Ay, As,..., A, By, B, ..., B,
Ifk = ¢ = 1, then it is easy to see that (iv), (v) and (vi) hold. Assume
then, that at least one of k and t is greater than one. If k = 1, set V} =
Vs = 0 and Vo = A;, otherwise set Vi = Ay,Va = A2 UA3U - U Ap-y,
and Va3 = Ax. Analogously, if ¢ = 1, set V4 = Vs = @ and V5 = By,
otherwise set V4 = By,Vs = BoU B3 U ---UB;_y, and Vg = B;. Then
(i) holds by construction. The ordered list of strong components of TX is
B,,B,,...,By, Ay, Ag, ..., Ag. Since an isomorphism of tournaments maps
strong components to strong components in the same order as they occur
in the ordered lists, we have B, maps to B;, B, maps to B;_;,...,B; maps
to By, A; maps to Ag, A> maps to Ax_1,..., Ax maps to Ay, and (ii) and
(iii) hold.

Now suppose that X is not a union of strong components of T'. Without
loss of generality, X has the structure described in Theorem 4.5, and there
is a strong component S such that both SN X and SN X are non-empty.
Thus, there is at least one arc from X to X. Let r (respectively s) be the
smallest (respectively largest) index 7 such that there is an arc from X to Ai,
and let p (respectively g) be the smallest (respectively largest) index j such
that there is an arc from B; to X. Define V) = AfUAyU---UA, -y, Vo =
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ArUA U UA;, Va = AgpUA42U- - -UAg, Vg = BiUBU---UB,_y,
Vs = ByUBpy1U-- -UBy, Vs = Bgy1UBg42U- - -UB,. Then, by construction,
V(T) is the disjoint union VUV, U--- U Vs.

The ordered list of strong components of TX is By, Bs, ..., By-1,Y,
Asp1,Agpn, ..., Ag, where Y = V3 UVa U Vs U V. The ordered list of
strong components of conv(T) is By, Bt-1,...,Be41, W, Ar1, Ara, ...,
Ay, where W = V, U V53UV, U V. Since strong components of TX must
map under f to strong components of conv(T), it follows that B; maps to
B;, B, maps to B;_1, ..., A; maps to A;. The implication will follow if we
can show f maps Y to W.

Suppose f(Y) = A;,1 < i < r— 1. Then, since 4 C Y, i =1
Therefore Vo = @ (since Vo C Y) and, consequently, V5 = 0. Hence X is
a union of strong components of 7', and the result follows from the earlier
argument.

Suppose f(Y) = A;, r < i < 5. Thus V» # 0. Consequently, V5 # 0,
and A; C Y, so |4;| < |Y|, a contradiction since f is an isomorphism.

The cases f(Y)=Bj,p<j<gq and f(Y)=B,,¢+1<j<1are
similar to the above.

Therefore, f(Y) = W and the implication follows.

(«=) If T satisfies (iv), (v), (vi) in the statement of the Theorem, then
the result is clear, so suppose it satisfies (7), (ii), (¢4i), with X = VUV,UV3,
<Va>T Zp, <Vi>conu(ry, <Va>T =y, <Ve>conu(r), and <V3 U V2 U V5 U
Vo>t =5, <VaUVaUV4UVs>cone(r). Define f: V(TX) — V(conv(T)) by

{ fiv) fveVs

f) =4 f(v) ifveV,

fs(v) otherwise
By its definition, f is a bijection. Thus, it remains to show uv € A(TX)
if and only if f(u)f(v) € A(conv(T)). In fact, since TX and conv(T) are

tournaments, it is enough to prove only if. The implication is clear if « and
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v both belong te V3, Vy, or Vi UV2U Vs U Vs. By the structure of V(T),

there are two cases to consider.

CASE 1: u e Vy.

If v € V3, then f(u) € Vs and f(v) € Vy. Since, in conv(T), Vs — V1,
we are done. If v € V; UVoU V5 U Vg, then f(u) € Vs and f(v) € V2U V3 U
VaU V. Since, in conv(T), Ve — VaU Va U V4 U Vs, we are done.

CASE 2: ue Vi UVoUVsU Vs,

Then, in fact, v € V3. In this case we have f(u) € VoUV3 UV U Vs
and f(v) € Vi, and since, in conv(T), VoU VaUVyaU Vs — V), we are done.

This completes the proof. i

While Theorem 4.6 does not suggest an efficient algorithm for deciding
if a given tournament is conversible, it does yield a method of construct-
ing conversible tournaments. As examples of conversible tournaments, let
V1, Va, V4, and Vi be singletons, V» and Vs induce 3-cycles, and the arcs be-
tween V5 and Vj be oriented arbitrarily. Other examples can be constructed
similarly.

All of the non-strong tournaments that can be transformed into their
converse using the push operation seem to have the following additional

properties: <Va>Zconv(<V2>), <Vs>Zconv(<V5>), and <Vo U Vs>

Zconv(<Va U V5>).
With regard to the complexity of deciding if a given tournament T is

conversible, we now show that it is at least as hard as Tournament Isomor-

phism. The latter problem can be solved in time O(|V['°8(VD)) [2].

Proposition 4.7. Tournament Isomorphism polynomially transforms to
the problem of deciding if a given tournament is self-converse, and the
latter problem polynomially transforms to the problem of deciding if a

given tournament is conversible.



Proof. Since an isomorphism between tournaments A and B maps
strong components to strong components in the same sequence they ap-
pear in the ordered lists, and since the ordered lists of strong components
can be found in polynomial time, isomorphism of strong tournaments is
polynomially equivalent to isomorphism of general tournaments. We show
first that this problem polynomially transforms to the problem of of decid-
ing if a given tournament is self-converse.

Given two strong tournaments A and B, construct a tournament T
from the disjoint union of A and conv(B) by adding arcs from each vertex
of A to each vertex of conv(B). This can clearly be done in polynomial
time. It is not hard to see that T is self-converse if and only if A and B are
isomorphic.

We now show that, in turn, the problem of deciding if a given tour-
nament is self-converse polynomially transforms to the problem of deciding
if a given tournament is conversible. Giveﬂ a tournament A, construct a
tournament T' from two disjoint copies, A; and A;, of A by adding arcs
from each vertex in A; to each vertex in A,. The construction clearly takes
polynomial time.

We claim that A is self converse if and only if T' is conversible. If A
is self-converse, then so is T, and thus T is conversible (push the empty
set). Now suppose T is conversible, and let X C V(T') be such that TX =
conv(T). If X is empty, or equals V(T'), or V(A), then clearly A is self-
converse. We show these are the only possibilities. By Proposition 4.4, if all
four sets (X NV (41)), (X=V(41)),(XNV(A42)), and (X -V (A2)) are non-
empty, then 7% is strong, a contradiction. Thus at least one of these sets
is empty. We may assume without loss of generality that X N V(4;) # 0.
Suppose (X — V(A;)) # 0 while (X N V(4;)) = 0. Then, in TX, every
vertex in V(A2) is adjacent from every vertex of V(4;)—X, and adjacent to

every vertex of V(A;)N.X. Since A, is strong, there is an arc from a vertex

45



of V(A;)N X to a vertex of V(A,) — X. Thus, some strong component of
TX properly contains A,, a contradiction since TX 2 conv(T), so it has
exactly two strong components, both of which are isomorphic to conv(A),
and therefore each have |V(4)| vertices. The case where X contains A;
and part of A, is similar. This proves the claim, and completes the proof.
1

Proposition 4.7 has also been proved by Jing Huang (private commu-
nication).

In conclusion we ask:

Question 4.8. Is there a characterization for strong tournaments that can

be transformed into their converse?

Question 4.9. Does every non-strong conversible tournament have the

additional properties mentioned above?
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