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Abstract

The aim of this paper is to study the isoperimetric numbers of
double coverings of a complete graph. It turns out that these numbers
are very closely related to the bisection widths of the double cover-
ings and the degrees of unbalance of the signed graphs which derive
the double coverings. For example, the bisection width of a double
covering of a complete graph Ky, is equal to m times its isoperimet-
ric number. We determine which numbers can be the isoperimetric
numbers of double coverings of a complete graph.

1 Introduction

Let G be a finite simple graph with vertex set V(G) and edge set E(G),
and let | X| denote the cardinality of a set X. A graph means a finite simple
graph throughout this paper. For a nonempty proper subset X of V(G),
we denote by 8X the set of edges of G having one end in X and the other
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end in V(G) — X, and call it the boundary of X in G. The quantity

) |[0X]| .
min {min{ XLV Xy~ © V(G)}

il

i(G)

= min{lf)fil X CV(@)andl < |X| < —|V(G)|}

is called the isoperimetric number of G. A subset X of V(G) is called

an isoperimetric set of G if i{(G) = fﬂ From the definition of i(G), we

can see that i(G) is a measure of the connectivity of the graph G. The
bisection width of a graph G is the quantity min {|6X |:]X| = lngﬂj} .
In [16}, Kwak et al. got some upper and lower bounds for the isoperimetric
numbers of graph coverings and graph bundles, with exact values in some
special cases.

A signed graph is a pair Gy = (G, ¢) of a graph G and a function
¢ : E(G) = Zs, Zy = {1,—1}. We call G the underlying graph of G4 and
¢ the signing of G. A signing ¢ is in fact a Z,-voltage assignment of G,
which was defined by Gross and Tucker [9)].

For a graph G, we denote the set of vertices adjacent to v € V(G)
by N(v) and call it the neighborhood of a vertex v. A graph G is called
a covering of G with projection p : G — G if there is a surjection p :
V(G) — V(G) such that p|n) : NV () = N(v) is a bijection for any vertex
v € V(G) and ¥ € p~!(v). We also say that the projection p : G-Gisa
double covering of G if p is two-to-one.

It is known ([3], [9]) that every double covering of a graph G can be
constructed as follows: Let ¢ be a signing of G. The double covering G? of
G derived from ¢ has as its vertex set V(G) x {1, —1} and, for all uv € E(G)
and g,9' € Z,, the two vertices (u,g) and (v, g’) are joined by an edge in
G* if and only if ¢’ = ¢(uv)g. Notice that the first coordinate projection
p?® : G® = G is a covering projection.

In a signed graph, the edges which are assigned the value 1 are said
to be positive and the others negative. A cycle C = e; ez ---e, in a
signed graph G, is negative if C has an odd number of negative edges,
i.e., []ie; #(e;) = —1in Za. A signed graph Gy is balanced if no cycle in
it is negative, or equivalently, its vertex set may be partitioned into two
disjoint classes in such a way that an edge is negative if and only if its two
endpoints belong to distinct classes. Equivalently, G is balanced if and
only if a lifting of any cycle in G is also a cycle in G®. Given a signed
graph G, the degree of unbalance d(Gy) of G4 is the smallest number d
such that there exists a balanced signed graph G having the property that
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|{e € E(G) : ¢(e)d(e) = —1}| = d, that is, d(G,) is the smallest number d
such that G4 may be converted into a balanced one by changing the values
of d edges. Hansen [12] proposed algorithms for finding d(G), and Akiyama
et al. (1] studied the largest d(G4) among all signings ¢ : E(G) — Z.

In section 2, we give an upper bound for the isoperimetric number of a
double covering of a graph. We also show that the isoperimetric number of a
double covering K2, of a complete graph K, is equal to -,';’; times the degree
of unbalance of the signed graph (K, #). Some more interesting relations
between isoperimetric numbers and the bisection widths will be shown. A
lower and another upper bound for the isoperimetric number of the double
covering K¢ is given in terms of the largest eigenvalue of a corresponding
signed graph in section 3. In the final section 4, we determine the range of
isoperimetric numbers of double coverings of a complete graph.

2 Isoperimetric numbers of double coverings

Let G be a graph and let C!(G;Z2) denote the set of all signings of G.
For any signing ¢ € C'(G;Z2) and for any nonempty proper subset X of
V(G®) = V(G) x {1, -1}, let X denote the boundary of X in the double
covering G? of G.

Two double coverings p® : G® = G and p¥ : G¥ — G are isomorphic if
there exists a graph isomorphism ® : G® — G¥ such that the diagram

@

G* G¥

jid p¥

G

commutes. Such a ® is called a covering isomorphism. We simply write
¢ ~ 1 if the coverings G¢ and G¥ are isomorphic.

Kwak and Lee [14] showed an algebraic characterization for two graph
bundles to be isomorphic; it can be rephrased for double coverings as fol-
lows:

Theorem 1 Let ¢ and ¥ be two signings in C'(G;Z;). Then the two
double coverings G® and G¥ are isomorphic if and only if there exists a
function f : V(G) — Z2 such that Y(uwv) = f(v)d(uv)f(u) for eny uv €
E@G).

Notice that a function f : V(G) = Z3 can be described as a character-
istic function, that is, there exists a subset X of the vertex set V(G) such
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that for any v € V(G)

1 fveX,
e}
-1 fog¢gX.

Hence, we have the following corollary.

Corollary 1 Two double coverings G® and G¥ are isomorphic, that is,
@ ~ 1, if and only if there erists a signing a € C'(G;Z2) such that the
vertez set V(G) may be partitioned into two disjoint classes in such a way
that a(e) = —1 for an edge e € E(G) if and only if two end points of the
edge e belong to distinct classes, and P(e) = a(e)¢(e) for every e € E(G).

For a signing ¢ : E(G) = Z and for any X C V(G), let ¢x be the
signing obtained from ¢ by reversing the sign of each edge having exactly
one end point in X. If ¥ = ¢x for some X C V(G) then ¢ and 9 are said
to be switching equivalent (See [7]). Now, Corollary 1 can be rephrased as
follows:

Corollary 2 For any two signings ¢ and ¢ in C(G;Z2), ¢ ~ ¢ if and
only if they are switching equivalent. The equivalence class [¢] of ¢ is
{6x : X CV(G)}.

Corollary 3 The number of isomorphism classes of double coverings of G
is equal to the number of switching equivalence classes of signings of G.

Hofmeister [13] showed that the number of isomorphism classes of double
coverings of a connected graph G is equal to 28(%), where 8(G) = |E(G)| -
[V(G)| + 1 is the betti number of G.

For a subset X C V(G), let Gx denote a new graph with V(Gx) =
V(G). Two vertices in X or in V(G) — X are adjacent in Gx if they
are adjacent in G, while a vertex in X and a vertex in V(G) — X are
adjacent in Gx if they are not adjacent in G. Two graphs G and H are
Seidel switching equivalent if there exists a subset X C V(G) such that
Gx is isomorphic to H. For its properties and applications the reader is
suggested to refer [6] or (7). Clearly, the Seidel switching equivalence is an
equivalence relation on the set of graphs, and the equivalence class [G] of
a graph G is {Gx : X C V(G)}. In a complete graph K, the signings of
K, are one-to-one correspondence with the spanning subgraphs of K,, by
corresponding a signing ¢ to the spanning subgraph having ¢~!(—1) as its
edge set. Such a spanning subgraph is call the support of ¢, and denoted
by spt(¢). We note that any graph G can be described as a support spt(¢)
of a signing ¢ € oh (K|V(G)|;Z2).
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Corollary 4 Let ¢ and ¥ be two signings in C'(Kn;Z2), G = spt(¢) and
H = spt(vp). Then the following statements are equivalent.

(1) Two graphs G and H are Seidel switching equivalent.
(2) Two signings ¢ and 3 are switching equivalent.

(3) Two double coverings K¢, and K¥, of K, are isomorphic as coverings,

i.e, ¢~

First, we derive an upper bound for the isoperimetric number of a double
covering of G. To do this, we start with the following lemma.

Lemma 1 (1) For any two signings ¢ and ¢ in C1(G;Zs), d(Gy) = d(Gy)
if g~

(2) For a signing ¢ in C'(G;Z,), G4 is balanced if and only if ¢ ~ t, where
t is the trivial signing, that is, t(e) =1 for any e € E(G).

(3) For any signing ¢ € CY(G;Zs),
min {[$"}(=1)] : ¢ ~ ¥} = min {|¢3' (-1)| : X C V(G)} = d(Gy).

Proof: (1) Suppose that ¢ ~ 1. Then there exists a function f : V(G) =
Zy such that ¥(uv) = f(v)d(uv) f(u) for any uv € E(G). Let ¢ be a signing
in C'(G; Z2) such that G is balanced and

{e € B®) : s(a)d(e) = -1}| = d(G).

Now, we define a new signing ¥ : E(G) = Z; by ~1/-)(uv) =f (v)nguv) f(u)
for uv € E(G). Then G is balanced and ¢ (uv)y(uv) = ¢(uv)g(uv) for
uv € E(G). Thus, it follows

d(Gy) < |{e € B(G) : wleX(e) = -1}| = d(Gy).

Similarly, we can show d(G4) < d(Gy). This completes the proof of (1).

(2) Suppose that G is balanced. Then, there exists a signing ¥ which
has the value 1 on the edges of a spanning tree of G and ¢ ~ 1 (see [14]
Corollary 1). By (1), Gy is also balanced, and then % must be the trivial
signing. Conversely, suppose that ¢ ~ ¢t. Then, by (1), d(G4) = d(G:) =0
and Gy is clearly balanced.

(3) For a given signing ¢ € C'(G;Z,), let be a signing in C!(G;Z2)
such that ¢ ~ ¢ and |p~!(=1)| = min{|yp~'(-1)|: ¢ ~9}. By (1),
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d(Gy) = d(G,) < |<p"(—1)| . On the other hand, by the definition of
d(G), there exists a signing ¢ € C1(G; Zy) such that G 5 is balanced and
d(Gy) = |{e € E(G) : ¢(e)p(e) = —1}|. By (2) and Theorem 1, there is
a function f : V(G) — Z, such that f(v)¢(uv)f(u) = 1 = t(uv) for any
uv € E(G). This implies that f(u)f(v) = é(uv) for any uv € E(G). Now,
we define a new signing ¥ : E(G) — Z2 by ¥(uv) = f(v)¢(uv)f(u) for
uv € E(G). Then, we have

min {[¢~(~1)| : ¢ ~ ¥} = min { |y~ (-1 : § ~ v}
and ¢(e) = ¢(e)¢(e) for any e € E(G). Since
min {[$~1(-1): b~ 9} < [B7H(-1)]
{e € E©) : o(ed(e) = -1}| = d(Go),
we have min {|¢~1(-1)| : ¢ ~ ¥} = d(G), which completes the proof. O

Theorem 2 For any signing ¢ in C(G;Z,), we have
2
i(G*® <min{z’ G), =—=d(G }
(6*) < min {(G), [z d(Ge)
Proof: Let X C V(G) be an isoperimetric set of G. Then, |94(X X

{1,-1})| = 2|6X] and hence
196(X x {1,-1})| _ 210X]
|X x {1,-1}| 2|X|

Note that i(G?®) = i(G¥) if ¢ ~ 9. Let 1 be any signing in C*(G; Z>) such
that ¢ ~ 4. Then, by using Lemma 1 (3) with the inequality

i(G%) <

= i(G).

(G0 = i 16, (V@ x{IPI _ 2 |

we have i(G%) < W%ﬂd(Gdﬂ- O

Now, we aim to estimate the isoperimetric number of a double covering
of a complete graph K,,. Note that V(K?) = V(K,,) x {1,-1}. For any
X CV(K,;;) x {1,-1}, let X; be the set of vertices v of K, such that at
least one of (v,1) and (v, —1) is contained in X, and let X> be the set of
vertices v of K, such that both (v,1) and (v, —1) are contained in X. Note
that X, C X; C V(Kp) and |X| = | Xa1| + | X2}
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V(Km) x {~1} Xy x {-1} I I

.................................

V(Km) x {1} X, x {1} III

Figure 1: The set V(Kyp) x {1,-1}

Lemma 2 Let ¢ be a signing in C* (Km;Zs) and let X C V(Kny) x {1,-1}
with |X| < m. If Xy is not empty, then there exists a subset Y of
V(Kp) x {1,-1} such that |Y| = |X|, V1| = |X1| + 1, |Y2| = | X2| = 1 and
185X [ > [05Y .

Proof:  Let X be any nonempty subset of V(K2) such that [X]| <
$IV(Kg)| = m and X, is not empty. Define a function f : V(Km) = Zg
by
-1 if ve X; - Xz and (v,-1) € X,

1 otherwise.

fo)={

Define a new signing ¥ of K,, by ¥(uv) = f(v)¢(uwv)f(u)~" for any uv €
E(K,,). Then, the map & : K¢ — K defined by @ ((v,7)) = (v, f(v)i) for
i = 1, —1is a covering isomorphism and ®(X) = (X1 x {1}) U (X2 x {-1}),
disjoint union. Moreover, ,X = 8y ((X1 x {1}) U (X2 x {-1})).

To compute |8y ((X1 x {1})U (X2 x {~1}))], consider Figure 1. The
number of boundary edges in 8y ((X1 x {1}) U (X2 x {—1})) having one
end in X; x {1} and the other end in I U III is equal to | X;|(m — |X1]).
The number of boundary edges in 8y ((X1 x {1}) U (X2 x {—1})) having
one end in (X; — X») x {1} and the other end in I is equal to 2|{e €
E(X) - Xo) : ¢(e) = =1} = 2|¢~1(-1) N E(X, — X2)|. The number of
boundary edges in 8y, ((X1 x {1}) U (X2 x {—~1})) which are not contained
in the above two cases, that is, the edges either having one end in X3 x {-1}
and the other end in I U IT U ITI, or one end in X3 x {1} and the other
end in I, is equal to | X|(m — | X2|). Thus we have

185 8(X)| = | X1|(m = | Xa]) + [ Xa|(m — | Xa]) + 2171 (=1) 0 E(X; — X3)|-

Since | X| < m and X is not empty, the set X, is a proper subset of V/(Kn).
Now choose two vertices vg € X2 and v € X3, and let

W = ((X1 U {veo}) x {1} U ((X2 = {wo}) x {-1}).

Then it is clear that W} = X; U {veo}, Wa = X3 — {vo} and W) — W, =
(X1 — X2) U {vo, v} Also, it can be shown that

18, W] = [Wil(m — [Wh]) + [Wal(m — [Wal) + 2~ (=1) 0 E(W, — Wa)).
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Define a function g : V(K,,) = 2, as follows: For any v not in {vo, v},
we define g(v) = 1. For v = vy or v, let

I, = |{w € X; — X5 : y(vw) = -1}.

Now, we divide the discussion into the following three cases.
Case 1. If I,, + I, < |X1] —|X2|, we define g(v) = 9(veo) = 1.
Case 2. If I,y + I, = |X1]|—|X2|, we define g(vo) and g(veo) as follows:

glvo) =1, 9(vo) =1 if Y(voveo) =1
g(vo) = =1, g(veo) =1  if $(voveo) = —1 and I, 2 HalzlXal
gwo) =1, g(veo) = —1 if Y(vove) = ~1 and I, < Xal1Xel,

Case 3. If I,, + I, > |X1| — ] X2/, we define g(vo) = g(veo) = —1.
Now, we define another signing 1 of K, by ¥(uv) = g(v)¥(uv)g(u)~! for
uwv € E(K,,). Then, we have

2y~ (1) N E(W, - Wa)| < 2y~ (-1) N E(X) — Xa)| + 2 (|1 Xy| — | X2])

from the definition of ) and g. Define a map ¥ : K¥ — K¥ by ¥ ((v,i)) =
(v,9(v)i). Then ¥ is a covering isomorphism and

10;W| = [Wi|(m — [Wh) + [Wal(m — [Wa|) + 2~ (-1) N E(W) - W)
< [Wh|(m — [Wh]) + [Wa|(m — [Wa) + 291 (-1) N E(X) - X3)]
+2(]X3| - |1 Xz2])

= (X1 + D(m = | X1 = 1) + (|X2| — 1)(m — | Xz + 1)
+2|{e € E(X) — X3) : (e) = -1} + 2(|1Xa| - | Xz)

= |0pX| - 2.
Take Y = ~1(¥~1(W)). Then |Y;| = |X1| + 1, |Y2| = |X2| — 1, and
106X| = 0] = |05X| — |8, 2(Y)| = |05 X| — |95 W|.
Hence, |05X| — |04Y| > 0. This completes the proof. O
It follows from Lemma 2 that every isoperimetric set X of a double
covering K¢, of K,,, must satisfy the equation |X| = ]X;|.

Lemma 3 Let ¢ be a signing in C'(Kn;Z2). If X C V(Ky) x {1,-1}
and |X| = | X1| < m, then there ezists a subset Y of V(Kp) x {1,—1} such
that |Y| = Vi, V] = |X| +1 and 13671 > 1831,
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Proof: By the same method as in the proof of Lemma, 2, we can take a
signing ¥ € C'(Km;Z,) and a covering isomorphism ® : K — K¥ such
that ®(X) = X; x {1} and

10X | = 10y 2(X)| = | Xa|(m — | Xa]) +2|{e € E(X,) : () = —1}].

Let W = (X1U{voo}) x {1} with a fixed vertex vo, & X1. Then |W| = |W1|.
Define a function g : V(K,,) = Z2 by g(v) = 1 for v # v and

1 otherwise.

v )_{ —1 i {u€ X pluve) = —1}] > Xal+L

Define another signing ¥ of K, by ¥(uv) = g(v)y(uv)g(w)~? and a map
U: K% - KY by ¥(v,i) = (v,9(v)i). Then ¥ is a covering isomorphism.
Note that

10W = Wil (m ~ [Wi]) +2|{e € E(OW) : 9(e) = 1]
< (X1 +1) (m = 1X1] = 1) +2[{e € BX2) : (e) = ~1}| + 1 al.
Take Y = & 1(¥~1(W)). Then |Y]| = |X|+1, |Y| =|¥i] and

oY1 _ 10,2 _ 105
Y] = |X|+1 |X]+1
< -X|-1+ =—— 2 [{e € E(X1) :¥(e) = -1} + |X] .
= 1 X|+1 [X]+1
Since 10,X)|
P21 _ - = _
e have 9sX| _ 186 1x]
® ®
>1- > 0.
| X1 Y|, = |Xt+1
This completes the proof. O

Lemmas 2 and 3 say that an isoperimetric set of a double covering K¢,
of K, is a set of m vertices of K¢, each of which is taken from each fibre
of K,,. Therefore, we obtain

Theorem 3 For any signing ¢ in C(Kn;Zs), the bisection width of the
double covering K¢, of K., equals m times its isoperimetric number i(K9,).
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(% ()]
1 1 -1 1
U4 U4
V2 1 U3 v2 1 U3
=t &2 #3

Figure 2: Three non-equivalent signings

Now, we give a computation for i(K$,) in terms of the degree of unbal-
ance d(Kp,,) of Kiy,,.

Theorem 4 For any signing ¢ in C*'(Km;Zs2), we have
) 2
Z(Kz’,) = .T;d(Km")'

Proof: By Lemmas 2 and 3, we get

i(Kf) = —mm{|6¢X| IX|=m=]X]}.
Let X C V(Kp) x {1,—1} be a subset satisfying |X| = m = |X;|. Then
there exists a signing ¢ € C'(Ky,;Z2) as shown in the proof of Lemma 2
such that ¢ ~ ¢ and

106X | = 18y (V(Km) x {1})] = 2~ (-1)I.
Since |V(Km) x {1}| = m,
. 1 . S 2 -
i(Kf) = —min {|0,X| : |X| = m = |Xi]} = — min {|p -9~ o).
Now, the theorem comes from Lemma 1 (3). O
Example 1 Consider three signings ¢, on K, as illustrated in Figure 2.

For each i = 1,2,3, |¢;1(-1)| < |#7 1(-1)| for any subset X of V(Kj).
This implies that d(Ky,,) =0, d(K4¢2) =1 and d(Ky,,) = 2, so that

0 ifi=1,
7(K¢-)_ d(Ka,,)=¢ 1/2 ifi=2,
1 ifi=3.
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¢ D{va} B{v3,v4}

Figure 3: Equivalence by switching the signs

Note that these isoperimetric nmnbers for ¢ = 1,2,3 are all distinct, and
hence the three double coverings K3, i = 1,2,3, of K are not isomorphic
to one another.

Let ¢ be the signing on K, such that ¢(uv) = —1 for all uv € D(Kj).
The steps in Figure 3 show that ¢ is equivalent to ¢3 given in Figure 2.
Note that ¢y,,} is obtained from ¢ by switching the signs of all values of
the edges incident with v4, and it gives the first equivalence relation ~ in
Figure 4. In fact, if we take f : V(K4) — Zy such that f(v4) = —1 and
f(0) = 1 for i = 1,2,3, then o, (vivy) = f(v;)g(vrv;)f (i)~ for all
v;v; € E(K4). Similarly, we can get the second ~ in Figure 3 by switching
the signs of all values of the edges incident with vs. ThlS implies that ¢ and
®{uvs,vq} are equivalent and d(Kjy,) = 2. In fact, K? is the 3-dimensional
hypercube Q3. O

Akiyama et al. gave an upper bound of the number d(G4) as follows:

Theorem 5 [1] Let G be a graph and let G1,Ga,...,G¢ be vertez disjoint
subgraphs of G so that Z _ V(G| = [V(G)|. Let ¢ € C'(G;Z2) be a
signing. If (Gi, lg(c,)) is balanced for each i =1,2,...,¢, then

1

ww<(mm—ZW@ﬂ
By using Theorem 5, they showed that for any ¢ € C*(Km; Zs),

An) < | m =17

with the equality whenever the vertex set V(K,,) may be partitioned into
two classes in such a way that an edge is positive if and only if its two
endpoints belong to distinct classes.
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3 Spectral estimation

Given a signed graph G, its adjacency matrix A(Gy) = (as;) is a square
matrix of order |V (G)| defined by

1 if v;v; is positive
aij =4 -1 if v;v; is negative
0 if v;v; is not an edge

for 1 < i,j < [V(G)), and its characteristic polynomial is det(AI — A(Gy))-
By P(Gy; ), we denote the characteristic polynomial of G.

From now on, let A; (A) (Am (A) resp.) denote the second smallest (the
largest resp.) eigenvalue of a matrix A. Let L(G) = diag(deg(v)) — A(G) be
the Laplacian matriz of a graph G. It is well-known that every eigenvalue
of the Laplacian matrix L(G) of a graph G is nonnegative and its smallest
eigenvalue is zero. Note that A(G) = A(G:) and hence P(G;\) = P(Gy; ).
Mohar proved the following theorem.

Theorem 6 [18] Let G be a graph with |V(G)| > 4. Then

/\1(L2(G)) < i(G) < VML(G) RAG) - M (Z(@Q))).

Chae et al. computed the characteristic polynomial of a double covering
of a given graph G as follows:

Theorem 7 [5] P(G%;\) = P(G; \)P(Gy; ) for any ¢ € C'(G;Z2).

Let G be a regular graph of degree k. Then the characteristic polynomial
of the Laplacian matrix L(G) of G is given by

det(M - L(G)) det(AI — diag(deg(v)) + A(G))
det(\ — kI + A(G))

(_1)|V(G)IP(G; -2+ k).

Furthermore, any double covering of a regular graph of degree k is also a
regular graph of the same degree. So the characteristic polynomial of the
Laplacian matrix L(G?) is given by
det(\] — L(G*) = (-1)IVOIPG* -\ +k)
(~D)VVONP(G; =X\ + k)P(Gg; —A + k),
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Since d(Kp,,) is an integer for any ¢ € C!'(Kmn;Zs), we have a lower
bound of i(K%) as follows. Note that it is sharper than that given in
Theorem 6.

Corollary 5 For any signing ¢ in C'(Kum; Z;), we have

% [% (m-1- /\M(A(Km¢)))] <i(K3).

4 Range of the isoperimetric numbers

A graph G is said to be minimal if it has the minimal number of edges
among the graphs in the Seidel switching equivalence class {Gx : X C
V(G)} of G. The following comes from Corollary 2 and Lemma 1 (3).

Theorem 10 For a signing ¢ in C'(Km;Zs), the support spt(¢) of ¢ is
minimal if and only if d(Kn,) = |E(spt(9))|.

Lemma 4 (1) A graph G is minimal if and only if 2|0X| < |X||V(G)-X|
for any nonempty proper subset X of V(QG).

(2) Every spanning subgraph of a minimal graph is also minimal.

Proof: The statement (2) can be proved easily by using (1). To prove
(1), let X be a nonempty subset of V(G) and let G[X] be the subgraph of
G induced by X. Then

|E(G)| = |[E(G[X])] + |E(G[V(G) — XD + |0X]
and
|E(Gx)| = |E(GIX])| + |[E(GIV(G) - X])| + |X||V(G) - X| - |0X].
This implies that
|E(G)| - |E(Gx)| = 2|0X]| - | X[ |[V(G) — X]|.
Thus, G is minimal if and only if 2|0X| < |X||V(G) — X| for any nonempty
proper subset X of V(G). a

As the final part of this paper, we determine which numbers can be the
isoperimetric numbers of double coverings of a complete graph K,,. Or,
equivalently, we determine which numbers can be the degree of unbalance
of a signed graph K.
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First, recall that an upper bound of d(Kp,,) is given at the end of section
3: for any ¢ € CY(Kpn; Z2),

Ufm,) < | 3m =12

with the equality whenever the vertex set V(K,,) may be partitioned into
two classes in such a way that an edge is positive if and only if its two
endpoints belong to distinct classes. Let G = K Y UKk [2] disjoint

union, as a subgraph of K,,, and let ¢ € C'(Kn;Z,) be a signing such
that ¢(e) is negative if and only if e is an edge of G. Then G = spt(¢) and
it is minimal, because we can show that 2|6X| < |X||V(G) — X| for any
nonempty proper subset X of V(G). By Theorem 10, we have

Umy) = 1@ = | 3(m =12

Now, by taking all spanning subgraphs of G, which are also minimal, we
have

Corollary 6 For any 0 < d < |3(m—1)?], there ezists a signing ¢ in
CY(Kpm; Zs) such that d(Km¢) =d or i([{g') = 2d

The last corollary says that the isoperimetric number of a double cov-
ering of the complete graph Ko, is one of 2¢ ford =0,1,...,|j(m - 1)?].
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