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ABSTRACT: Four generalized theorems involving F-partitions and (n+t)
— color partitions are proved combinatorially. Each of these theorems gives us
infinitely many partition identities. ~We obtain new generating functions for
F—partitions and discuss some particular cases which provide elegant Rogers—
Ramanujan type identities for F—partition.

1. INTRODUCTION, DEFINITIONS AND THE MAIN RESULTS

Using a technique of [3] we establish four generalized identities between
F—partitions and (n+t) — color partitions. These identities help us in finding
generating functions for F-partitions from the known generating functions for
(n+t) — color partitions. These generating functions in some particular cases
provide us elegant Rogers-Ramanujan type identities for F—partitions. We first
recall following definitions :

Definition 1. [4, p.1]. A two rowed arrays of non-negative integers

a; az ...a;
by by ...b,

with each row arranged in non increasing order is called a generalized Frobenius
partition or more simply an F — partition of v if

r r
V=I+Z g + Zbi‘

i=1 i=1
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Definition 2. [3]. An (n+t) — color partition, t > 0 is a partition in which a

part of size n, n > 0 can come in (n+t) different colors denoted by subscripts : m,
Ny.... N Inthe part n;, n can be zero if and only if i > 1. But in no partition
are zeros permitted to repeat.

Definition 3. [3]. The weighted difference of two parts m;, ;; m > n is

defined by m—n-i-j and is denoted by ((m; — ny)).

The Rogers — Ramanujan identities were stated combinatorially by P.A.

Mac Mohan as follows [5, Theorems. 364, 365, p.291].

L.

The number of partitions of n into parts with minimal difference 2 equals the
number of partitions of n into parts which are congruent to +1 (mod 5).

The number of partitions of n with minimal part 2 and minimal difference 2
equals the number of partitions of n into parts which are congruent to +2
(mod 5).

Fork={— 1,1,3,5, ...} we shall prove in this paper the following four
theorems :

Theorem 1. Let A, * (v) denote the number of F-partitions of v such that

(l.a) a;>b;, and
(1b)  bi>(k+3)/2 +aim

Let B,* (v) denote the number of n—color partitions of v such that
(1.c) even parts appear with even subscripts and odd with odd, and
(1.d) The weighted difference of each pair of parts is greater than k.
Then A (v) = B,* (v) for all v.

Theorem 2. Let A,* (v) denote the number of F-partitions of v such that

(2a) a>b,and
2b) b >k+1)/2 +am
Let B,¥ (v) denote the number of n—color partitions of v such that

(2.c)  even parts appear with even subscripts and odd with odd subscripts
greater than 1, and
(2.d)  The weighted difference of each pair of parts is greater than or
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equal to k-1.
Then A* (v) = BX (v) for all v.

Theorem 3. Let As* (v) denote the number of F-partitions of v such that
(3a a=#l

(3b) a<2+b;

(B.c) a>kt+N/2+by,

(3.d) ifa,>0thena,> (k+3)/2.

Let B5* (v) denote the number of (n+2) —color partitions of v such that
(3.¢)  if m; is not the smallest part, the m-i > 0.

(3.f)  even parts appear with even subscripts and odd with odd.
(3.g) the weighted difference of each pair of parts is greater than k.
(3.h)  the smallest part is of the form i;,.

Then A3* (v) = B;* (v) for all v.

Theorem 4, Let A* (v) denote the number of F-partitions of v such that

(4a) a=1.

(4b) a<2+0b;

(4.0) a2 (k+5)2+by

(4.d) ifa,>0thena, > (k+1)/2.

Let B;* (v) denote the number of (n+2) —color partitions of v such that

(4.¢)  if m; is not the smallest part, the m~i > 0.

(4.0)  even parts appear with even subscripts and odd with odd greater
than 1.

(4.g)  the weighted difference of each pair of parts is greater than or equal
to k-1.

(4.h)  the smallest part is of the form i;;,.

Then A* (v) = B& (v) for all v.
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Remark : In Theorems 1 - 4 the conditions on F-partitions clearly imply
a; > (k+3)/2 + a;y and b; > (k+3)/2 + b4y,

In the next section we give a detail proof of Theorem 3 to make all
ideas clear and in Section 3 we sketch the changes required to prove the
other theorems. Section 4 is devoted to a study of generating functions for
F-partitions while in Section 5 we discuss some particular cases. We
conclude in Section 6 by posing two open problems.

2. PROOF OF THEOREM 3

We establish a 1-1 correspondence between the F-partitions
enumerated by As* (v) and the (n+2)- color gartitions enumerated by
B;* (v). We do this by mapping each column b of the F—partition to a

single part m; of a partition enumerated by Bs* (v). The mapping ¢ is

¢ G) = (atb+1)p-an (2.1)

and the inverse mapping ¢™' is given by

o7'(my) = [ (m-i+2)/2
(m+i—4)/2 (2.2)
Now for any two adjacent coiumns a ¢
bd

in the F-partition enumerated by A (v)
. a c
with ¢ ‘( b ) =m; and ¢ (d ) = n; (defined by (2.1), we have

m—i = 2a-2. (2.3)
and ((m;-n;)) = 2a-2d-6 2.4)

Clearly (3.a) and (2.3) imply (3.¢). In the definition (2.1) the fact that
a+b+1 and b-a+3 have the same parity implies (3.f). (3.¢) and (2.4) imply
(3.8). (3.d) guarantees (3.h). For if, a, = 0 then ( gi ) corresponds to
(b,+l)br+3 which is of the form i+, and if a, > (0 then we attach the
“phantom” column ( 81) which corresponds to the part 0, which is
allowed as a part by the definition of (n+2)- color partitions. Now (3.d)

ensures that (3.g) is satisfied in this case by the two parts which correspond
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a, 0
to(b,) and (_1) .
To see the reverse implication, we note that
\'n—.+4. y A
¢~ (my) ( (m+1—4)/2) ( )

and ¢ (m) =( énéﬁf/‘z' )=( 1)

that is,
a = (m-i+2)/2 2.5)
b (m-+i—4)/2 (2.6)
c = (n-j+2)/2 2.7
d = (n+j-4)2 (2.8)
and so,
b-a = i-3 (2.9)
d-¢c = j-3 (2.10)
a-d = > ((me-n))+3 @.11)

Now (3.e), (2.5) and (2.7) imply (3.2). (2.9) and (2.10) imply (3.h).
(3.¢) follows fivin (3.g) and (2.11). (3.h) implies that there is a column of
the forrn (i—D such a column has to be last in the F-partition and i,
must be the smallest part of its partition, since if i;»» > n; then

(is2—my) = — 2-n-j

which can not be greater than k since k € {-1, 1, 3, 5,.....}.

Now 0, is allowed to be a part in partitions enumerated by Bs* (v). 0,
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corresponds to the “phantom” column ( 0 l) , which is dropped from the
corresponding F—partition. In fact 0, occurs as a part only to make it sure

that (3.d) is satisfied. This completes the proof of Theorm 3.

To illustrate the bijection we have constructed we close this section
with the example for k= -1, v = 8 shown in the following table:

F-partitions enumerated by A;™ (8) Image under ¢, that is (n+2)-
color partitions enumerated by
Bs™' (8)

(%) b
(5) e
(i) N
(5) e

(4 0 Ti+13

20

(3 0 T3+13
30

(3 2 8,+3140,
10

3. SKETCH OF THE PROOFS OF THEOREMS 1,2 AND 4
Proof of Theorem 1.
The map ¢ is
: aY i (atb+1)ypsr a2b
¢ ( b ) (atb+1)aps- a

and ¢~ is given by . (m+i-2)/2
7 imi—> A (o2
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Proof of theorem 2.

The map ¢ is

$: (ﬁ ) = (atb+1)apur a>b
and ¢~ is given by

o7 m; > (8::1)_/;)/2) , m=#iizl

Proof of Theorem 4.
The map ¢ is

$: (1a;) = (atb+1)p a1 a<b+2,a=1
and ¢”' is given by

o (m-i+2)/2 .
¢ cm; -> (m+i—4)/2 , izl

4. GENERATING FUNCTIONS FOR F-PARTITIONS

Using the generating functions for B (v), 1 <i < 4, obtained in [2], we
get the following generating functions for A¥ (v), 1 <i<4:
o0 o nl1+ (k+3) (n-1) /2|

. q
2 Afma = 2 (a; Qen 4.1
v =0 n=0
[e 0]
Z . 0 q n{2+ (k+3) (n-1) 12}
2+ (v)q" = 4.
v=0 A (M Z (q; P2 *.2)
n=0
0 © LD G3)2)
k v =
Z Ay (v) q = Z (q; Q2001 4.3)
v =0 n=0
© oo
) . nl(n+1) (k+3)/2
2 AFme = X 4 , (4.4)
v =0 n= 0 (q, q)2n+l
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B (1-aq)
where @;q)n = H —q_ .

5. PARTICULAR CASES

Clearly, for every value of k € [-1, 1, 3, 5,....] each of our four
theorems gives us one partition identify. Thus each theorem gives us
infinitely many partition identities. But here we shall discuss only those
particular cases which yield Rogers-Ramanujan Type Identities
(abbreviated as RRTI in the sequel) for F-partitions. We divide this
section into four subsections and discuss the particular cases of each
theorem separately.

5.a. Particular cases of Theorem 1

Case 1. Whenk=-1
Tn view of the identity [6, (79) — (98)]
@ ® 1

Z ! ) H (1=q""%) (1-q'*%) (1-g®")
n=0 (g Pxm (G Qo 0=1 x (1-4"% (1-q'™ (5.a.1)

we get the following RRTI for F—partitions :

Corollary (1.a). The number of F-partitions of v with a; 2 b; and b; 2
1+a;4; equals the number of partitions of v into parts = 0,+2+6,+8, 10
(mod 20).

Case 2. when k=1
In view of the identity [6, (84) - (85)]

- 2 < 2 1
“( ntl) n(2n+l)
> D DR I | -
n=0 (q’ Do n=0 (q4; 2041 n=0 l_qznﬂ »(5.2.2)

we are led to the following RRTI for F-partitions:

Corollary (1.b). The number of F—partitions of v with a; 2 b; and
b; > 2+a;4 equals the number of partitions of v into odd parts.
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5.b Particular cases of Theorem 2

Case 1. Whenk= -1

In view of the identify [6, (99)]

y qn(n+l) 1 0 o . 8
= 1-g ™ —q'on- 200~

@Den=1  xa-¢™a-¢'" GbD
We obtain the following RRTI for F—partitions :
Corollary (2.a). The number of F-partitions of v with a; > b; and

bi 2 aj equals the number of partitions of v into parts =0, + 1, + 8, + 9, 10
(mod 20).

Case 2. Whenk=1
In view of the ldentlfy [6, (39) - (83)]
<) "n 0
T S ||
Z = (l q8n- ) (l_qsn-7) (1 q16n-10)

1=0 (G Qm (5. n=1
x (1-4'"%) (1-¢™), (5.b.2)
we get the following RRTI for F—partitions :

Corollary (2.b). The number of F—partitions of v with a; > b; and b;
1+a;s, equals the number of partitions of v into parts =0, + 1, + 6, + 7, 8
(mod 16).

S.c. Particular cases of Theorem 3
Case 1, whenk=-1
In view of the identify [6, (96)]
0
R
(qr q)2n+l (q, q)eo n=1

=

(l_qIOn-4 (l qIOn-6)
X (1 q20n-l 8) (l q20n—2)
x(1-q'", (5.c.1)

n=0

we are led to the following RRTI for F-partitions.
Corollary 3.a. The number of F-partitions of v with 1 # a; < 2+b, and

a; 2 3+b;,; equals the number of partitions of v into parts 0, + 2,+ 4, + 6,
10 (mod 20).
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5.d. Particular cases of Theorem 4
Case 1. Whenk=-1

In view of the identify [6, (94)]

* n(n+1) e}
S e —— 7]
n=0 q4; Pant1 = (q’ q)w il (1__q10n-3) (l_qw,,_7)

X (l_qZOn—IG) ( l_q20n—4)

x(1-q'™, (5.d.1)

we get the following RRTI for F-partitions :

Corollary 4 (a). The number of F—partitions of v with 1 # a; < 2+b;

and a; > 3+b;) equals the number of partitions of v into parts =0, + 3, + 4,
+ 7, 10 (mod 20).

Case 2, whenk =1

In view of the identify [6, (38) — (86)]

[ee] o0
2n(nt+l) 1

q n-. n-.
n2=0 @Dz = (@ Do nl:[l (1-4"7) (1-4")

X (l—ql6n-]4) (l_qlﬁn-?.)

x (1-q"), (5..2)
we obtain the following RRTI for F—partitions :

Corollary 4 (b). The number of F-partitions of v with 1 # a; <2 +b;
and a; = 3 + by, equals the number of partitions of v into parts = 0, + 2,
+ 3, +5, 8 (mod 16).

6. CONCLUSION
We remark that in the above corollaries if we replace F-partitions by
corresponding (n+t)— color partitions we get all results of [1]. Thus the

work done here generalizes the results of [1]. From this work many
questions arise. Most obvious among them are :
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(1) Do Theorems 1-4 have nice analytic counter parts?

(2) We have found Rogers—Ramanujan Type Identities by using Theorems
1-4 for some particular values of k, is it possible to find them for
general value of k?
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