*

t

Spanning Trees Orthogonal to One-Factorizations of Ko,

John Krussel*

Department of Mathematical Sciences
Lewis and Clark College

Portland, Oregon 97219

Susan Marshall
Equipe Combinatoire,
Université de Paris VI
4, Place Jussieu
75252 Paris Cedex

Helen Verrall{

Department of Mathematics and Statistics
Simon Fraser University

Burnaby, British Columbia V5A 186

Abstract: In [3] Brualdi and Hollingsworth conjectured that for any one-
factorization Fof Ko, there exists a decomposition of K>, into spanning trees
orthogonal to ¥. They also showed that two such spanning trees always existed. We
construct three such trees and exhibit an infinite class of complete graphs with an
orthogonal decomposition into spanning trees with respect to the one-factorization
GKap.

A one-factorization ¥ of the complete graph K5, is a partition of E(K>,)
into spanning subgraphs F, F>, ..., Fan_ called one-factors so that each F; is
regular of degree one. See [4] for a survey on one-factorizations of the complete
graph. A subgraph H of K>, is said to be orthogonal 1o ¥ if |E(H) N E(F;)| =
1,1 <1 < 2n-1. (If, instead of a one-factorization we consider an edge-coloring
of K5, so that each color class is a one-factor, then H is said to be multicolored
as in [3].) A survey of results on orthogonal subgraphs can be found in [1].

Following the notation of [2] we will denote by G K, the “standard” one-
factorization of K, constructed in the following manner. Label one vertex with oo
and the rest of the vertices with 0,1, ...,2n — 2. A one-factor consists of the edge
{00, a} (which we call the infinite edge) along with all (finite) edges of the form
{z,y} wherez+y =2a (mod 2n—1). Call a the center of each of these edges
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and define the length of an edge tobe £(z,y) = min{x —y (mod 2n—-1),y -z
(mod 2n — 1)}, where z and y are the finite labels on its endvertices.

In [3] it was shown that for any one-factorization ¥ of K, there exist two
cdge-disjoint spanning trees orthogonal to £ We improve this result to three edge-
disjoint spanning trees orthogonal to Fand construct them in the process.

THEOREM 1. If ¥is a one-factorization of Ko, (n > 2), then there exist
three edge-disjoint spanning trees orthogonal to F.

Proof. Firstletn = 3. Itis well-known that there is a unique one-factorization
of K. Without loss of generality, we can consider this factorization to be GKs.
Then the three desired spanning trees are

{{00,2}, {00,3}, {00’4}7 {0’ 2}: {174}},:
{{c0,0}.{0,1},{0,4},{1.2},{3.4}};
{{o0,1}.{0.3}.{1.3}. {2, 3}, {2.4}}.

Now we assume that n > 4. Construct T as described in [3], i.e. consider the
spanning star Sy on vertex vo and delete edges {vo, v1} € F) and {vo, v2} € F2,
forming Sj. Then there is some edge {vi,u1} € F> and an edge {vo,ug} €
Fi. (It is possible that u; = uy.) Join these two to Sj to form S, still an
orthogonal spanning tree. Now consider the spanning star .5, on v, and note that
SN SY = {v1,u1}. To form S| we delete from S the edge {v1, u1} and some
other edge {v1,v3} € F3, vz # vo, V2, u2, chosen so that {vo, u1} ¢ F3. (Say
{vo,u1} € Fg.) This is always possible since therc are 2n — 1 one-factors and
n > 4. Then we join to S the edge {uy, w1} € F3 and the edge {v3,uz} € Fato
form SY, a second orthogonal spanning tree. Note that it is possible that w; = u3
or one or both of w and ug is the same as up or wy = v if up # ;.

Now we can construct a third orthogonal spanning tree in the same way.
Notice that the only vertices which may have degree greater than 2 in S§’ U S} are
Vg, U1, U1, Uz, U3, w1. NOw v3 can be none of these: v3 # vy, ug since it is chosen
to be distinct from v, v2, ug; vz # V1, ug since vs is adjacent to both; vz # u;
since {uy,v;} and {v3.v;} are edges in distinct one-factors; and vz # w, since
vs is incident with exactly one edge in F3 but {u;,w } and {v, v3} are both in F3
and u; # v1. Therefore the degree of vz is 2. So now consider the spanning star
S3 on v3. Delete from S3 the edge {v3, uz} € SY N F, and the edge {vo, v3} € Sg
which is also in, say, Fy. We now have S3. Now join to Sj the edges {vp, v2} € Fo
and {u3, v4} € Fy, forming 5%, a third orthogonal spanning tree.

Notice, however, that nothing precludes the edge {us,v;} € S} from also
being in Fy (i.e. v; = v,) in which case the construction of S3 is prevented.
One possible way around this is to let u3 play the role of v3 and construct S,
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instead of ). Then S; = S| \ {{vi,us}, {ur,wi}} U {{v1,vs}, {u1,ve}}.
where {u;,vg} € Fj. We know that vg can’t be either v or v;. Let Sy be the

star centered at u3. Then, S3 = Sy\ {{us,vo}, {us, v3}} U {{vo,v2}, {vs,v5}},
where {uz, vo}, {vs,vs} € F.

This gives the same problem as before if vs = v; and hence F; = Fj.
However, in this case we must have the following sets of edges in the given onc-
factors: {us,vs} € Fa.{vi.vs}.{vo,us} € F3,{vi,us}.{vo,vs} € Fy. Then
we can modify the above construction, taking advantage of this symmetry. In
constructing Sg' we eliminate from Sp not only {vg,v1} € F} and {vo,v2} € F»
but also {vp,v3} € Fy and {vo,u3} € F3. These are replaced by {v;,u} €
Fy, {'Uz,’u,z} € Fi, {1)1,1)3} € F3 and {’U],U3} € Fy.

Then the construction of S is modified by deleting from S; the edges
{vi,u1} € Fo,{vi.vs} € F3, and {v1,u3} € Fj as well as {v;,uy} € Fs,
where F3; is chosen arbitrarily as long as it is distinct from Fiy,...,Fy, Fg.
We replace these edges with {vg.v3} € Fy,{v3,u3z} € Fy,{uq,2,} € F3,
and {u),z2} € F5. Finally, for S§ we delete from S3 the edges {v3,v1} €
F3,{vs,us} € Fa,{v3, v} € Fy, and {v3, w3} € Fs. The construction is com-
pleted by replacing these with {vo,v2} € Fa, {vo,u3} € F3,{vy,us} € Fs, and
{UI3,1J3} € Fy.1

Note that the given spanning trees of Kg can be constructed with the algorithm
of the proof if vp = oo, vy = 0,v2 = 1,u; = 2,uy = 4,v3 = 3, but it is easier to
display them than to prove that the construction produces three trees for any vg.

Also in [3] it was conjectured that for any one-factorization Fof K5, there
exists adecomposition of the complete graph into spanning trees each orthogonal to
¥. While this appears to be a difficult problem in general, we have found an infinite
class of complete graphs with such an orthogonal decomposition with respect to
GKa,.

LEMMA 2: If 2n — 1 is prime and there exists a spanning tree of Ko,
containing exactly one edge of each length 1,2,...,n — 1 which is orthogonal
to the one-factorization GKo,, then there exists a decomposition of Ks, into
spanning trees orthogonal to GKs,,.

Proof. Let E; be the set of all edges in Ky, of length [ and let ¢; € E). Since
each one-factor of G K, contains exactly one edge of each length, a spanning tree
consisting of £} — {e; } along with the infinite edge to the center of ¢ is orthogonal
to GKyp,. Thus the spanning tree described in the statement of the lemma defines
which edges e; will be deleted from E; for! = 1,2,...,n — 1 to form the other
spanning trees. il
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Without the spanning tree described in the statement of the lemma, if 2n —1 =
p is prime the proof of the lemma describes the construction of # — 1 spanning
trees orthogonal to G K, namely, E; — f; together with the infinite edge centred
at fi,1 <1 < n—1, where the f; are chosen so that no two have the same centre
and f; has length [. In general, the construction provides M{—l) spanning trees
orthogonal to GK,, because E; is a tree if and only if { and 2n — 1 are relatively
prime.

THEOREM 3: If 2n — 1 = p is a prime of the form 8m + 7 then there
exists an orthogonal decomposition of Ko, into spanning trees with respect to the
one-factorization GKop,.

Proof: We will construct a spanning tree of the type described in the lemma.
To that end consider the group G whose elements are {1,2,...,n — 1} and whose
operation is defined as a-b = min{ab,p—ab} (mod p). Ifa-b=p- ab we will
say that the result has been reduced by absolute value since the group operation is the
same as reducing ab modulo p to one of the values {—(n—1),....0,1,....n— 1}
and then taking the absolute value of the result. Now consider the set H = {2715 =
0.1,...k}, where the multiplication performed as in G, and k is the smallest value
sothat 28+! =1, Thus 2% = :i:‘lg—l (mod p). For the following we calculate 27
recursively, for j # 0,27 = 2-27~1. Then 27, j # 0, is an odd number in H iff
27 has been reduced by absolute value. Thus if we were not taking absolute value,
but leaving the numbers as positive or negative, each odd number in H would
correspond to a change of sign. Hence 2k = —P;—l = %1 iff H contains an
even number of odd numbers. Let K = {245 = 0,1,...k} where 27 is reduced
modulo p but not by absolute value.

We now construct the spanning tree needed for the application of Lemma 2.
We begin with the spanning star centered at co. From now on, whenever we add
an edge of finite length, we also remove the infinite edge containing its center. So
add all the edges with one endpoint 0 and the other endpoint in KX, and remove
the appropriate infinite edges. The center of each edge {0,27} is 2/ ~1and is thus
adjacent to 0 if j # 0. The center of the edge {0, 1} is &2*—1 which is adjacent to
0 iff H contains an even number of odd numbers. Thus we still have a connected
spanning graph iff H contains an even number of odd numbers.

If H = G then the spanning tree is finished since there is an even number of
odd numbers less than 1%‘- whenp = 8m+7. If H # G then G can be partitioned
by the cosets of H. Thus we continue the construction of the spanning tree by
letting the elements of the corresponding cosets of K determine the endpoints of
new edges incident with 0. Again, we remove the infinite edges containing the
centers of these new edges and the centers determined by cK will also be in cK
iff there is an even number of odd numbers in cH.
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Thus it remains to show that H and cH contain an even number of odd
numbers. We show first that the parity of the number of odds (evens) in H is the
same as the parity of the number of odds (evens) incH. We can assume that cis odd.
Otherwise we could write ¢ = 2¢(2r + 1) and since £2¢ € H, cH = (2r + 1)H.
Now suppose H = {1,by,...,bs}, where b; = 2% reduced to an element of G, and
consider cH = {c,¢by. ..., cby } unreduced modulo p or by absolute value. Since
¢ is odd, the parity of cb; is the same as that of b;. And when we reduce cb; to an
element of G, note that the parity of cb; changes with each reduction by p as well
as with reduction by absolute value. Thus we want to show that the total number
of reductions in cH is even. We will do this by showing that cb; is reduced an odd
number of times by p iff ¢cb; -, is reduced by absolute value.

Suppose that Ip < cb; < (I + 1)p so that ¢b; must be reduced ! times by p.
Then consider ¢b;_, and note that b; = 2b;_; orb; = p — 2b;_;. If b; = 2b;_,
then cb;_, = %"- ) L,f- < chisy < Q%lm. Thus cb;_; is or is not reduced by
absolute value as [ is odd or even.

Ifb; =p—2b;_; thenlp < cp — 2¢bi—) < (I +1)por CT"p > chioq >
ﬂ’;—llp and again cb;_, is or is not reduced by absolute value as ! is odd or
even. Taking the same calculations backwards yields the converse. Thus cb;_ is
reduced by absolute value iff ¢cb; is reduced an odd number of times by p. Note
that cby. is never reduced by absolute value since b, = ”—;—l so cby = <= and
(551)p < B¢ < 2. Thus if there is an even number of odd values in H then
the same will be true for all cosets of H and the spanning tree can be completed.

Now if p = 8m + 7 there are 2m + 2 odd values and 2m + 1 evens among the
4m + 3 finite edge lengths. Since the parity of the number of odd values remains
the same among the cosets of H, and there is an odd number of cosets of H, each
coset must contain an even number of odd values. §

Since by Dirichlet’s Theorem there is an infinite number of primes of the form
8m + 7 we have an infinite family of K>, with an orthogonal decomposition. It
should be noted that while it is true that the construction in the proof of Theorem
3 works for some prime numbers of the form 8m + 1, 73 and 89 for instance,
it does not work in general since it is possible to have an even number of cosets
each containing an odd number of odd values. It is not clear whether it works for
infinitely many primes of this form. And, of course, if p = 8n + 3 or 8m + 5
there is an odd number of odd values so the construction cannot work.
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