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ABSTRACT. Suppose we are given a set of sticks of various in-
teger lengths, and that we have a knife that can cut as many as
w sticks at a time. We wish to cut all the sticks up into pieces
of unit length. By what procedure should the sticks be cut so
that the total number of steps required is minimum? In this
paper we show that the following natural algorithm is optimal:
at each stage, choose the w longest sticks ( or all sticks of length
> 1 if there are fewer than w of them) and cut them all in half
(or as nearly in half as possible).

Suppose you have a number of sticks of celery, of various integer lengths,
which you want to chop up into pieces of length one. Suppose further that
you have a knife which can cut at most w sticks at once. You want to cut
up the celery using as few cuts as possible; how do you do it?

In this paper we show that the most reasonable algorithm is the correct
one. Namely, at each stage, choose the w longest sticks and cut them all
in half (or as near as possible). This means that sticks of even length will
be cut exactly in half while sticks of odd length will be cut into two pieces
differing by one; also, if at any stage there are less than w sticks of length
greater than 1 then all of them are cut.
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To illustrate this algorithm, imagine we have a knife which can cut up
to 3 sticks at a time, and that we have two sticks to cut, whose lengths are
9 and 6. On the first step , both sticks are cut , producing four sticks of
lengths 5,4,3,3. On the second step , the biggest three of these four are cut
in half , producing sticks of lengths 3,2,2,2,2,1,3. Then the largest three of
these sticks are cut in half giving sticks of lengths 2,1,1,1,2,2,21,2,1. On
the fourth step , three of these length 2 sticks are cut into two units , and
on the fifth step the remaining two sticks of length 2 are cut. Thus the
algorithm takes five steps to cut the original pair of sticks into units. While
there are other ways to cut the two sticks into units in five steps , we note
that some ways of cutting the sticks require more steps than others. For
example , our first step might consist of cutting the two sticks into pieces of
lengths 6,3 and 3,3. We then might cut units off the ends of the equal sized
sticks producing sticks of lengths 6,2,1,2,1,2,1 and then 6,1,1,1,1,1,1,1,1,1
after two more cuts. We could then cut the 6 into two 3’s. Then two more
steps would be needed to cut the 3's down to units. In all, this method for
cutting the sticks requires six steps.

This algorithm is of course an example of the usual binary “divide and
conquer” algorithms (e.g., [1], §2.6). However, it might be interesting to
observe that our result is not true if our knife has “varying width”. For
example, suppose that we have to chop up just one stick of celery of length
6, and that we only have a knife of width 1, except that for our third cut we
can use a knife of width 3. Then the above algorithm would take four cuts
(6 to 3,3 to 2,1,3 to 1,1,1,2,1 and we’re done on the next step), whereas it
can be done in three cuts another way (6 to 4,2 to 2,2,2 and done on the
next step).

Here is a possible application of our result. Imagine that we are given
a collection of linear strips or reels each consisting of consecutive units
of information joined side by side. Suppose that , in order to read the
information stored in a particular unit on a strip , we detach that unit and
examine it. This creates two linear strips , together containing one less
unit of information. Our cutting problem then is equivalent to having w
“readers” which can read in parallel , and each of which can examine (by
detaching) one unit on one linear strip.

Recent work in the mathematical literature has considered other types
of cutting problems not directly related to our work , for example the old
problem of how to cut a cake fairly (for example , see [2] and [5]), and the
problem of deleting the minimum number of edges from a graph to obtain
two equally sized subgraphs ( for example see (3] and [4]). We have not
seen the celery cutting problem! in the literature.

Let’s begin with a little notation and terminology which will be useful

1not to be confused, incidentally, with the “salary cutting problem” which is currently
in vogue at many universities, and remains unsolved.
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in our discussion. We shall denote a set of ¢ sticks (actually a multiset)
by a t-tuple S = {i1,ls,...,l;} where the l;’s are positive integers, not
necessarily distinct. The /;’s will be called sticks although they are really
lengths of sticks. Any stick of length one is called triviel, the others are
called nontrivial. The algorithm described above , to be proved optimal,
will be called the binary algorithm.

We think of a stick of length ! as consisting of ! units joined linearly
side-by-side , as illustrated in the figure. We thus speak of the two ends of
the stick if it has length bigger than 1. When a cut is made to such a stick ,
it is made between two consecutive units. Any group of k consecutive units
in this stick will be called a piece of length k of the stick I. In particular ,
the units themselves are pieces of length 1, and any two consecutive units
form a piece of length 2.

Let S = {I1,l3,... ,1;} be a set of sticks, and let A(S) = Yi_, Li be the
total length of the sticks in S. We suppose that we have a knife which can
cut at most w sticks at a time , where w is a given positive integer. Note
that , in whatever way we cut S, we select k nontrivial sticks in S , say
i, 0, ..., I, where k is some integer with 1 < k < w, and each of these
sticks /;; is cut into a pair of sticks whose sum is J;;. This results in a set
of sticks T' whose elements are these pairs of sticks , together with all the
other sticks of S which were not selected. We say that T is obtained by
cutting S. Obviously, if T is obtained by cutting S then A(T") = A(S).

Let § = {l1,1,...,1;} be a set of sticks. A procedure for cutting S is a
sequence A = (Ao, A1,. .. , An) of sets where n is some non-negative integer
»Ao=S,A,={1,1,1,...,1}, and where A;;, is obtained by cutting A;
foralli=0,1,...,n—1. We say that n is the number of steps required by
the procedure .A on S. Note that, for later convenience, we allow the trivial
case S = {1,...,1} where no cuts are needed, so n = 0 and A is just (S).

Now the binary algorithm referred to above can be described as follows.
For any set of sticks § = {l;,15,... ,1;}, not all trivial, we let B(S) be the
set of sticks obtained from S as follows. We select the w largest nontrivial
sticks in S (breaking ties arbitrarily), or all of the nontrivial sticks in S if
there are less than w of them. Each of these selected sticks /; is replaced by
two sticks of lengths I;/2 if I; is even , and by two sticks of lengths [1;/2]
and |/;/2] if l; is odd. (So B(S) is obtained by cutting S , the w longest
pieces of S being cut in half.) We consider the sequence By, By,...,B;,...
where By = S, and where B; = B(B;_1) for all ¢ > 0. For some positive
integer m we will have B,, = {1,1,1,...,1}. In the terminology of the
preceding paragraph , the binary algorithm applied to S is the procedure
By = §,By,...,Bn ={1,1,...,1}. We will denote the binary algorithm
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by B.

Note that , in applying the binary algorithm to a given set of sticks S ,
there may be , at various steps , a choice as to which stick or sticks of the
same length are to be cut. While the sequence of sets By = S, By, ... ,B, =
{1,1,...,1} obtained is the same for all such choices (since the elements of
these sets are just the lengths of the sticks), we will still speak of particular
implementations of the algorithm — by this we refer to the particular sticks
which are selected at the times when more than one choice is possible.

We will show below that the number of steps taken by the binary algo-
rithm in cutting any set of sticks S is no more than the number of steps
required by any other procedure for cutting S. Observe that the case when
w =1 is trivial : in this case , since exactly one cut is made at any step of
any procedure , it follows that every procedure requires exactly Z:=l(l,- -1)
steps in cutting a set of sticks S = {l;,1ly,...,l:} . Thus we will assume
that w > 1 from now on. It is also worth noting that , even though the first
step of the binary algorithm , applied to a set of sticks S , produces the
lexicographically smallest set of sticks that can be obtained from S in one
cutting step , this does not lead to a direct proof of optimality. It is possible
for another cutting procedure to produce a lexicographically smaller set of
sticks after some number of steps than the binary algorithm does in the
same number of steps. As an example of this ,suppose we take w = 2 ,
and let S = {11}. Three steps of the binary algorithm produces the sets
{6,5},{3,3,3,2},{3,2,1,2,1,2}. Another procedure for cutting S produces
{7,4},{4,3,2,2},{2,2,2,1,2,2}. The third set from the binary procedure
is lexicographically larger than the third set produced by the second pro-
cedure , since it has a bigger largest element (we thank Bill Martin for this
observation).

Our proof of the optimality of the binary algorithm is an induction based
on the idea of a prevailing pair which we now describe.

Consider an implementation of the binary algorithm B for cutting a set
of sticks S = {l3,l2,...,l:}. Let l; be a nontrivial stick in S, and let a and
b be two consecutive units of the stick I;. The pair {a,b} will be called a
prevailing pair for this implementation of B if the following three conditions
are satisfied :

(i) at any step of the procedure , any stick s which contains the pair {a, b}
is only cut if all other sticks then existing which have the same length as s
are cut as well;

(ii) whenever a stick of odd length containing the pair {a,b} is cut , the
pair {a, b} remain together in the bigger of the two pieces;

(iii) the cut which splits the two units a and b from one another occurs
by cutting the length 2 stick {a, b} (this stick having been obtained at some
point in the procedure).
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Lemma 1. Let S = {ly,l2,...,l:} . Let l; be a nontrivial stick in S, and
let a and b be two consecutive units at one end of l;. Then there is an
implementation of the binary algorithm on S in which {a,b} is a prevailing
pair.

Proof: We just implement the procedure so that conditions (i) and (ii)
above are satisfied at every step. Since a and b will always be together at
one end of any piece containing them , this is certainly possible to do , and
a and b will not be split from one another until they occur together as a
stick of length 2. O

It can further be shown that, if the stick {; in Lemma 1 is a longest stick
in S, then the two units a and b are not cut apart until the final step of
the procedure. We will not need this fact, however.

In discussing a procedure for cutting a set of sticks S, we will find it useful
to use the following term. For any stick s which occurs in the procedure ,
we refer to the ancestors of s ; by this we mean the sticks occurring earlier
in the procedure which contain s.

Lemma 2. Let S = {l;,l5,...,l:}, and let @ and b be consecutive units
at one end of the stick of length ly. Suppose that {a,b} is a prevailing
pair in a particular implementation of the binary algorithm B. Let S* =
{li = 1,lp,... ,1:} be the set of sticks obtained from S by considering the
pair {a,b} to be a single unit at the end of the stick ;. Let B* be the
procedure on S* obtained from B in the obvious manner, the only change
being that when the pair {a, b} is split apart by B we do not make this cut
but leave a and b together. Then B* is an implementation of the binary
algorithm acting on S*.

Proof: We only need to observe that

(i) at each stage, w sticks will be cut whenever there are at least that
many nontrivial sticks available, and otherwise all nontrivial sticks will be
cut. For the only cut in B which is not made in B* is the one cutting the
prevailing pair, and by condition (i) above this cut is not made in B unless
all other nontrivial sticks at that stage are cut as well. Furthermore , this
implies that , in B* , it is always the largest pieces which are cut at any
stage.

(ii) each cut in B* cuts each stick “in half”. This is clearly true for non-
ancestors of the stick {a,b}. Any ancestor of {a, b} of even length 2r in B
becomes a stick of odd length 2r — 1 in B* . Since in B this stick is cut
into two sticks of length r (one containing the prevailing pair), in B* the
corresponding stick will be cut into two sticks of lengths r and r — 1. When
an ancestor of {a,b} of odd length is cut in B, {a,b} is always part of the
larger piece in B. This corresponds in B* to cutting an even length stick
into two equal halves. (m}
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Here is an illustration of the induced binary algorithm described in
Lemma 2. Let us take a set of two sticks of lengths 19 and 5 and sup-
pose we can cut up to five sticks at a time , so that w = 5. We choose
a pair of units at the end of the stick of length 5, and we implement the
algorithm B so that this pair is prevailing. As we run through the steps of
the procedure, the stick which contains this pair will be denoted with an
asterisk. So to begin with we have the set of sticks S = By = {19,5*}. We
cut both sticks in half to get By = {10, 9, 3*,2}. We then cut all four sticks
of B in half to get B2 = {5,5,5,4,2%1,1,1}. Then the five biggest sticks
in Bj are cut to give B3 = {3,2,3,2,3,2,2,2,1,1,1,1,1}. At this point our
prevailing pair has been split apart. We again cut the five biggest sticks to
get

B; ={2,1,1,1,2,1,1,1,2,1,2,2,2,1,1,1,1,1}.

Cutting five of the remaining 2’s gives
Bs=1{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
and cutting the last 2, we end with
Bs={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1}.

In applying the algorithm B*, each of the sticks marked with an asterisk
is thought of as a stick with length one less. When the prevailing pair is
cut by B, the stick containing it has become a 1 (as seen by B*), and this
cut is just ignored by B*. This special 1 just sits there the rest of the way.
Thus B* is the following procedure (the special unit corresponding to the
prevailing pair is indicated with an asterisk):

S§* =By ={19,4}; B} ={10,9,2,2};

B3 = {5,5,5,4,1*,1,1,1}; B3 ={3,2,3,2,3,2,2,2,1*,1,1,1};
B; =1{2,1,1,1,2,1,1,1,2,1,2,2,2,1%*,1,1,1};
B ={2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1%,1,1,1};
Bs ={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1*,1,1,1}.

If we ignore the asterisk on the 1, this is just the binary algorithm applied
to {19,4} with w =5.

Lemma 3. Let S = {l3,15,...,l;}. Apply the binary algorithm B to S,
yielding the sequence of sets By = S, By, Bs,... . Let A be any other cut-
ting procedure applied to S, given by the sequence of sets Ag = S, A1, As,....
Then there is no integer k such that

Bi={1,1,...,1,2,2,...,2,3} and Ax={1,1,...,1,2,2,...,2},
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where By has at most w —1 2’s.

Proof: Suppose such a k exists. We first prove by induction on ¢ that,
for every ¢ < k, the set Bg_; has a unique longest stick and its length is
2¢+14 1, and there are at most w sticks in Bi_; whose lengths are > 2* +1.
This statement is true for ¢ = 0 by assumption.

Now assume that the statement is true for some ¢ < k. Since the two
largest elements of Bi_; have sum at most (2¢t! 4 1) 4 281 = 2142 1 1
there can be no element larger than this in Bg—;_. If the stick p of length
2¢+1 1 1 in By_; was also present as a stick in Bjx_;_;, then because it was
not cut in forming Bj_; there must have been at least w other sticks in
Bi—i—1 of lengths at least 2i+14+1 which were cut, and these together with p
would have resulted in at least w+1 sticks in Bg_; of lengths at least 2! +1,
contradicting the induction hypothesis. Thus the stick p must have come
from a stick of length exactly 212 + 1 in B,_;_;. By the uniqueness of p
there cannot be two sticks of this length in Bj_;_;. Similarly, if there were
more than w sticks of lengths at least 2!¥! 41 in B_;_,, these would give
rise to more than w sticks in Bjx_; of lengths at least 2¢ 4 1, contradiction.
This proves the statement.

Next we observe that every stick in Ax—; has length at most 2¢+1. This
is true when ¢ = 0, and since the longest stick in Ag_;_; is at most twice
the length of the longest stick in Ax—;, the statement follows by induction.

The preceding paragraphs imply that Ax_; is not equal to By—; for any
i, contradicting Ag = By. m]

Now we are ready to prove our main result.

Theorem. Let S = {l},ls,...,l;}, not all trivial. Apply the binary
algorithm B to S, yielding the sequence of sets Bo = S, By, Ba,... ,Byp =
{1,1,...,1}. Let A be any other cutting procedure applied to S, given
by the sequence Ag = S, Ay, Az,... ,An = {1,1,...,1}. Then m < n and
for each i € {0,...,m} the number of sticks in B; is at least as big as
the number of sticks in A;. (In particular, m < n says that the binary
algorithm is optimal.)

Proof: The proof is by induction on A(S). It is clearly true if all the ;’s
are equal to 1 or 2. Now choose some S = {l3,ls,...,l;} and assume the
result holds for all sets of sticks of smaller total length. Choose a stick s
of length two which was cut at the last step of A, so that s was one of
the sticks of A,,_;. Locate the original stick of S which is an ancestor of
s; we can assume it is /;. By Lemma 1, we can assume that B has been
implemented on S in such a way that there is a prevailing pair {a,b} at
one end of the stick /;. Asin Lemma 2, let $* = {l; —1,5,...,l;} be the
set of sticks obtained from S by considering the pair {a, b} to be a single
unit at one end of the stick /; , and let B* be the procedure described in
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Lemma 2. This is an implementation of B on S*, yielding the sequence of
sets B = S*,Bt, B3,... ,B;, = {1,1,...,1}. Note that each B} differs
from B; only in the length of the appropriate ancestor of {a,b}, until the
step when B cuts the piece {a, b} itself, after which each B} contains one
less 1 than the corresponding B; does. Also, m’ = m unless {a, b} is the
only piece cut at this step; this must therefore occur at the last step, i.e.,
B, contains the stick {a,b} and no other nontrivial pieces. In this case
m’ will equal m — 1.

Similarly , by thinking of the two units which make up the stick s as
a single unit throughout the procedure A , we see that A gives rise to a
procedure on S$* given by the sequence of sets Aj = S*, A}, 45,... , A}, =
{1,1,...,1}. As before, the only times A; can have more pieces than A} is
after s has been cut by .A. But we chose s so that this doesn’t happen until
the last step, so the only such example is that A, has one more 1 than A},
does. Also, n = n’ unless A,_1 contains only one 2, namely s, in which
case A}_, containsonly I'sand n’ =n - 1.

By induction, since A(S*) < A(S) , we have that m’ < n’, and for each i
the number of pieces in B} is > the number of pieces in A}. From above,
this will imply that m < n and the number of pieces in each B; is > the
number of pieces in A;, unless m — 1 =m’ =n’ =n, Bn,_; contains {a, b}
and no other nontrivial pieces, and A,,_; contains s plus at least one (but
at most w — 1) other 2’s and no other nontrivial pieces. In this latter case ,
we now observe that the nontrivial elements of B,,_; == B,,_2 can be either
exactly w + 1 2’s, or exactly one 3 and less than w 2’s. For otherwise:

o if there were a stick of length 5 or more in B,,_; it would produce a
stick of length 3 or more in B,,.

o if there were a stick of length 4 or two sticks of length 3 in B,_;, this
would result in at least two 2’s in B,,.

o if there were a 3 and w 2’s, or if there were at least w+2 2’s, in B,,_;
, this would also produce two 2’s in B,.

e if B,_; consisted of less than w + 1 2’s , this would mean that B,
has no nontrivial sticks at all.

But if B,,_; contained only some number of 1’s and exactly w + 1 2’s
(one of which must be {a,b}), Bj_,; would contain 1’s and exactly w 2’s,
while A}, _, contains 1’s and less than w 2’s. Since the sum of the lengths
of sticks in Bj;_; and in Aj,_, are the same, namely one less than \(S),
and since Bj,_; has at least as many pieces as Aj,_,, this is impossible.
Therefore the nontrivial sticks in B, _; must consist of one 3 and less than
w 2’s. This means that B, and Aj satisfy the conditions of Lemma 3 for

k=mn—1, which is impossible. 0
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