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ABSTRACT. Maximal partial spreads of the sizes 13,14, 15,...,
22 and 26 are described. They were found by using a computer.
The computer also made a complete search for maximal partial
spreads of size less then or equal to 12. No such maximal partial
spreads were found.

1 Introduction

Maximal partial spreads were first studied by Dale Mesner [9]. He had his
children select sets of mutually skew lines of PG(3,3). They first chose
one line of PG(3,3). Then they picked a new line, skew to the first chosen
line, and so on. The children of Mesner certainly worked randomly and
non-sytematically. Mesner observed that either this game terminated in a
complete spread with 10 lines or the children were unable to find any more
skew lines after seven lines had been choosen. This latter kind of partial
spreads nowadays are called maximal partial spreads. Aiden A. Bruen and
several others continued the study of maximal partial spreads, see e.g. 8,
p. 76-85] or [7].

We had a computer search for maximal partial spreads in PG(3,5). The
computer found maximal partial spreads of the sizes 13,14, 15,...,22 and
26. (They are described in section 3.) By results of [9], [3] and [5] there
cannot exist maximal partial spreads of a size less than 11 or of the sizes
23, 24 and 25. We also had the computer perform a complete search for
maximal partial spreads of size less then or equal to 12. However, no such
maximal partial spread was found. Let us also remark that maximal partial
spreads in PG(3, 5) were already described for the sizes 21, 22 and 26, see

e.g. [8, p. 81].
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2 Notations and algorithm

For basic geometric facts, see e.g. [2].

Lines of PG(3, 5) are considered as 2-dimensional subspaces of the direct
product GF(25) x GF(25). We will always assume that the line {0} x
GF(25) is contained in a maximal partial spread. Lines skew to this line
may be described as subspaces [a,8] = {(z,az + bz®) | £ € GF(25)} of
GF(25) x GF(25) where a and b are elements of GF(25), see [7]. Let nbe a
primitive element of GF(25) and let H denote the multiplicative subgroup
H = {n*,n%,...,n%* = 1} of GF(25)\ {0}. It was proved in (7] that two
lines [a, b] and [c, d] intersect if and only if

a—c=(b-d)h 1)

for some element A € H. In our search for maximal partial spreads we used
the primitive element 7 of GF(25) satisfying the equation n? =4n+3. Let
. denote the element ¢ = 9* —7?°. As ¢ belongs to GF(25)\ GF(5) we may
denote the line [a, b] by a 4-tuple (a, 8,7, §) where a = a+:8 and b = v+ )
and where o, B, v and & belongs to GF(5). This will be the notation of
lines used below.

As the elements of H are the only elements of GF(25) satisfying h® = 1
we conclude that equation (1) is equivalent to the equation

(@a—c)f=(b-a)° (2)

We note that (a4 ¢3)% = (o — ¢f) and hence (o + B)6 = o® + 4262, As
12 = 3 we thus get that two lines (o, 8,7, 6) and (o', 8',7',6') intersect if
and only if

(@— o) +3(8-B) = (vy—7)*+3(6 - §)? (mod 5). (3)

This condition was used in the algorithm to check whether or not two
lines intersect. The advantage of equation (3) is that we do not have to
make any calculations in GF(25).

The main idea in the algorithm was, in a systematic way, to perform the
game of the children of Mesner, see the introduction. Using automorphisms
in PG(3,5) we can always assume that a maximal partial spread contains
the three lines lp = {0} x GF(25), l; = (0,0,0,0) and Iz = (0,0,0,1). We
then determine all lines that are skew to these lines. They are placed in a
file f3. In the second step we choose a line I3 of f3 and determine which of
the lines of fs that is skew to l3. These new lines are placed in a file f4 and
so on. When you come to a situation where for a line I; there are no lines
of the file fi skew to l; then the lines lp, 1y, ...,k will constitute a maximal
partial spread of size k + 1. The intention was to use backtracking to get a
complete search.
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We used a SPARCstation 5 to perform this simple algorithm written
in C. The problem was that the computer was not fast enough for mak-
ing a complete search. We hence had to make some improvements of the
algorithm and changes in the ambitions of the search.

We decided only to be interested in the possible number of lines of a max-
imal partial spread. Some more or less randomly searching on the computer
very quickly gave maximal partial spreads of the sizes 14,15, ...,22 and 26.
We thus were able to concentrate on a search for maximal partial spreads of
size less then or equal to 13. This speeded up the random search so that we
very quickly produced a maximal partial spread of size 13. With this new
knowledge we hence could concentrate on a complete search for maximal
partial spreads of size less then or equal to 12.

We get one improvement of the algorithm from the following simple ob-
servation: Of the two last lines lx_; and s of a maximal partial spread
S = {lo,1,...,lx} appearing from the algorithm, at least one must inter-
sect at least half of the lines in the file fx_;. Similarly, of the three last
lines lx_2, lx—1 and [, at least one must intersect at least one third of the
lines of the file fi_». By implementing this in the algorithm the computing
time was further reduced.

Any line of PG(3,5) is contained in the maximal partial spread or is
intersected by a line of the maximal partial spread. Consequently, if the
first line ! of a file f; is not contained in the maximal partial spread, then
the line I; of the resulting maximal partial spread must intersect the line
l. This condition was also implemented in the algorithm for k < 9, which
reduced the computing time for a complete search.

Let S denote any maximal partial spread of PG(3,5) of size less then
or equal to 12. We observed that there must be a regulus R of PG(3, 5)
such that the intersection of R and S contains exactly three lines. This can
for instance be proved by considering the four equations 17.12 - 17.15 of
Lemma 17.6.3 in [8, p. 78]. An assumption that to any three lines of S there
is a fourth line of S, such that these four lines are contained in the same
regulus of PG(3, 5), will contradict these four equations. We may thus, by
using automorphisms of PG(3,5), without loss of generality, assume that
S contains the lines iy = {0} x GF(25), I, = (0,0,0,0), I = (0,0,0,1) but
none of the lines | = (0,0,0,2), I’ = (0,0,0,3) and I = (0,0,0,4). These
six lines together constitutes a regulus R. Let [ and I be any two lines of
the opposite regulus. Denote the intersection point of I and ! by P and the
intersection point between I’ and I’ by P’.

The lines I, and !’ and !” must be intersected by lines of S. Again
considering those automorphisms of PG(3,5) fixing lp, {; and I3, we may
conclude that one of the following three cases must appear for a maximal
partial spread S of size less then or equal to 12:
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Case 1: There are lines I3 and l4 of S such that the line i3 meets the points
P and P’ and the line I, meets the lines !’ and I”.
Case 2: Equals the first case, but the only line of ® that the line ly
intersects is the line 1.
Case 3: There are three lines I3, l4 and 5 of S such that the only point of
R that I3 meets is the point P, the only line of ® that the line l4 intersects
is the line I’ and the only line of R that the line l5 intersects is the line 1.
By considering only these three cases and implementing the above im-
provements in the original simple backtracking algorithm, we were able to
perform a complete search for maximal partial spreads of size less then or
equal to 12. The computing time on the SPARCstation 5 was only some
weeks. The result was that there were not any.

3 Results

We found very many maximal partial spreads of size larger then 12. In this
section we present one of each size.

All our maximal partial spreads contain the eight lines in the following
set:
{b,1,(0,0,0,1),(1,0,2,3),(1,0,2,4),(1,0,2,0), (0,0,1,1),(0,0,2,0)}.
The maximal partial spread of size 13 also contains the five lines in the
following set:
{(0,0,2,2),(0,0,2,4),(1,0,0,2),(1,0,4,2), (2,0,0,1)}.
The maximal partial spread of size 14 also contain the six lines in the set
{(0,0,4,2),(1,0,3,3),(1,0,4,3),(1,3,0,4), (2,2,0,4), (4,0,2,4)}.
The maximal partial spread of size 15 also contains the following seven lines:
{(0,0,2,1),(0,0,2,2),(0,0,2,4),(0,3,4,0), (2,1,2,4),(4,1,4,0),(4,2,1,0)}.
The maximal partial spread of size 16 also contains the following eight lines:
{(0,0,2,1),(0,0,2,2),(0,0,2,4),(0,0,3,2), (0,0,4,3),(1,0,0,2)
(2,1,2,4),(4,4,2,4)}.
The maximal partial spread of size 17 also contains the following nine lines:
{(0,0,2,1),(0,0,2,2),(0,0,2,3),(0,0,2,4),(0,0,3,2),(0,0,4,2),
(0,3,0,0),(4,0,2,4),(4,4,2,4)}.
The maximal partial spread of size 18 also contains the following 10 lines:
{(0,0,2,1),(0,0,2,2),(0,0,2,3),(0,0,2,4), (0,0,3, 2),(0,0,4,2),
(0,0,4,3),(2,1,2,0),(2,1,2,3),(2,1,2,4)}
The maximal partial spread of size 19 also contains the following 11 lines:
{(0,0,2,1),(0,0,2,2),(0,0,2,3),(0,0,2,4), (0,0,3, 2),(0,0,4,2),
(0,3,0,0),(1,2,0,0),(2,1,2,0), (4,0,2,3), (4,4,2, 0)}.
The maximal partial spread of size 20 also contains the following 12 lines:
{(0,0,2,1),(0,0,2,2),(0,0,2,3), (0,0,2,4),(0,0,3,2),(0,3,4,0),
(1,2,4,0),(1,4,4,0),(2,1,2,4),(4,0,2,4), (4,1,4,0), (4,4,2,4)}.
The maximal partial spread of size 21 also contained the following 13 lines:
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{(0,0,2,1),(0,0,2,2),(0,0,2,3),(0,0,2,4), (0,0,3,2), (0,0,4,2),

(01 0! 4) 3)) (2) 1) 25 0)) (21 l, 2, 3)1 (4’ 0! 21 0)) (4) 0) 21 3)’ (4’ 4’ 27 0)’ (41 4) 2) 3)}'
The maximal partial spread of size 22 also contains the following 14 lines:
{(0,0,2,1),(0,0,2,2),(0,0,2,3),(0,0,2,4),(0,0,3,2), (0, 3,0,0),
(0,3,0,1),(0,3,4,0),(0,4,1,1),(31,2,0,0),(1,2,0,1),(1,2,4,0),
(3,1,1,1),(4,0,2,4)}.

The maximal partial spread of size 26 also contains the following 18 lines:
{(0,0,2,2),(0,0,2,4),(0,2,3,0),(0,3,0,1),(0,3,4,0), (0,4,1,1),

(1) 2) 0’ 0)’ (2) 1’ 2) 3)’ (2’ 1)4’ 2), (2, 2) 0, 1), (2’ 31 11 3)’ (2’ 3’ 2, 2)!
(3,1,1,1),(3,1,2,2),(3,2,1,4),(4,1,3,0), (4,2,1,0), (4,4,2,0)}.

4 A remark

A similar algorithm has also been used for performing a search for maximal
partial spreads in PG(3,7). The search is not completed yet. As so far
only maximal partial spreads of sizes 23,24, ... have been found. However
the existence of maximal partial spreads of these sizes are already known,
see [7] and [6]
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