Two families of graphs that are not CCE-orientable David C. Fisher Department of Mathematics University of Colorado at Denver, Denver, CO 80217-3364, U. S. A. Suh-Ryung Kim* and Chang Hoon Park* Department of Mathematics Kyung Hee University, Seoul 130-701, Korea Yunsun Nam[†] Department of Mathematics Ewha Womans University, Seoul 120-750, Korea #### Abstract Let D be a digraph. The competition-common enemy graph of D has the same set of vertices as D and an edge between vertices u and v if and only if there are vertices w and x in D such that (w, u), (w, v), (u, x), and (v, x) are arcs of D. We call a graph a CCE-graph if it is the competition-common enemy graph of some digraph. We also call a graph G = (V, E) CCE-orientable if we can give an orientation F of G so that whenever (w, u), (w, v), (u, x), and (v, x) are in F, either (u, v) or (v, u) is in F. Bak et al. [1997] found a large class of graphs that are CCE-orientable and proposed an open question of finding graphs that are not CCE-orientable. In this paper, we answer their question by presenting two families of graphs that are not CCE-orientable. We also give a CCE-graph that is not CCE-orientable, which answers another question proposed by Bak et al. [1997]. Finally we find a new family of graphs that are CCE-orientable. Key words: competition graphs, CCE-graphs, CCE-orientable graphs. ^{*}The authors thank the Research Institute of Basic Sciences of Kyung Hee University for its support and the Korean Ministry of Education for its support under grant BSRI-97-1432. [†]This work is supported by Faculty Research Fund of Ewha granted in 1998 #### 1 Introduction The competition-common enemy graph (CCE-graph) of a digraph D has the same set of vertices as D and an edge between vertices u and v if and only if there are vertices w and x in D such that (w,u), (w,v), (u,x), (v,x) are arcs of D (for all undefined graph theory terminology, see [2, 6]). We will call a graph a CCE-graph if it is the CCE-graph of some digraph. The notion of competition-common enemy graph was introduced by Scott [15] in 1987 as one of the variants of competition graph which has been studied by many authors. The literature of competition graph is summarized in [9, 10, 13, 16]. There have been efforts to characterize competition graphs of various digraphs. Dutton and Brigham [3] gave a necessary and sufficient condition for a graph to be a competition graph. Roberts and Steif [14] characterized the competition graph of a loopless digraph. Most recently, Fraughnaugh et al. [4] characterized the competition graph of a strongly connected digraph. Regarding CCE-graphs, Scott [15] gave a necessary and sufficient condition for a graph to be a CCE-graph. From the view point that the condition is too complicated to be of practical use in checking whether or not a given graph is a CCE-graph, Bak et al. [1] sought a better characterization of CCE-graphs and found interesting classes of CCE-graphs by introducing a new notion called CCE-orientable graph. An orientation F of a graph G is a digraph on its vertices such that uv is an edge of G if and only if exactly one of (u, v) or (v, u) is an arc of F. Then F is a CCE-orientation of G if whenever (w, u), (w, v), (u, x), and (v, x) are arcs, uv is an edge of G. We say G is CCE-orientable if it has a CCE-orientation. They showed that any CCE-orientable graph is a CCE-graph, and bipartite graphs and chordal graphs are CCE-orientable. They also presented an algorithm for constructing another CCE-orientable graph out of a CCE-orientable graph. In the same paper, they proposed an open question of finding graphs that are not CCE-orientable. In Section 2, we answer their question by giving two families of graphs that are not CCE-orientable. We also give an example of a CCE-graph that is not CCE-orientable. This answers another question proposed in the same paper. In Section 3, we give another class of graphs that are CCE-orientable graphs and therefore CCE-graphs. In Section 4. we propose some interesting open questions. ## 2 Two families of graphs that are not CCE-orientable Lemma 1 gives conditions on a CCE-orientation of a complete bipartite graph. **Lemma 1** Let $K_{m,n}$ have vertices $u_1, \ldots, u_m, v_1, \ldots, v_n$ and edges $u_i v_j$ for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$ (see Figure 1(a)). Let F be a CCE-orientation of $K_{m,n}$. If $m \geq 2$ and $n \geq 4$, then u_1, \ldots, u_m either all have at most one out-neighbor, or all have at most one in-neighbor in F. Figure 1 – Constructions from Lemma 1. Graph (a) shows $K_{m,n}$. In (b), we assume a CCE-orientation has a vertex u_1 with at least two in-neighbors and at least two out-neighbors, which leads to a contradiction if $m \geq 2$. In (c), we assume a CCE-orientation has a vertex u_1 with at most one out-neighbor, and a vertex u_2 with at most one in-neighbor. This also gives a contradiction if $n \geq 4$. **Proof.** Suppose a vertex, say u_1 , has two out-neighbors in F, say v_1 and v_2 , and two in-neighbors, say v_3 and v_4 . Then one of v_1 or v_2 , say v_1 , is an out-neighbor of u_2 ; for otherwise, arcs (u_1, v_1) , (u_1, v_2) , (v_1, u_2) and (v_2, u_2) would force edge v_1v_2 (see Figure 1b). Similarly, one of v_3 or v_4 , say v_3 , is an in-neighbor of u_2 . Then arcs (v_3, u_1) , (v_3, u_2) , (u_1, v_1) and (u_2, v_1) force edge u_1u_2 , a contradiction. Thus each of u_1, \ldots, u_m has at most one out-neighbor, or at most one in-neighbor in F. Now suppose a vertex, say u_1 , has at most one out-neighbor, while another vertex, say u_2 , has at most one in-neighbor (see Figure 1(c)). Since $n \geq 4$, at least two vertices, say v_1 and v_2 , are in-neighbors of u_1 and outneighbors of u_2 . Then arcs (u_2, v_1) , (u_2, v_2) , (v_1, u_1) and (v_2, u_1) force edge v_1v_2 , a contradiction. Therefore u_1, \ldots, u_m either all have at most one out-neighbor, or all have at most one in-neighbor. Let H be a graph on vertices v_1, \ldots, v_n . Let G_1, \ldots, G_n be pairwise vertex-disjoint graphs. Then the composition graph $H[G_1, \ldots, G_n]$ is the union of G_1, \ldots, G_n with all edges between vertices of G_i and G_j whenever $v_i v_j$ is an edge in H (see Figure 2). Let I_n be the edgeless graph on n vertices. We then have the following theorem: Figure 2. Theorem 2 shows this is not CCE-orientable. It is the smallest known graph that is not CCE-orientable. **Theorem 2** Let $m \geq 5$ be an odd integer. Let $n_1, \ldots, n_m \geq 2$ be integers with either $n_i > 2$ or $n_{i+1} > 2$ for all $i = 1, \ldots, m-1$, and either $n_m > 2$ or $n_1 > 2$ (i.e., when viewed circularly, the sequence n_1, \ldots, n_m does not have consecutive two's). Then $C_m[I_{n_1}, \ldots, I_{n_m}]$ is not CCE-orientable. **Proof.** Suppose $C_m[I_{n_1},\ldots,I_{n_m}]$ has a CCE-orientation F. Since m>3, the vertices of $I_{n_{i-1}}$, I_{n_i} and $I_{n_{i+1}}$ (identify n_0 as n_m , and n_{m+1} as n_1) induce a complete bipartite graph. Since $n_i \geq 2$ and $n_{i-1} + n_{i+1} \geq 4$, Lemma 1 shows the vertices of I_{n_i} either all have at most one out-neighbor, or all have at most one in-neighbor. Classify $i=1,\ldots,m$ as "Type A" if every vertex of I_{n_i} has at most one out-neighbor, and "Type B" otherwise. Since m is odd, there must be i and j of the same type where either j=i+1, or i=n and j=1. If both i and j are Type A, then F has at most n_i arcs from I_{n_i} to I_{n_j} , and at most n_j arcs from I_{n_j} to I_{n_i} . There are $n_i n_j$ edges between I_{n_i} and I_{n_j} in $C_m[I_{n_1},\ldots,I_{n_m}]$. Since $n_i,n_j\geq 2$ and either $n_i>2$ or $n_j>2$, we have that $n_i+n_j< n_i n_j$. Thus not every edge between I_{n_i} and I_{n_j} can be oriented in F, a contradiction. A similar contradiction results if i and j are both Type B. Now we give another family of graphs that are not CCE-orientable. Let the Cartesian product of graphs G and H be the graph $G \times H$ on vertices (g,h) for all vertices $g \in G$ and $h \in H$ with edges $(g,h_1)(g,h_2)$ for all edges h_1h_2 in H, and $(g_1,h)(g_2,h)$ for all edges g_1g_2 in G (see Figure 3). A coloring assigns labels to vertices so that neighbors have different labels. The chromatic number $\chi(G)$ is the minimum number of labels used in a coloring of G. **Theorem 3** If $G \times C_3$ is CCE-orientable, then $\chi(G) \leq 8$. Figure 3 – A CCE-orientation F of $G \times C_3$. **Proof.** Let v_1, \ldots, v_n be the vertices of G. Let $G \times C_3$ have vertices $x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n$, with edges $x_i y_i, x_i z_i$ and $y_i z_i$ for all $i = 1, \ldots, n$; and edges $x_i x_j, y_i y_j$ and $z_i z_j$ for all edges $v_i v_j$ in G (see Figure 3). Let F be a CCE-orientation of $G \times C_3$. Let G_1 , G_2 and G_3 be spanning subgraphs of G where v_iv_j is an edge of G_1 , G_2 , or G_3 , if x_ix_j and y_iy_j , x_ix_j and z_iz_j , or y_iy_j and z_iz_j , respectively, have the same orientation in F (see Figure 4). Since at least two of x_ix_j , y_iy_j , and z_iz_j have the same orientation, every edge of G is in either G_1 , G_2 , or G_3 . Let $v_i v_j$ be an edge of G_1 . Then $x_i x_j$ and $y_i y_j$ have the same orientation in F. Since $x_i y_j$ and $y_i x_j$ are not edges of $G \times C_3$, we must have that $x_i y_i$ and $x_j y_j$ have opposite orientations in F. The vertices of G_1 may be partitioned into two classes dependent on the orientation of $x_i y_i$ in F. These form a coloring showing that G_1 is bipartite. Similarly G_2 and G_3 are also bipartite. For j=1,2,3, let $\ell_j(v)$ be a 2-coloring of G_j . For all v_i , let $\ell(v_i)=(\ell_1(v_i),\ell_2(v_i),\ell_3(v_i))$ (see Figure 5). Then ℓ uses eight or fewer labels. Since any edge of G is an edge in either G_1 , G_2 , or G_3 , we have $\ell(v_i) \neq \ell(v_j)$ for all edges v_iv_j in G. So ℓ is a coloring of G, and $\chi(G) \leq 8$. Corollary 4 If $\chi(G) \geq 9$, then $G \times C_3$ is not CCE-orientable. Bak et al. [1] proposed a problem of finding a CCE-graph that is not CCE-orientable. The following theorem answers their question: **Theorem 5** Let G be $K_9 \cup I_4$. Then $G \times C_3$ is a CCE-graph. **Proof.** Let $H = G \times C_3$. Let H have vertices $x_{i1}, \ldots, x_{i9}, y_{i1}, \ldots, y_{i4}$ for each i = 1, 2, 3 and edges $x_{ik}x_{il}$ for i = 1, 2, 3 and distinct k and l in Figure 4 – Spanning subgraphs. This is based on the CCE-orientation in Figure 3. In G_1 , vertex v_i is labeled 1 if (x_i, y_i) is an arc, and 2 otherwise. Its edges are v_iv_j if x_ix_j and y_iy_j have the same orientation. In G_2 , vertex v_i is labeled 1 if (x_i, z_i) is an arc, and 2 otherwise. Its edges are v_iv_j if x_ix_j and z_iz_j have the same orientation. In G_3 , vertex v_i is labeled 1 if (y_i, z_i) is an arc, and 2 otherwise. Its edges are v_iv_j if y_iy_j and z_iz_j have the same orientation. The proof of Theorem 3 shows each of these labelings is a 2-coloring, and that every edge of G is in at least one of the three subgraphs. $\{1,\ldots,9\}$ and edges $x_{i1}x_{j1},\ldots,x_{i9}y_{j9},y_{i1}y_{j1},\ldots,y_{i4}y_{j4}$ for any distinct i,j in $\{1,2,3\}$. In this proof, we identify x_{0k} (resp. y_{0k}) as x_{3k} (resp. y_{3k}), x_{4k} (resp. y_{4k}) as x_{1k} (resp. y_{1k}), x_{i0} as x_{i9} , x_{i10} as x_{i1} , y_{i0} as y_{i4} , and y_{i5} as y_{i1} . Now construct a digraph D as follows: $$V(D) = V(G);$$ $$A(D) = \{(y_{i1}, x_{ik}) | 1 \le i \le 3 \text{ and } 1 \le k \le 9\}$$ $$\cup \{(x_{ik}, y_{i2}) | 1 \le i \le 3 \text{ and } 1 \le k \le 9\}$$ $$\cup \{(x_{ik}, x_{i(k-1)}) | 1 \le i \le 3 \text{ and } 1 \le k \le 9\}$$ $$\cup \{(x_{ik}, x_{(i+1)(k-1)}) | 1 \le i \le 3 \text{ and } 1 \le k \le 9\}$$ $$\cup \{(y_{ik}, y_{i(k-1)}) | 1 \le i \le 3 \text{ and } 1 \le k \le 4\}$$ $$\cup \{(y_{ik}, y_{(i+1)(k-1)}) | 1 \le i \le 3 \text{ and } 1 \le k \le 4\}.$$ We list the in-neighbors and the out-neighbors of each vertex in D in Table 1. In the table, i=1, 2, or 3. Let H' be the CCE-graph of D. From Table 1, we can see that x_{i1}, \ldots, x_{i9} form a clique in H' since y_{i1} is a common in-neighbor and y_{i2} is a common out-neighbor in D for i=1, 2, 3. In addition, x_{ik} and $x_{(i+1)k}$ are adjacent in H' since $x_{i(k+1)}$ is a common in-neighbor and $x_{(i+1)(k-1)}$ is a common out-neighbor for i=1, 2, 3 and $k=1, \ldots, 9$. Similarly y_{ik} and $y_{(i+1)k}$ are adjacent in H' for i=1, 2, 3 and $k=1, \ldots, 4$. Other than those pairs of vertices, the only pairs whose vertices share a common out-neighbor are x_{ik} and y_{i3} , x_{ik} and $y_{(i-1)3}$, x_{ik} and y_{i1} , and x_{ik} and $y_{(i+1)1}$ for i=1, 2, 3 and $k=1, \ldots, 9$. However, it is easy to check that vertices of none of those pairs share a common in-neighbor. We have just shown that H=H' and the theorem follows. \square Figure 5 – A coloring. The labels are a concatenation of the labels in Figure 4. The proof of Theorem 3 shows this is a coloring. | vertex v | the in-neighbors of v | the out-neighbors of v | |----------------------------|----------------------------------------------|----------------------------------------------| | $x_{ik} \ (1 \le k \le 9)$ | $y_{i1}, x_{i(k+1)}, x_{(i-1)(k+1)}$ | $y_{i2}, x_{i(k-1)}, x_{(i+1)(k-1)}$ | | y_{i1} | $y_{i2}, y_{(i-1)2}$ | $x_{i1}, \ldots, x_{i9}, y_{i4}, y_{(i+1)4}$ | | y_{i2} | $x_{i1}, \ldots, x_{i9}, y_{i3}, y_{(i-1)3}$ | $y_{i1}, y_{(i+1)1}$ | | $y_{ik} \ (k=3,4)$ | $y_{i(k+1)}, y_{(i-1)(k+1)}$ | $y_{i(k-1)}, y_{(i+1)(k-1)}$ | Table 1 – The in-neighbors and the out-neighbors of each vertex in D. ## 3 Another family of graphs that are CCE-orientable In this section, we present a new family of graphs that are CCE-orientable. Let G = (V, E) be a graph. Given an orientation F of G, we define a matrix A_F to be the matrix whose (i,j)-entry is equal to -1 (resp. 1) if $(i,j) \in F$ (resp. $(j,i) \in F$), and zero otherwise. An orientation F is said to be *Pfaffian* if the determinant of A_F is equal to the square of the number of perfect matchings in G. If there exists a Pfaffian orientation of G, then G is said to be *Pfaffian orientable*. The Pfaffian orientation has been studied in relation to the number of perfect matchings in a given graph. Computing the number of perfect matchings in a graph is an NP-hard problem, but it becomes an easy problem if G is Pfaffian orientable and we have a Pfaffian orientation of G. Some equivalent conditions for a graph G being Pfaffian orientable are given in [5] and [12]. One simple sufficient condition is that G is planar, which is obtained by Kasteleyn [7, 8]. Little [11] has obtained a more general condition, which is that G contains no subdivision of $K_{3,3}$. Let C be an even cycle in G and F be an orientation of G. The cycle C can be traversed in clockwise or counterclockwise direction. Given a direction W for traversing C, let $N_C(W)$ be the number of edges on C whose orientations in F agree with W. Since C is an even cycle, $N_C(W)$ has the same parity whether W is clockwise or counterclockwise. An even cycle C in G is said to be oddly oriented relative to F if $N_C(W)$ is odd for some direction W for traversing C. A cycle C of length 4 is called a completable square if the subgraph induced by V(C) is not the complete graph K_4 . We present the following theorem without proof (for the proof, refer to [12]). **Theorem 6** [12, p.321] Let G be any graph with an even number of vertices and F be an orientation of G. Then the following two properties are equivalent: - (i) F is a Pfaffian orientation of G. - (ii) An even cycle C in G is oddly oriented relative to F if G V(C) contains a perfect matching. **Theorem 7** Let G be a Pfaffian orientable graph. Assume that for each completable square C, G - V(C) contains a perfect matching. Then G is CCE-orientable. **Proof.** If there is no completable square in G, then any orientation of G is a CCE-orientation. Now suppose that there is at least one completable square C in G. Since G - V(C) has a perfect matching, the number of the vertices in G - V(C) is even and so is the number of those in G. Let F be a Pfaffian orientation of G. By Theorem 6, every completable square is oddly oriented relative to F. This means that there cannot exist four vertices u, v, w, x such that $(w, u), (w, v), (u, x), (v, x) \in F$. Thus F is a CCE-orientation of G. A graph G is said to be 2-extendable if for every pair of nonadjacent edges e_1 and e_2 of G, there exists a perfect matching containing both e_1 and e_2 . For the characterization of 2-extendable graphs, refer to [12]. The next corollary follows from Theorem 7. Corollary 8 Any 2-extendable planar graph G is CCE-orientable. **Proof.** Since G is planar, G is Pfaffian orientable. Let C be a completable square, and e_1 and e_2 be a pair of nonadjacent edges on C. Since G is 2-extendable, there exists a perfect matching containing both e_1 and e_2 . Thus G - V(C) contains a perfect matching and the corollary follows from Theorem 7. ## 4 Closing remark In this paper, we answered two questions proposed by Bak et al. [1] by finding two families of graphs that are not CCE-orientable and finding a CCE-graph that is not CCE-orientable. However, it is still open to find a graph that is not a CCE-graph. In fact, we do not know whether or not all members of those two families of graphs given in Theorems 2 and 3 are CCE-graphs. In Section 3, we have shown that planar graphs satisfying a certain property are CCE-orientable. We propose the problem of proving or disproving that any planar graph is CCE-orientable. Finally, we wish to characterize an CCE-orientable graph. #### References - [1] O-B Bak, S-R Kim, Y. Nam, and C. Park, "On CCE-Orientable Graphs," Congressus Numerantium. 124 (1997), 129-137. - [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North Holland, New York, 1976. - [3] R. D. Dutton and R. C. Brigham, "A Characterization of Competition Graphs," Discrete Appl. Math. 6 (1983), 315-317. - [4] K. Fraughnaugh, J. R. Lundgren, S. K. Merz, J. S. Maybec, and N. J. Pullman, "Competition Graphs of Strongly Connected and Hamiltonian Digraphs," SIAM J. Disc. Math. 8 (1995), 179-185. - [5] C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, 1993. - [6] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980. - [7] P. W. Kasteleyn, "Dimer statistics and phase transitions," J. Math. Phys. 4 (1963), 287-293. - [8] P. W. Kasteleyn, "Graph theory and crystal physics," Graph Theory and Theoretical Physics, (F. Harary, ed.), Academic Press, New York, 1967, 43-110. - [9] S-R. Kim, "Competition Graphs and Scientific Laws for Food Webs and Other Systems," Ph.D. Thesis, Rutgers University, 1988. - [10] S-R. Kim, "The Competition Number and Its Variants," in Quo Vadis, Graph Theory?, (J. Gimbel, J. W. Kennedy, and L. V. Quintas, eds.), Annals of Discrete Mathematics 55, North Holland B. V., Amsterdam, the Netherlands, 1993, 313-326. - [11] C. H. C. Little, "An extension of Kasteleyn's method of enumerating the 1-factors of planar graphs," Combinatorial Mathematics, Proc. Second Australian Conference, (D. Holton, ed.), Lecture Notes in Math. 403, Springer-Verlag, Berlin, 1974, 63-72. - [12] L. Lovasz and M. D. Plummer, Matching Theory, North-Holland Mathematics Studies 121, 1986. - [13] J. R. Lundgren, "Food Webs, Competition Graphs, Competition-Common Enemy Graphs, and Niche Graphs," in Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, (F. S. Roberts, ed.), IMH Volumes in Mathematics and Its Application, 17, Springer-Verlag, 1989. - [14] F. S. Roberts and J. E. Steif, "A Characterization of Competition Graphs of Arbitrary Digraphs," Discrete Appl. Math. 6 (1983), 323-326. - [15] D. D. Scott, "The Competition-Common Enemy Graph of a Digraph," Discrete Applied Math. 17 (1987), 269-280. - [16] C. Wang, "Competition Graphs, Threshold Graphs and Threshold Boolean Functions," Ph.D. Thesis, Rutgers University, 1991.