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Abstract

Let D be a digraph. The competition-common enemy graph of
D has the same set of vertices as D and an edge between vertices
u and v if and only if there are vertices w and z in D such that
(w,u), (w,v), (u,z), and (v,z) are arcs of D. We call a graph a
CCE-graph if it is the competition-common enemy graph of some
digraph. We also call a graph G = (V, E) CCE-orientable if we can
give an orientation F' of G so that whenever (w,u), (w,v), (u,z),
and (v,z) are in F, either (u,v) or (v,u) is in F. Bak et al. [1997]
found a large class of graphs that are CCE-orientable and proposed
an open question of finding graphs that are not CCE-orientable. In
this paper, we answer their question by presenting two families of
graphs that are not CCE-orientable. We also give a CCE-graph that
is not CCE-orientable, which answers another question proposed by
Bak et al. [1997). Finally we find a new family of graphs that are
CCE-orientable.
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1 Introduction

The competition-common enemy graph (CCE-graph) of a digraph D has the
same set of vertices as D and an edge between vertices u and v if and only
if there are vertices w and z in D such that (w,u), (w,v), (u,z), (v,z)
are arcs of D (for all undefined graph theory terminology, see [2, 6]). We
will call a graph a CCE-graph if it is the CCE-graph of some digraph. The
notion of competition-common enemy graph was introduced by Scott [15]
in 1987 as one of the variants of competition graph which has been studied
by many authors. The literature of competition graph is summarized in
[9, 10, 13, 16].

There have been efforts to characterize competition graphs of various
digraphs. Dutton and Brigham [3] gave a necessary and sufficient condition
for a graph to be a competition graph. Roberts and Steif [14] characterized
the competition graph of a loopless digraph. Most recently, Fraughnaugh et
al. (4] characterized the competition graph of a strongly connected digraph.
Regarding CCE-graphs, Scott [15] gave a necessary and sufficient condition
for a graph to be a CCE-graph. From the view point that the condition is
too complicated to be of practical use in checking whether or not a given
graph is a CCE-graph, Bak et al. [1] sought a better characterization of
CCE-graphs and found interesting classes of CCE-graphs by introducing
a new notion called CCE-orientable graph. An orientation F of a graph
G is a digraph on its vertices such that uv is an edge of G if and only if
exactly one of (u,v) or (v,u) is an arc of F. Then F is a CCFE-orientation
of G if whenever (w,u), (w,v), (u,z), and (v,z) are arcs, uv is an edge of
G. We say G is CCE-orientable if it has a CCE-orientation. They showed
that any CCE-orientable graph is a CCE-graph, and bipartite graphs and
chordal graphs are CCE-orientable. They also presented an algorithm for
constructing another CCE-orientable graph out of a CCE-orientable graph.
In the same paper, they proposed an open question of finding graphs that
are not CCE-orientable. In Section 2, we answer their question by giving
two families of graphs that are not CCE-orientable. We also give an example
of a CCE-graph that is not CCE-orientable. This answers another question
proposed in the same paper. In Section 3, we give another class of graphs
that are CCE-orientable graphs and therefore CCE-graphs. In Section 4,
we propose some interesting open questions.

2 Two families of graphs that are not CCE-orientable

Lemma 1 gives conditions on a CCE-orientation of a complete bipartite
graph.



Lemma 1 Let Ky, n have vertices uy, ..., Um, V1, ..., Un and edges u;v;
foralli=1,...,m and j = 1,...,n (see Figure 1(a)). Let F be a CCE-
orientation of Ky y. If m > 2 andn > 4, then u,, ..., un either all have
at most one out-neighbor, or all have at most one in-neighbor in F.
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Figure 1 — Constructions from Lemma 1. Graph (a) shows
Km,n. In (b), we assume a CCE-orientation has a vertex u; with at
least two in-neighbors and at least two out-neighbors, which leads to
a contradiction if m > 2. In (c), we assume a CCE-orientation has
a vertex u; with at most one out-neighbor, and a vertex uz with at
most one in-neighbor. This also gives a contradiction if n > 4.

Proof. Suppose a vertex, say u;, has two out-neighbors in F, say »; and
v9, and two in-neighbors, say vs and v4. Then one of v, or v9, say v, is an
out-neighbor of uy; for otherwise, arcs (u1,v1), (u1,v2), (v1,u2) and (v, ua)
would force edge v,v2 (see Figure 1b). Similarly, one of v3 or vy, say vs,
is an in-neighbor of us. Then arcs (vs,u1), (va,u2), (u1,v;) and (uz,v1)
force edge uyuq, a contradiction. Thus each of uy, ..., uy has at most one
out-neighbor, or at most one in-neighbor in F.

Now suppose a vertex, say uj, has at most one out-neighbor, while
another vertex, say u;, has at most one in-neighbor (see Figure 1(c)). Since
n > 4, at least two vertices, say v; and vs, are in-neighbors of ¢; and out-
neighbors of u. Then arcs (ug,v1), (¥2,v2), (v1,11) and (vg,u,) force edge
v,v2, a contradiction. Therefore u;, ..., Uy, either all have at most one
out-neighbor, or all have at most one in-neighbor. O

Let H be a graph on vertices vy, ..., vn. Let Gy, ..., G be pairwise
vertex-disjoint graphs. Then the composition graph H|[G,,...,Gy] is the
union of Gy, ..., G, with all edges between vertices of G; and G; whenever
v;v; is an edge in H (see Figure 2). Let I, be the edgeless graph on n



vertices. We then have the following theorem:
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Figure 2. Theorem 2 shows this is not CCE-orientable. It is the
smallest known graph that is not CCE-orientable.

Theorem 2 Let m > 5 be an odd integer. Let ny,...,n, > 2 be integers

with either n; > 2 ornyyy > 2 foralli=1,...,m — 1, and either n,, > 2
orny > 2 (i.e., when viewed circularly, the sequence ny,...,n, does not
have consecutive two’s). Then Cp(ln,, ..., In,] is not CCE-orientable.

Proof. Suppose Cin[In,,. .., In,) has a CCE-orientation F. Since m > 3,
the vertices of In,;_,, In; and I,,,, (identify ng as nn, and npmyq as nq)
induce a complete bipartite graph. Since n; > 2 and ni_; + nyy1 > 4,
Lemma 1 shows the vertices of I,; either all have at most one out-neighbor,
or all have at most one in-neighbor.

Classify i = 1,...,m as “Type A” if every vertex of I, has at most
one out-neighbor, and “Type B” otherwise. Since m is odd, there must be
i and j of the same type where either j =i+ 1,ori=nand j =1. If
both i and j are Type A, then F has at most n; arcs from I, to I,;, and
at most n; arcs from In; to I,,. There are n;n; edges between I,; and
I; in Cpully,,...,In,]. Since n;,n; > 2 and either n; > 2 or n; > 2, we
have that n; + n; < n;n;. Thus not every edge between I,, and I,; can
be oriented in F, a contradiction. A similar contradiction results if 7 and j
are both Type B. m]

Now we give another family of graphs that are not CCE-orientable. Let
the Cartesian product of graphs G and H be the graph G x H on vertices
(g, h) for all vertices g € G and h € H with edges (g, h1)(g, hs) for all
edges hyhs in H, and (g;, h)(gs, h) for all edges g1g2 in G (see Figure 3).
A coloring assigns labels to vertices so that neighbors have different labels.
The chromatic number X(G) is the minimum number of labels used in a
coloring of G.

Theorem 3 If G x C3 is CCE-orientable, then X(G) < 8.



Figure 3 — A CCE-orientation F of G X Cs.

Proof. Let vy, ..., v, be the vertices of G. Let G x C3 have vertices x4, ...,
Tp, Yly s Yny 215 - -+ 2n, With edges z;y;, 2;2; and y;2; foralli = 1,... n;
and edges z;zj, y;y; and z;z; for all edges v;v; in G (see Figure 3).

Let F be a CCE-orientation of G x C3. Let G, G2 and G3 be spanning
subgraphs of G where v;v; is an edge of Gy, G, or Gg, if z;z; and y;y;,
z;z; and 2;2;, or y;y; and 2;z;, respectively, have the same orientation in
F (see Figure 4). Since at least two of z;x;, y;y;, and z;2; have the same
orientation, every edge of G is in cither G;, G, or G3.

Let v;v; be an edge of G1. Then z;x; and y;; have the same orientation
in F. Since z;y; and y;z; are not edges of G x C3, we must have that
z;y:; and z;y; have opposite orientations in F. The vertices of G; may
be partitioned into two classes dependent on the orientation of z;y; in F.
These form a coloring showing that G; is bipartite. Similarly G2 and Gj3
are also bipartite.

For j = 1,2,3, let ¢;(v) be a 2-coloring of G;. For all v;, let £(v;) =
(£1(v;), £2(v;), €3(v;)) (see Figure 5). Then £ uses eight or fewer labels. Since
any edge of G is an cdge in either Gy, G2, or G3, we have £(v;) # £(v;) for
all edges v;v; in G. So ¢ is a coloring of G, and X(G) < 8. O

Corollary 4 If X(G) > 9, then G x C3 is not CCE-orientable.

Bak et al. [1] proposed a problem of finding a CCE-graph that is not
CCE-orientable. The following theorem answers their question:

Theorem 5 Let G be KgU I,. Then G x C3 is a CCE-graph.

Proof. Let H = G x C3. Let H have vertices z;1,...,Zi, ¥i1, -- -, Yiq for
each i = 1, 2, 3 and edges z;rzy for i = 1, 2, 3 and distinct k& and [ in
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Figure 4 — Spanning subgraphs. This is based on the CCE-
orientation in Figure 3. In Gi, vertex v; is labeled 1 if (z:,y:) is
an arc, and 2 otherwise. Its edges are v;v; if z:z; and y;y; have
the same orientation. In G2, vertex v; is labeled 1 if (z;,2:) is an
arc, and 2 otherwise. Its edges are vv; if z:z; and ziz; have the
same orientation. In G3, vertex v; is labeled 1 if (y:,2;) is an arc,
and 2 otherwise. Its edges are v;v; if yiy; and 2;z; have the same
orientation. The proof of Theorem 3 shows each of these labelings is
a 2-coloring, and that every edge of G is in at least one of the three
subgraphs.

{1,...,9} and edges zi1zj1, ..., Tio¥je, Yi1¥j1, ..., Yia¥ja for any distinct

i, 7 in {1,2,3}. In this proof, we identify zox (resp. yox) as z3x (resp. yak),

T4k (resp. yax) as 1k (resp. Yik), Tio aS Tig, Ti10 aS Ti1, Yio aS Yia, and yis
+as y;1. Now construct a digraph D as follows:

V(D) = V(G);
A(D) = {(i1,zi)|1<i<3and 1<k <9}
U {(Zik,yi2)| 1 <i<3and 1 <k <9}
U {(xikazi(k—l))l 1<i<3and1<k< 9}
U {(xik,m(,-+1)(k_1))| 1<i<3and1<k<9}
U {(#ir, Yik-1)) | 1 <4< 3 and 1 < k < 4}
U {(%ik> Y41y (k-1)) | 1 i < 3 and 1 < k < 4},

We list the in-neighbors and the out-neighbors of each vertex in D in Ta-
ble 1. In the table, i = 1, 2, or 3. Let H' be the CCE-graph of D. From
Table 1, we can see that z;;, ..., ;9 form a clique in H’ since y;; is a
common in-neighbor and y;2 is a common out-neighbor in D fori =1, 2, 3.
In addition, zix and z(;41)x are adjacent in H' since Zyk41) is a common
in-neighbor and z(;;1y(x-1) is a common out-neighbor for < = 1, 2, 3 and
k=1,...,9 Similarly yi and yqi1)e are adjacent in H fori =1, 2,3
and k=1, ..., 4. Other than those pairs of vertices, the only pairs whose
vertices share a common out-neighbor are z;; and y;3, Ty and yu_1)3, Tik
and y;1, and =i and Yy fori =1, 2, 3 and k = 1, ...9. However,
it is easy to check that vertices of none of those pairs share a common
in-neighbor. We have just shown that H = H' and the theorem follows. O
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Figure 5 — A coloring. The labels are a concatenation of the labels
in Figure 4. The proof of Theorem 3 shows this is a coloring.

vertex v the in-neighbors of v the out-neighbors of v |
ZTix (1<k<9) | yin, Tigkt1)y Ta-1)k+1) | ¥i2s Tigk—1)r T(+1)(k=1)
Yi1 Yi2, Yi-1)2 Ti1y - - -5 Ti9y Yia, Y(i+1)4
Yi2 Tily - - -y Ti9y Yi3) Yi-1)3 | ¥ily YG+101
Yie (k=3,4) | Yik+1)s Y(-1)(k+1) Yi(k—1)) Y(i+1)(k—1)

Table 1 — The in-neighbors and the out-neighbors of each
vertex in D.

3 Another family of graphs that are CCE-orientable

In this section, we present a new family of graphs that are CCE-orientable.
Let G = (V,E) be a graph. Given an orientation F of G, we define a
matrix Ar to be the matrix whose (%, j)-entry is equal to —1 (resp. 1) if
(i,7) € F (resp. (4,1) € F), and zero otherwise. An orientation F' is said to
be Pfaffian if the determinant of A is equal to the square of the number of
perfect matchings in G. If there exists a Pfaffian orientation of G, then G is
said to be Pfaffian orientable. The Pfaffian orientation has been studied in
relation to the number of perfect matchings in a given graph. Computing
the number of perfect matchings in a graph is an NP-hard problem, but it
becomes an easy problem if G is Pfaffian orientable and we have a Pfaffian
orientation of G. Some equivalent conditions for a graph G being Pfaffian
orientable are given in [5] and [12]. One simple sufficient condition is that
G is planar, which is obtained by Kasteleyn [7, 8). Little [11] has obtained
a more general condition, which is that G contains no subdivision of K3 3.

Let C be an even cycle in G and F' be an orientation of G. The cycle
C can be traversed in clockwise or counterclockwise direction. Given a



direction W for traversing C, let No(W) be the number of edges on C
whose orientations in F' agree with W. Since C is an even cycle, N¢(W)
has the same parity whether W is clockwise or counterclockwise. An even
cycle C in G is said to be oddly oriented relative to F if Nc(W) is odd
for some direction W for traversing C. A cycle C of length 4 is called a
completable square if the subgraph induced by V(C) is not the complete
graph K,;. We present the following theorem without proof (for the proof,
refer to [12]).

Theorem 6 [12, p.821] Let G be any graph with an even number of ver-
tices and F be an orientation of G. Then the following two properties are
equivalent:

(i) F is a Pfaffian orientation of G.

(i) An even cycle C in G is oddly oriented relative to F if G — V(C)
contains a perfect matching.

Theorem 7 Let G be a Pfaffian orientable graph. Assume that for each
completable square C, G — V(C) contains a perfect matching. Then G is
CCE-orientable.

Proof. If there is no completable square in G, then any orientation of G
is a CCE-orientation. Now suppose that there is at lcast one completable
square C in G. Since G — V(C) has a perfect matching, the number of the
vertices in G — V(C) is even and so is the number of those in G. Let F
be a Pfaffian orientation of G. By Theorem 6, every completable square
is oddly oriented relative to F. This means that there cannot exist four
vertices u, v, w, = such that (w,u), (w,v), (u,z), (v,z) € F. Thus F is a
CCE-orientation of G. O

A graph G is said to be 2-eztendable if for every pair of nonadjacent
edges e; and e of G, there exists a perfect matching containing both e;
and es. For the characterization of 2-extendable graphs, refer to [12]. The
next corollary follows from Theorem 7.

Corollary 8 Any 2-extendable planar graph G is CCE-orientable.

Proof. Since G is planar, G is Pfaffian orientable. Let C be a completable
square, and e; and e; be a pair of nonadjacent edges on C. Since G is
2-extendable, there exists a perfect matching containing both e; and es.
Thus G — V(C) contains a perfect matching and the corollary follows from
Theorem 7. ‘ o
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4 Closing remark

In this paper, we answered two questions proposed by Bak et al. [1] by
finding two families of graphs that are not CCE-orientable and finding a
CCE-graph that is not CCE-orientable. However, it is still open to find a
graph that is not a CCE-graph. In fact, we do not know whether or not
all members of those two families of graphs given in Theorems 2 and 3 are
CCE-graphs.

In Section 3, we have shown that planar graphs satisfying a certain prop-
erty are CCE-orientable. We propose the problem of proving or disproving
that any planar graph is CCE-orientable. Finally, we wish to characterize
an CCE-orientable graph.
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