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Abstract

The independence polynomial of graph G is the function i(G,z) =
S ixz* where iy is the number of independent sets of cardinality k in
G. We ask the following question: for fixed independence number 3, how
large can the modulus of a root of i{(G, z) be, as a function of the n, the
number of vertices? We show that the answer is (n/B8)°~! + O(n®~2).
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1 Introduction

Let G be a graph (finite and simple) with independence number 3 and let i
denote the number of independent sets of size k. The independence polynomial
of G is defined by

I
i(G,z) =) ixzt.
k=0

As is the case with other graphs polynomials, such as chromatic polynomials
(c.f. [10], matching polynomials [6, 7], and others, it is natural to consider the
nature and location of the roots. Some results on independence polynomials can
be found in (2, 8]. It is known ([4}; sce also [2]) that independence polynomials
always have a real root; in fact, a root of smallest modulus is necessarily real.
A natural question is: how large can the modulus of a root of an independence
polynomial be? In [2] it was shown that for a well covered graph with indepen-
dence number 8 (that is, a graph all of whose maximal independent sets have
size (3), all of the roots of its independence polynomial lie in |z| < 8. We shall
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show here that no such bound exists for general graphs in terms of the indepen-
dence number. In fact, it may be surprising how accurately the largest modulus
of a root of a independence polynomial of a graph of order n (and independence
number 8) can be determined. We omit the case of 8 = 1 in the statement of
Theorem 1 as such graphs are complete graphs, and i(K,,r) = 1 + nz.

Theorem 1 Let 8 > 2 be fized. Let rg(n) denote the mazimum modulus of a
root of the independence polynomial of a graph of order n with independence
number 3. Then
n ! 9
Tp(‘n) = (E_—l) + O(n )

We begin our proof of Theorem 1 by showing the upper bound. To do so,
we shall need the following two lemmas.

Lemma 2 Fiz 3 > 2. Let Z?:o i,z be the independence polynomial of a graph
G of independence number 8, and suppose that ig < K, where K is a constant
depending only on 3. Then

. n \8-1 b
‘B—lf(ﬁ) + O(nf~%).

Proof As there are at most K independent sets of size 3, we can pick vertices
v1,...,vz (L < K) such that if S = {vy,...,v.}, then (G - S) = 8~ 1 (we
simply recursively remove a vertex from each independent set of size 3 until this
is no longer possible). Now in [3] it was shown that certain bounds exists for the
number of cliques of each size in a graph. Applying these to the complement of
G, we derive that

. k
2k < (2) fork=1,...,8-1 (1)
) B

Using this applied to G — S and by considering how independent sets of size
B — 1 intersect the set S, we derive that

and so

L

it S ) (f)in-n_.(G -5)
i=0
< w0 ()
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< n 0—l+0(n6_2)D
< (%) -

Lemma 3 For any graph G of order n and independence number 3,

. a-1
k-1 n B-2
*-1 <
S (0— l) + O(n”~%)

forallk=1,...,6.
Proof From (1) it follows that fork=1,...,8-1,

Tk—1 <i < B n k_l_o g_z)
T_lk—l_ k-1)\B =0(n :

Thus it suffices to show

iB-l n A-1 B-2
Bt (L2} 4 o2

iﬂ— 1 S ﬂp_z (2)

and so it is easy to verify that if

ig_l > n A-1
in B-1

—1)8-1
ig < ———(ﬁ ﬂB—)2 .

then

The key observation is that the right hand side is a constant (depending on 3).
We now set K = 2(8 — 1)#~1/38-2. Then if ig_; < K, we have from the
previous lemma that

. B-1
B2l <y < (L) + O(nf-2).

13 ﬁ -1
On the other hand, if ig > K, then from (2),
ig_1 < nﬁ—l/ﬁﬁ~2
s < -0
nf-1
BRI
8-1
n 3-2
< (ﬁ — 1) + O(n”~%),
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Figure 1: G

and we are done. o

We complete now the proof of the upper bound for Theorem 1. The En-
estrom-Kakeya Theorem (c.f. [1]) states that all of the roots of i(G, r) lie in

|z|$max{lk,—'l:i=l,...,k}.
ik

From Lemma 3 we see that the right hand side is at most

(ﬁ'j l)ﬂ—l +0(n8-2).

Turning now to the lower bound, we require the existence of a certain family
of graphs. We write n as [(8~1)+r wherer € {1,...,8 -1} (as we can assume
that n is sufficiently large, we take n > 28, so that | > 2). We form a graph
G5 on disjoint sets {v}, Ay,...,Ap-2, Ag-1, where

(i) A; induces a complete graph of order I, fori = 1,...,8 - 2,
(ii) Ag-, induces a complete graph of order I + r — 1, and
(iii) foreach¢é=1,...,8 -1, v is joined to all but one vertex of A,.

(see figure 1).
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It is not hard to see that G; 3 has order n and independence number 3. If
F is any graph, then the independence polynomial of F is simply the product
of the independence polynomials of its components, and for any vertex u of F,

i(F.z) = z-i(F-N[u,z)+i(F -v,z), (3)

where N[u] = {u} U {y € V(F) : uy € E(F)} denotes the closed neighbourhood
of u in F (this formula follows by partitioning the independent sets of F into
those that do and those that do not include vertex u). We apply this formula
with F =G and u = v we derive that

i(Gig,z) z-i(Gig— N[v],z) +i(Gip — v,z)
z-i(Kg_1,z) + (B - 2)Ki U Kiyr—1, T)

z(1+z) '+ (1 + )P 2 (1 + (L + 7 - 1)z).

It follows that

i(Grp,-1°7") ey I L L Y (e o L SN (AT gty

= (=P - 1P+ - P 1)) - (1B - 1P

Now the term inside the square parentheses in the last line is at least
(B —@P-1F1>0

as | > 2. We conclude that i(G} g, —1#~!) has sign (—1)?~!. However, (G, =)
is a polynomial of degree 3 with positive leading coefficient, and hence has sign
(—1)P as £ — —oco. Thus i(Gi 3, z) has a real root to the left of

B8-1 B-1
_p-1__f[r-T _(r-B+1
= (ﬁ—l) s (ﬂ—l) ‘

and hence to the left of — (n/(8 — 1))° ' + O(nf~2). This ends the proof of the
main result. 0

While Theorem 1 provides a complete answer to the problem of determining
the maximum modulus of roots of independence polynomials (at least for fixed
independence number), the question becomes increasingly interesting for various
families of graphs.

One might think that the real roots of the independence polynomials of a
simple class such as trees might be better behaved, but such is not the case.
Of course, as the independence number of a tree of order n is at least n/2
(as the graph is bipartite), it does not make sense to fix the independence
number for trees. Nevertheless, there are indeed real roots of large absolute
values for trees. Consider the k-star Ky with vertices {w,vy,...,v} and

117



edges wuy,...,wu,. We form a new tree T,, by attaching a new leaf u; to each
vertex v; (i = 1,...,k). Indeed T, has order n = 2k + 1, and by the formula
(8) for calculating independence polynomials, we derive that

i(To,z) = i(kK2,z)+z-i(Ky, 1)
(1 +22)* + z(1 + z)*

Now from this formula, we see that
i(Ta, =251y = (1-2%)% —2%-1(1 = gk-1)

so that

E_on\F
Sp———

> 0.

Hence i(T,,—2%!) has sign (~1)*. On the other hand, (T,,z) is a monic
polynomial of degree 5(T,,) = k + 1, so it follows that i(T,,z) has a root in
(—00, _2k—l) = (_°°7 _2(n—3)/2)'

On the other hand, line graphs of trees have real roots of much smaller
absolute value. In this case, the independence number (being the matching
number of the original graph) can be quite small compared to the order (for
example, the independence number of the line graph of a star is trivially 1).
Here we see that indeed one can bound the absolute value of the real roots of
the independence polynomial in terms of only the independence number.

Theorem 4 Let G be the line graph of a tree T, and let the independence
number of G be B. Then all roots of i(G,z) have modulus at most (g)

Proof A result of Newton’s (c.. [3]) states that if p(z) = Y0, a;z' is a real
polynomial with all real roots, then

2
a; 2 6i-1Git1

for i =1,...,d -1, that is the sequence ap,...,aq is log concave. Recall from
the proof of Theorem 1 the Enestrom-Kakeya Theorem, which states that the
roots of the real polynomial p(z) = Z?:o a;z* are bounded by

ma.x{ak"l :k=0,...,d—l}.

73

and simple inequalities show that for any log concave sequence ao,...,aq of
positive terms, the maximum of this set occurs for £ = d. Thus any real
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polynomial p(z) = Z?:o a;z* that has all real roots has all of its roots bounded

in absolute value by aq4_;/aq4.

Now the matching polynomial [6] of a graph H of order n is given by
m(H,z) = Y mi(—1)'z"~2%, where m; is the number of matchings of size i
in H. A well known result [9] states that matching polynomials always have all
real roots. It follows that as i(G, z) = 3" miz' = z7"m(T, -1/ /7), all the roots
of i(G, z) are real as well. Hence as noted above, to prove that the modulus of
all the roots of i(G, z) are bounded by (§), all we need to do is to show that

2:()
mg 2
where § is the matching number (i.e. the size of a maximum matching) of T.

Suppose that M’ is a matching of T of cardinality a — 1. Then we claim that
there is a matching M of G of cardinality § such that the symmetric difference
MAM' of M and M’ is an odd path. Let’s choose a maximum matching M of
G that has the most edges in common with M’. Then as MAM’ is a subgraph
of maximum degree 2, it consists of even cycles and paths. There can be no
even cycles or paths as otherwise we could ‘flip’ edges to get another maximum
matching with more edges in common with M’. It follows that MAM’ is the
disjoint union of odd paths, and it is not hard to see from the facts that M is a
maximum matching and M’ has size one smaller than that of M that MAM’
must be exactly an odd path whose end edges are in M.

Thus for every matching M’ of cardinality § — 1 there is a matching M of
cardinality a and two edges ej, e such that MAM’ is the unique (odd) path
in T from e; to e;. Any choice of M, e; and e; determine at most one such
M’ (as the uniqueness of the path from e; to e; in T allows one to recover the
matching M’). It follows that the number of such matchings M’ is at most the
number of ordered pairs (M, {e, f}), where M is a matching of size a and e and
f are edges of T. It follows that

mg_i S mg (g) )

< ()
s~ \2)’

and as noted before, we are done. (]

that is,

We point out that the argument can be carried through almost in its entirety
for line graphs in general. The one sticking point is bounding mg_,/mg for
graphs, rather than just for trees. By counting the number of alternating paths
that can be formed when the ‘odd’ edges are from a fixed matching of size
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B, one can show by a straightforward argument that mg_,/mg < f(B8) for
some function f. This will show that for line graphs in general, the roots of
their independence polynomials are bounded by a function of the independence
number alone, although the bound derived from the argument is exponential in
the independence number and likely far from the truth.
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