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ABSTRACT. The linear vertex-arboricity of a graph G is defined
to the minimum number of subsets into which the vertex-set G
can be partitioned so that every subset induces a. linear forest.
In this paper, we give the upper and lower bounds for sum and
product of linear vertex-arboricity with independence number
and with clique cover number respectively. All of these bounds
are sharp.
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1 Introduction

Throughout this paper, all graphs are simple and finite. Let G = (V, E) be
a graph. A subset of V is called an LV-set if it induces a linear forest in G.
A partition of V is called an LV -partition if every subset in the partition is
an LV-set. Linear-vertex arboricity of G, denoted by p’(G), is the smallest
number of subsets into which the vertex set V' can be partitioned so that
the partition is an LV -partition.

A clique is a subset of V' such that its induced subgraph is a complete
graph. A clique is mazimum if no other clique of G is of larger order. Clique
number of G, denoted by w(G), is the number of vertices in a maximum
clique of G. A cligue cover of size k is a partition of the vertex set V into
W1, Va,..., Vi, such that each V; is a clique, 1 < i < k. The clique cover
number of G, denoted by 9(G), is the number of cliques in a smallest clique
cover of G. An independent set is a subset of vertices, no two of which are
adjacent. a(G) is the number of vertices in an independent set of maximum
order. It is also called the independence number of G.

In (1], Chartrand et al introduced the concept of vertex-arboricity as a
generalization of vertex coloring. Linear vertex-arboricity of graphs was
first mentioned by Harary [2]. This is followed by a series of papers by
other researchers. For examples, see [3] to [6]. In this paper, we consider
the sum and product of linear vertex-arboricity with given independence
number and given clique cover number respectively. We shall obtain various
lower and upper bomlds, all of which are sharp. For terms and notations
not defined in the paper, refer to [7].

2 Lemmas

In this section, we shall present some Lemmas. The first Lemma can be
found in [6].

Lemma 2.1. Suppose M is a maximum clique of a graph G = (V, E),
and N is a clique in (V\M). Then there exists a one-to-one mapping
f: N — M such that forany ne N,nf(n) € E.

The following Lemma is a direct consequence of Lemma 2.1.

Lemma 2.2. For any graph G = (V, E), we can construct a sequence of
cliques Q1,Qo, ..., Qn with the following properties:

L@l 2|Q121if 5 >4,
2. Q,nQJ=@IfZ7éj,
3. Q; is a maximum clique in G — U;;ll Qj,

4. U,Q;=V, and
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5. For each 1 < i < h, we may label elements of Q; by v¥, where 1 <
k < |Ql, so that vfvf,, ¢ Efor 1<j<h—1and1<k<|Qjul

A sequence of cliques of G = (V| E) is called a standard sequence of
cliques, or simply a standard sequence if it satisfies the above conditions.
The following Lemma can also be found in [6).

Lemma 2.3. Suppose a standard sequence is embedded into Zt x Zt
so that the j-th clique lies in the j-column, and for each clique, the k-th
vertex lies in the k-th row. Then any four vertices in four adjacent columns
and in the same row is an LV -set.

Lemma 2.4. If G is a graph of order n, then

P(G)+9(C) <n+1, 1)
F'(G)-9(G) < [(n+3)%/8]. 2

Proof: We shall use mathematical induction to obtain the upper bounds
for (1) and (2). We can verify that p'(G) +9(G) <n+1forn=1 or 2.
Suppose that p'(G)+9(G) < n+1holds forn =1,2,...,k—1, where k > 3.
Consider any graph G of order k. If G is edgeless, then o'(G)+9(G) = 1+k.
Suppose G has at least one edge uv. Let G = (V\{u,v}) and G" = ({1, v}).
Then

P(G)+9(C) < p'(G") +9(C") + p(G) +9(C") < k +1,

which establishes the upper bound of (1).

To establish the upper bound of (2), we first verify that p'(G) - 9(G) <
L(n +3)?/8] for 1 < n < 16. Suppose that p'(G) - 9(G) < |(n + 3)%/8|
for 1 < n < k-1, where k > 17. Consider any graph G of order k.
Let @1,Q2,...,Qn be a standard sequence of cliques. We shall denote the
number of s-cliques in this sequence by f(s).

Suppose |Q4] > 4. Let Qi = {u},vf,u}, v}, ...} fori=1,2,3,4. Because
the sequence is standard, A; = {u}, u}, 4}, u}} are LV-sets for j = 1,2, 3, 4.
Let G* = (V - (U}, A;)). Then

£(G) - 8(G) < {0(C*) + 4H{5(G") + 4}
< P/(G*)-8(G*) +4{d(G*) +9(GC")} + 16

s(k-#:ﬂ+4{k—16+1}+16

(k + 3)2
< 3
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So we may assume that 3.5, f(r) < 3. Suppose 3_,, f(r) =1 and
w = |Q]. Also suppose the numbers of 3-, 2- and 1-cliques are :z, y and z
respectively. Then

k=w+3z+2y+2, (3)
P(CG) € (w+1)/2+ €1 + (3z + 2y + €2)/4, @)
GO <(1-e)+z+y+e, (5)

where €; = 0 if there exists one vertex in Q; which is not adjacent to
vertices in any 1-clique of the standard sequence, and ¢; = 1 otherwise.
If ¢, = 1 then 9(G) < z+ y+ 2. To obtain (4), we partition Q, into ¥
2-subsets if w is even, and 23= 1 2.subsets plus one 1-subset if w is odd. By
Lemma 2.3, we may partltlon vertices in 3- and 2-cliques into sets of four
vertices along the lines y = 1, 2 and 3, each inducing one linear forest in G.
In the right side of (4), €3 is a correctional term to allow for subsets having
less than four vertices. Substituting (3) into (4) and (5), we get
2(G) - 9(C) < (k+w—2z+2+¢ +461;(k—w—z+z+2—261)

< {k+2+ (e2 — z + 2¢1)/2}?

- 8

The Lemma follows if we manage to chose €3 to satisfy e; < 2+ —2¢;. In
the following cases/sub-cases, let z +y =t (mod 4), where 0 < ¢ < 3.
Case 1. z=0.

Sub-case 1.1 ¢; =1

If ¢ = 0, then we may choose ez = 0 because the number of 2-cliques is a
multiple of 4. If t = 1, then four vertices of Q; and one 2-clique may form
two LV-sets (Figure 1a). Therefore

PGS (w-4+1)/2+e+2+ (3z+2y-2)/4
<(w+1)/2+ €+ (3z + 2y) /4,

and we may choose €3 = 0.

[ (] o [+]

0 ] o o
0oQo---0 o0Do---0 aoo0o0o:--0 FaVaVaY-RERY -]

®©0--:00:+-0 @ ©00:°°00°+¢‘0 © 00 €0---00+---0 e000:---C0e@---00

(a) (b) (c) (d)
t=1,¢=1 t=2€¢=1 t=3, =1 t=2, =0

Figure 1z =0
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If t = 2 or 3, then two vertices of Q; and two or three 2-cliques respec-
tively, may be partitioned into two LV -sets, (Figure 1b and 1c). So
PGS (w-24+1)/2+e+2+ 3z +2y—4)/4
=(w+1)/2+ ¢ + (3z + 2y) /4,
and we may also choose €3 = 0.
Sub-case 1.2 ¢; =0
If ¢ = 0 then e = 0 because the number of 2-cliques is a multiple of 4. If
t = 1 or 3 then ez = 2 because the total number of vertices in 2-cliques plus
2 is a multiple of 4. If ¢t = 2, then three vertices of @; together two 2-cliques
and all the 1-cliques may be partitioned into three LV-sets (Figure 1d). So
P(G)<(w-3+1)/2+3+(3z+2y —4)/4
=(w+1)/2+ €1 + (3z + 2y +2)/4,
and we may also choose €5 = 2.
Case 2. z = 1.
Sub-case 2.1 ¢; =1
If t = 0, then two vertices of Q; together with one vertex in the 3-clique
forms one LV -set (Figure 2a), and
PGS (w-2+1)2+e+1+Bz+2y-1)/4
=(w+1)/2+€ + (3z+2y ~1)/4

8] o o o

00 0o [=}=) aa
00++-0 Oe0:-:0 ©eee00--.-0 ®®0e00-::0

00:-+-+00---0 ©®0:-::00-::0 AAANAO:-:00: 0 ©0080:-:-00++:0
(2) (b) (c) (d)
Figure2. z=1,¢; =1

If t = 1, then three vertices of Q,; together with vertices in the 3-clique
two form two LV -sets (Figure 2b), and

F(G) < (w—3+1)/2+ e +2+ (3 + 2 — 3)/4
= (w+1)/2+ ¢ + 3z + 2y — 1)/4.

If t = 2, then four vertices of Q; together with vertices in the 3-clique
and one 2-clique to form three LV-sets (Figure 2c), and

PG < (w—-4+1)/2+€+3+(3x+2y—5)/4
=(w+1)/2+¢ + (3z+ 2y — 1)/4.
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If ¢ = 3, then four vertices of Q; together with vertices in the 3-clique
and two 2-clique to form three LV -sets (Figure 2d), and

PG <(w—4+1)/24+6+3+Bz+29-T7)/4
=(w+1)/2+er+ (3z+ 2y — 3)/4.
So for any ¢, we may also choose €3 = 0.

Sub-case 2.2 ¢; =0

For any value of ¢, argument of sub-case 2.1 is still valid if we replace ¢;
by 1, and we get

P(G)<(w+1)/2+1+ (3z+2y—1)/4
= (w+1)/2+ (3z + 2y + 3)/4.

Therefore for any ¢, we may choose e; = 3.

Cases where z > 2, and where }__,, f(r) =0, 2 and 3 may be dealt with
in the similar manner. - |

3 Main results
Theorem 3.1. If G = (V, E) is a graph of order n, then

[V2n] < 0'(G) +oG) S n+1, (6)
[n/2] < P'(G) - a(G) < [(n+3)2/8]. (7

Proof: Let o'(G) = k. It follows that a(G) > n/(2k) and p'(G) - a(G) >
n/2. Therefore

P(G)+a(G) > k +n/(2k) = [\/E - \/n/(_2k)]2 +V2n,

from which p/(G) + a(G) > [v/2n] follows. The upper bounds follows from
Lemma 2.4 because the clique cover number is in general not less than the
independence number. (m}

The bounds in Theorem 3.1 are sharp. For the upper bound of (6),
equality holds for a null graph G on n vertices, and for the lower bound of
(7), equality holds for a complete graph on n vertices. Stronger results on
sharpness of other bounds are obtained in the following two theorems.

Theorem 8.2. For any positive integer n, there exists a graph G of order
n such that

P(G)+ «(G) = [V2n].
Proof: Let m be the positive integer such that 2(m — 1)2 < n < 2m? and
letl=n-2(m—-1)%then0<!<2m? -2(m -1)2=4m -2,
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Ifl < 2m —2, then 2m — 2 < vV2n < 2m — 1. We construct G =
A1 VAV --V A,_, where A; are paths of order 2m for 1 <i < m —2
and of order I 4 2 for i = m — 1. We can see that |G| =n, ¢'(G)=m -1,
a(G) =m, p'(G) + a(G) = 2m — 1 = [v/2n].

If 2m — 1 <, then 2m — 1 < V2n < 2m. We construct G = A; V Ao V
+++V Apm—1, where A; are paths of order 2m for 1 < i < m —1 and of order
l+2—2m for i = m. We can see that |G| = n, p'(G) = m, a(G) = m,
P(G)+a(G)=2m= [\/2—7;] . a
Theorem 3.3. For any positive integer n > 4, there exists a graph G of
order n such that

p(©)-a(0) = | 2L ®)

Proof: Let G = N,V K,_;, where N, is a null graph of order ¢{. Then
a(G)=tand p'(G)=[(n+3—1t)/2). Set t = (n+2+5s)/2, where s=n
mod (4), then a(G) = (n+2 + 8)/2, p'(G) = (n+4 — 5)/4, and

(n+3)° (s = 1)?

P(G)-o(G) = 3 )
Because p/'(G) - a(G) is an integer and (s —1)2/8 < 1/2, (8) follows from
9). 0

For any graph G, we have w(G) = o(G). The following corollary is a
direct consequence of Theorem 3.1.

Corollary 3.4. For any graph G of order n,
[V2n] < p/(G) +w(G) <n+1,
[7/2] < p'(G) - w(G) < |(n+3)%/8).
and all of the above bounds are sharp

Now we can show that the upper bounds and lower bounds for sum and
product of linear vertex-arboricity and clique cover number is the same as
those in Theorem 3.1.

Theorem 3.5. If G is a graph of order n, then

[V2nr] < p'(C) +9(C) < n+1, (10)
[n/2] £ 0'(G)-9(G) < |(n+ 3)%/8). (11)

and all of the bounds are sharp.

Proof: The upper bounds of both (10) and (11) is given in Lemma 2.4.
The lower bounds of both (10) and (11) follows from Theorem 3.1 and the
fact that ¥(G) > a(G) for any graph G. ]
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