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Abstract
A 2-factor F of a bipartite graph G = (A, B; E),|A| = |Bl =n
is small if F' comprises %J cycles. A set § of small edge-disjoint
2-factors of G is maximal if G — § does not contain a small 2-factor.
We study the spectrum of maximal sets of small 2-factors.

1. Introduction

Let G = (A, B; E) be a bipartite graph with |[A| = |B| = n. Then a 2-
factor F' of G is called small if F' consists of | %] cycles, i.e., for n even,
F consists of n/2 4-cycles, for n odd, there is one 6-cycle in F and all the
other cycles are of length 4. A set § of small edge-disjoint 2-factors of
the complete bipartite graph K, . is said to be maximal if K., — §, the
graph obtained by deleting the edges of § from K, ,, contains no small
2-factor. The spectrum for maximal sets of small 2-factors of K, , is the
set Spec(n) = {k : there exists a maximal set of k small (edge-disjoint)
2-factors of K, ,}.

Rees and Wallis [10] determined the spectrum of maximal sets of 1-factors of
Kj5,,. Hoffman, Rodger and Rosa [4] determined the spectrum for maximal
sets of 2-factors of the complete graph K, and the spectrum of maximal sets
of Hamiltonian 2-factors of K. Rees [11],[12] and Rees, Rosa, and Wallis
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[13] have, with a few exceptions, determined the spectrum for maximal
sets of small 2-factors of Kgi ( we call a factor of Ky, small if it has | 2|
cycles). The maximum value of Spec(n) for maximal sets of small 2-factors
of K,, were determined, for some specific values of n # 3k in (1] and in
[2]. Bryant, El-Zanati, and Rodger (5] described the spectrum of maximal
sets of Hamiltonian 2-factors of K, ,. A survey of spectral problems for
maximal sets of a wide variety of combinatorial objects can be found in [6].
In this paper we deal with Spec(n) for the maximal sets of small 2-factors
of K, . We determine Spec(n) for all n odd; for n even we provide some
partial results.

2. n odd.

Throughout this section n will stand for an odd number.

Let §(G) be a minimum degree of a graph G. The following theorem due
to Wang enables us to determine the smallest value of Spec(n).

Theorem 1. [9] Let ¢t be a natural number, G = (A, B; E) be a bipartite
graph with |A| = |B| = n > 2t+1, and let §(G) > 3| +1. Then G contains
a 2-factor with exactly t components.

As an immediate consequence we get
Corollary 2. Let n be an odd number. Then min Spec(n) > [2%].

Proof. From Theorem 2.1 it follows that if » is an odd number then a
bipartite graph G = (4, B; E) with |A| = |B| = n and §(G) > [3] +1
contains a small 2-factor. Hence, if k € Spec(n), then there is a maximal
set § of k small 2-factors so that the leave L = K, , — §, which is a
regular graph of degree n — 2k, does not contain a small 2-factor, hence
n—2k<[2];ie k> [22]. 1

As the maximum possible number of 2-factors of K, is l;—l the above
Corollary implies that Spec(n) C {k; [252] < k < Z51}. We will show
that, in fact, with an exception for n = 5 and a possible exception of n = 9,
there is equality in the previous relation. For the proof of the statement
we will need the following technical Lemma.

Lemma 3. Lett > 0,m be natural numbers, 0 < m < t/2,t—m # 2. Then
there exists a Latin (t — m) x t rectangle R on the symbol set {1,...,t} so
that R(i,i) =i fori =1,...,t —m, and, for m > 0, no element of the first
m columns of R is from the set {t —m +1,...,t}.
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Proof. Lett>1,0<m< Lt—-m#2 Fort—m #6,let Aand B
be a pair of orthogonal Latin squares of order ¢ — m on the symbol set
{1,...,t—m}, A(%,i) =i and B(i,i) = 1 for i = 1,...,t —m; it is notoriously
known that a pair of orthogonal Latin squares of order n exists iff n # 2,6,
see e.g. [3], the properties B(i,i) = 1, A(%,i) = i can be guaranteed by
suitable permutation of rows and columns of A and B. For t — m = 6 we
set

1 36 2 45
6 2 4 5 31
A=563124
315 46 2
2 416 5
4 52316

If m =0, then A has the required properties, i.e., we set R = A. Further,
for t even and m = t/2, R is obtained by placing A into the first ¢/2 columns
of R and any Latin square of order ¢/2 on the symbol set {¢/2 +1,...,t}
into the last ¢/2 columns of R. Thus assume that m > 0 and m # ¢/2. We
start with the case ¢t — m # 6. Define a Latin square C of order £t — m as
follows: for m+1 < j <t—m, if B(i,j) =k, wheret—2m+1< k<t-m
then C(i, j) = B(i, j) + m, otherwise C(3,j) = A(3, j).

First of all, it is clear that no element occurs twice in a row or in a column
of C. Further, C can be seen as obtained by changing some elements in the
last ¢t — 2m columns of A. Therefore, no element of the first m columns of
C is from the set {t — m +1,...,t}. Further, C(i,i) =ifori=1,..,t —m
as B(i,i) =1 <t—2m+1 (m < t/2), thus C(¢,7) = A(3, ).

To cover the case t —m = 6, that means (¢,m) = (¢,i—6),i =7, ...,,11, we
construct the Latin square C from A (defined for ¢t — m = 6) by changing
some of its elements. For (t,m) = (7,1), we set C(¢,i+1) =7,i=1,...,4,
and C(5,1) = 7, otherwise C(i, j) = A(3, ); for (t,m) = (8,2), C(4,i+1) =
7,6=1,...,4, C(i,i+2) =8,i =1,2,3, and C(4,1) = 8; for (¢, m) = (9,3),
Cli,i+1)=7,i=1,2,3, C(i+3,i) =8,i=1,2,3,and C(4,i+2) =9,i =
1,2,3; for (t,m) = (10,4), C(i,i + 1) =7,i=1,2, Ci,i + 1) = 8,i = 3,4,
C(i,i+2) = 9,i = 1,2, and C(,i+3) = 10,¢ = 1, 2; and for (¢, m) = (11,5),
we set C(6,i) =i+6,i=1,...,5.

To finish the proof we show, by applying Ryser’s Theorem, see [7], that
C can be completed to a Latin square D of order ¢, as then R with the
required properties might be obtained by taking the first ¢ — m rows of D
(in fact we need only to extend C into Latin (£ — m) x ¢ rectangle). This
means we need to show that each element of the symbol set {1, ...,t} occurs
in C at least (t — m) + (t —m) —t =t — 2m times. For t —m # 6, each
element of the set {t —2m+1,...,t —m} occurs in the last ¢t — 2m columns
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of B exactly t — 2m times, thus each element of {t — m + 1, ...,t} occurs
in C exactly t — 2m times. Moreover, as A and B are orthogonal, if we
take t — 2m occurrences of a fixed element k in the last ¢ — 2m columns
of B, then their mates in A (elements occupying in A the same cells as
k in B) are distinct elements from {1,...,t — m}. Hence, when replacing
elements of A to construct C, we substitute each element of {1,...,t — m}
at most m times, so each element of {1,...,t — m} occurs in C at least
(t = m) —m =t — 2m times. For ¢t — m = 6, when constructing the matrix
C, any fixed value from {t—m+-1,...,t} has replaced in A distinct elements.
Thus also in this case C satisfies the conditions of Ryser’s theorem. W

With this in hand we are ready to prove:

Theorem 4. Letn > 3 be an odd number. Then, forn ¢ {5,9}, Spec(n) =
{k; [252] <k < 251}, Spec(5) = {1}, Spec(9) C {3,4}.

Remark 1. Thus, the only open case is whether 2 € Spec(9).

Proof. Trivially, Spec(3) = 1. Let F be a small 2-factor of K5 5. It is easy
to check that K55 — F' does not contain a small 2-factor. This implies that
1€ Spec(5) but 2 ¢ Spec(5). Thus, Spec(5) = {1}.

Now let n > 5 and [272] < k < 258, (n, k) ¢ {(7,2),(9,2)}. We will con-
struct a maximal set of k small 2- factors F,..,F; of K, ,. Let A, B form
the bipartition of the vertex set of Kp n, A = {al, wy@n}, B ={b1,...,b,}.
The 2-factors F’s will be constructed so that the subgraph of the leave

L(n,k) = U F; induced by the set C' = {ay,...,as}U{bp—s+2,..-,bn},

s=n—2k,isa complete bipartite graph K, s—1. Then clearly L(n, k) does
not contain a small 2-factor as s — 1 is an even number.

Set t = 251, m = 251. Then k =t — m # 2 as we excluded pairs (n, k) =
(7,2),(9,2),and m < % is implied by [251] < k. Let R be a Latin (t—m)xt
rectangle with properties guarantied by the previous Lemma. Now we are
ready to define the sought k¥ small edge-disjoint 2-factors Fi, ..., F.

If, for ¢ # 7, R(i,7) = [ then the 4-cycle ag;baaz;ji1bory102; belongs to F;.
The (only) 6-cycle of F; is the cycle a1bg;agir1b1a2:b2i+10:1. As each row of
R comprises distinct elements F;,i = 1,...,k is a small 2-factor. Further,
since R is a Latin rectangle with the poroperty R(,7) = %, the 2-factors
F;; are pairwise edge-disjoint. Finally, no element in the first m columns of
R is from the set {t —m + 1,...,t} = {k + 1,..,¢}. This means, no vertex
from {a;,i = 1,...,8 (= 2m + 1)} is in {JF; adjacent to any vertex in

1
{b;,i =2k +2,..,n} = {bj,j = n—s+2,..,n}. Thus, the subgraph of
L(n, k) induced by C is isomorphic to K s—1.

132



At the very end we show that 2 € Spec(7). In this case we cannot use
the above construction because there does not exist a Latin 2 x 3 rect-
angle R with properties as in Lemma 2.3. The question whether 2 €
Spec(9) is open as we do not have such 2 x 4 rectangle. We set F} =
{a1biasboay, azbsasbsas, asbsagbsarbras}, Fo = {a1bzasbsai,asbrarbaas
,agbsagbrasbgas}. Then the leave K77 — (Fi U Fy) contains a complete
bipartite graph K32 on the vertex set {a3,a4,as} U {by, by}, thus the leave
does not possess a small 2-factor. B

3. n even

Throughout this section n will stand for an even number. This case is much
more complicated than the case of odd n. We will be able to determine
Spec(n) only for n < 8, otherwise we provide some partial results.

3.1. Spec(n) for n <8

‘We will make use of the following Lemmas.
Lemma 1. For all n, n/2 € Spec(n).

Proof. To prove the statement we need to show that K,, , = G(A,B; E), A =
{a1,-yan}, B = {b1,...,b,} has a factorization into small 2-factors. Con-
sider a 1-factorization {Hy, ..., Hnj2} of Knjonse = G'(A, B E'), A’ =
B’ = {1,..,n/2}. Then we can define n/2 small edge-disjoint 2-factors
Fi,...,Fayp of G as follows: If an edge ij,i € A’,j € B’, belongs to the
1-factor H; then the 4-cycle ag;—1boj—102ib2ja2;—1 is in F;. B

Lemma 2. Forn > 2,1 ¢ Spec(n).

Proof. Let F be a small 2-factor of G = K, n. WLOG we assume that F' =
{agi—1b2i—102:bgia0i 1 : 1 < i <n/2}. Then {ag;_1bsit1a2iboitaa2i-1:1<
i < n/2}, where the indices are taken modn from the set {1,...,n}, is a
small 2-factor of G — F, hence 1 ¢ Spec(n). B

Lemma 3. Ifn = 6,8, then 2 ¢ Spec(n).

Proof. Let K, = G(A, B; E) and F be a small 2-factor of G. Then F
determines a partition F(A) of A into n/2 2-subsets as well as a partition
F(B) of B into n/2 2-subsets, where two vertices of A (of B) belong to the
same part of F(A) (F(B)) if they are on the same cycle of F.

For n = 6, if H is a small 2-factor of G — F then either F(A) = H(A)
or F(B) = H(B) implying that G — (F U H) is a small 2-factor T', where
T(A) = F(A) = H(A) or T(B) = F(B) = H(B), hence 2 ¢ Spec(6).
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For n = 8 the situation is a bit more involved. Let H be a small 2-factor of
G—F. We show how to construct a small 2-factor T of G— (FUH). Suppose
first that F(B)NH(B) = 0. Then there is a small 2-factor T of G — (FUH)
so that T(A) = H(A) and if a cycle a;bia;bja; € H then a;za;ya; € T,
where {z,b;}, {y,b;} € F(B). So, by symmetry, we are left with the case
F(A)N H(A) # 0 and F(B) N H(B) # 0. In a similar way as above we
define T in the case if there is no cycle C in H so that V(C) N F(A) # 0,
and V(C) N F(B) # 0. An inspection of all remaining possibilities shows
that also in these cases there is a small 2-factorin G- (FUH}. 1l

Theorem 4. Spec(2) = {1}, Spec(4) = {2}, Spec(6) = {3}, Spec(8) =
{3,4}.

Proof. Spec(2) =1 is equivalent to stating that K5 2 has a small 2-factor
while Lemmas 3.1 and 3.2 imply Spec(4) = {2}. Lemmas 3.1-3.3 show that
Spec(6) = {3}. The following 8 x3 matrix C = [c;;} defines three small edge-
disjoint 2-factors Fy, Fp, F3 of Kgg = G(A,B;E), A = {ay,...,a8},B =
{b1,...,b8} by: if ¢;;j = {z,y} then a; is in F; on a 4-cycle with b, and
by. The three factors form a maximal set as G — (F; U F» U F3) comprises
two cycles of length 8, the first one on vertices {ay, ...,as} U{b1, ..., bs} the
second on {as, ...,ag} U {bs, ..., bg}.

(5,6 4,7 3,8\

56 1,8 4,7

7,8 2,5 1,6

c—| 78 36 25
1,2 3,6 4,7

1,2 4,7 3,8

3,4 1,8 2,5
\ 3,4 2,5 1,6

Together with Lemmas 3.1-3.3 this implies that Spec(8) = {3,4}. W

3.2. A sufficient condition for the existence of a small 2-factor

As for the other values of =, it is difficult to describe Spec(n) because the
answer to the following question is not known yet.

Given a bipartite graph G = (A, B; E), |A| = |B| = 2t. What is the smallest
number d so that the condition §(G) > d guarantees that G contains a small
2-factor, that is, a 2-factor comprising ¢ cycles of length 4?

Thus, we do not have a lower bound on min Spec(n). It is conjectured that,
see[8], 6(G) >t + 1 guarantees a small 2-factor in G. If true, it would be
the best possible. In the same paper it is shown, to support the conjecture,
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that 6(G) > t + 1 guarantees a small 2-factor without one edge, i.e., G
contains ¢t — 1 cycles of length 4 and a path of length 4 so that all of them
are vertex-disjoint.

3.3. Spec(n) for n > 10.

With respect to the result of Hong Wang stated above we believe that the
following is true:

Conjecture 5. For n > ng, Spec(n) = {| 2], .., 3}.

In what follows we provide partial results supporting this Conjecture. We
show that the expected minimum value [L‘-}ﬁj , up to two possible excep-
tions, belongs to Spec(n) and that the "second half” of the conjectured
interval is in Spec(n) as well. Namely,

Theorem 6. Ifn > 10,n ¢ {12,18}, then |%| +1 € Spec(n).
and

Theorem 7. If n > 16, then {i, [3%4] +d <i < 3} C Spec(n), where
d =1 for n € {36,38}, otherwise d = 0.

3.4. Minimum value of Spec(n)

In this subsection we prove Theorem 3.6. The construction proving the
statement is rather complicated and is based on the following technical
lemma.

Let N, = {1,2,...,k}, and N} = Ny U{oo}. We set, for i € Ny, coti = co.
Consider a sequence S = (a4, a2, ...ax), a; € Ni;,1 < i < k. In what follows
a finite difference a; — i will always be taken modulo & from the set Nj.
The sequence S is a ky— sequence if the following conditions are satisfied:

(l) a; = 1,

(i) ak—1 = k;

(iii) Each element of N} occurs in S at most once (i.e., exactly one
element of N;; does not occur in S);

(iv) {a; —%;1 < i < k} = Nf — {k—1} (each element from Ny — {k—1}
occurs exactly once as a difference a; — %).

The sequence S is a ko— sequence if S satisfies (ii)-(iii), and

(l’) ay = 2;

(iv') {a; —%;1 <i <k} = Ng —{k—1,k}, ((’) and (ii) imply that the
number 1 occurs twice as a difference a; — 7).

Lemma 8. A k;—sequence, i = 1,2, exists for any k € N — {1,2,4}.
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Proof. For both, k;-sequences and ke —sequences, we prove the existence
by recursive constructions. We start with k;—sequences. It is easy to
check that S3 = (1,3,00), S5 = (1,4,00,5,3), Sg = (1,00, 5,2,6,3), S7 =
Q1,6,5,2,00,7,3), and Sg = (1,00,7,6,2,4,8,3) are 3;—, 5;—,6;—,71—,
and 8;—sequence, respectively. Now we show how to construct, for k > 5,
a (k +4);— sequence S’ from a k;—sequence S = (a1, as,...,ax). Set §’' =
(b1,b2, oy brya) = (1,00,k+3,k+2,a3+2,a4+2,...,ap-2+2,2,5,k+4,3)
for k even, and S’ = (b1,b2,....,bk44) = (L, + 3,k +2,k+1,a3 + 2,04 +
2,...,ak—2 +2,2,5,k+4,3) for k odd (that is, b; = a;_2 +2,5 <i < k).

Thus S’ satisfies (i) and (ii). Further, b; € Nf, 4 (for 5 < i < k,b; =
ai—2 +2 < k+ 2 or b; equals oo for k odd) hence b; € N{. As a3, ...,ar-2
are distinct numbers, 2 < a; < k—1,a; # 3 for 3 < i < k—2 or e; equals co
for k odd, also bs, ..., by are distinct, and 4 < b; < k+1,b; #5,6 <i <k,
or b; may equal oo for k odd, which, together with the definition of b; for
1<i<4and k+1<i<k+4, implies (iii).

To see that S’ fulfills (iv) we prove that each k; — sequence C = (1, ¢2, ..., Ck)
obtained by the above recursive construction satisfies,

for k even:

(8) c; —i=2(k/2—-i+1) for 3 <i<k/2 thatis, {¢; —41< i<
k/2} = {2,4,6,....k — 4,k} U {oo}; and

(b) For k/2+1<i<k-2,itisi>¢;, and {¢; —4;k/2+1<i<k} =
{27+ 1,0 <5 < k/2~ 2} U {k—2);

for k odd:

(¢) c; —i=2(E —i) for 2<i < 551, thatis, {e; — 41 <@ < &5}
{2,4,6,....k — 3,k};

(d) For % <i<k-2 if ¢; # oo then i > ¢;, and {c,-—i;%‘—l <i
k} = {25 +1;0 <j < 553} U {oo}.

First we deal with & even. Clearly Sg and Sg satisfy (a) and (b). To finish
the proof we show that if S has the properties then also S’ does. By the
definition of S',b3 —3=k,by—4=k—-2,and b;—i =a; 2+2 -1 =
aie— (1—-2)=2(k/2— (i —2)+1) =2(52 —i+1) for 5 <i < &4, thus
(a) follows. Further, for 82 +1 <i< kb =ai2+2<(i—-2)+2=
3,bp41 =2 < k+1,bey2 =5 < k+3, hence b; <ifor Bt +1<i<k+2.1t
is, for B4 +1 <i <k, bi—i=ai;_a+2—1i=a;_2— (i —2) < 0. Therefore,
if a;_p — (i — 2) = d(modk),d € Ni then b; — i = d + 4(mod k + 4). As
ak—1—(k—1)=1and ax—k = 3, {a;—i;k/2+1 <i < k—2} = {2j+1;2 <
j<k/2-2}U{k—2}. Hence {b; —; 82 +1<i<k}={2j+1;4<i<
k/2} U {k +2}. Since {b; —5;k+1 < i < k+4} = {1,3,5,7}, (b) follows.
The proof of (c) and (d) for £ odd is omitted as it can be obtained from
the even case by slight modifications.

IA
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As to constructing k;— sequences, the starters are Sz = (2,3,00), S5 =
(2,4,00,5,3), S6 = (2,00,5,1,6,4), S7 = (2,5,00,6,3,7,4), S5 = (2,6,
5,00,3,1,8,5), S = (2,8,7,6,3,00,1,9,5), S10 = (2,8,7,6,3,00,4,1,10,5),
Si = (2,10,9,8,7,4,3,00,1,11,5), Sy2 = (2,10,9,8,7,4,00,3,6,1,12,5),
and $y3 = (2,12,11,10,9,8,3,00,7,4,1,13, 5).

Let S = (a3, as, ...,ax), k > 8, be a ko— sequence. Then S’ = (by, by, ..., be+6)
=(2,k+4,k+3,k+2,a2+3,a3+3,...,a,—2+3,3,8,1,k+6, 5) for k even,

and &' = (2,k+5k+4,k+3,a2+3,a3+3,...,ar—2+3,3,8,1,k + 6,5)

for k odd, is a (k 4+ 6)2—sequence as well.

The properties (i’) and (ii) follow from the definition of S’. Moreover, the
same type of argument as before implies (iii). To see (iv’) the reader can
verify the following using the same reasoning as for k; —sequences. For any
sequence (¢, Ca, ..., ) constructed in the above manner we have {¢;—i;1 <
i < |5} = {2751 <5 < |52 U {1}, and (e — 4 | Bt <i <k} =
{25+1,0 < j < | 533]|}U{o0}UA, where A =@ for k odd, and A = {k—2}
for k even. W

Proof of Theorem 3.6. For n = 10, 16, 20, [1“{—4-] = k small edge-disjoint
2-factors Fy, ..., Fx. of Kp = G(A,B; E), A= {a1,...,an}, B = {b1, ..., bs}
are given by the matrix C,,, where ¢;; = {z,y} means that a; € A is in Fj
on a 4— cycle with b; and b,.

[ 58 69 7,10
7,10 6,9 4,8
4,9 58 7,10
58 4,10 6,9
Coe| 710 12 35
=1 49 37 1,2
1,2 4,10 3,5
1,2 3,7 6,9
3,6 58 1,2
\ 3,6 1,2 48 |
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L, = K, n — |J F; contains, for n = 10, a complete bipartite graph H =

K3,4 on the set {lal, .yaq}U{by, ..., b3} and a matching edge-disjoint with H
and covering {ai, ..., a4}, thus Lip does not contain a small 2-factor, which
yields 3 €Spec(10). For n = 16,20, L, contains a complete bipartite graph
H = K,k n—2k—1 on the set {a1,...,an-2t} U {bn—2k41, ., b2n—4k—1} and
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a matching covering {a,, ..., @,—2t} which is edge disjoint with H. Hence
5 € Spec(16),6 € Spec(20).

First we consider the case n = 2(mod4), n > 14,n # 18. Let K, , =
G(A,B;E), A= {a1,a3,....,an}, B={1,2,...,2k} U {1",2,...,(2k - 1)’} U
{o01, 002,003}, where k = "—4‘2-. We will construct k+1 = |_-"—j4f—4J small edge-
k+1

disjoint 2-factors Fy, Fy, ..., Fi4y of G so that the leave L, = K, ,, — [j F;
does not possess a small 2-factor. The 2-factors F;s will be construc’zeé SO
that the leave L,, will contain a complete bipartite graph H = Kji 2¢—1 on
the vertex set {ay,...,agx} U{1l’,...,(2k — 1)’} and a matching edge disjoint
with H covering A’ = {a,, ..., azi }, thus L does not contain a small 2-factor.
To simplify the description of the construction of F}s we will construct a
matrix Cp = [c;5],1 <4 <n,1 < j < k+1so that the element ¢;; equals
the pair of vertices of B which are neighbours of the vertex a; in the small
2-factor F;. Thus, we need to construct a matrix C, so that each element
of C,, is a pair of vertices of B, where

(i) for 1 < i < n, the i —~th row of Cy, comprises 2(k+ 1) distinct vertices
of B;

(ii) for 1 < j < k+1, each vertex of B occurs exactly twice in the j —th
column of C,, and if ¢;; = {z,y} then there is [,l # i, so that ¢;; = {z,y}
(the vertices a;,a;, z,y form a 4-cycle in Fy).

We start with the first row of C,. Let S = (1, 89, ..., 8 ) be a k; —sequence.
As k ¢ {1,2,4}, the existence of k;— sequence is guaranteed by Lemma
3.6. Then, if s; = 0o, we set ¢1; = {002,003}, and ¢1,k—1 = {281,001} =
{2k, 001}, otherwise, for 1 < j < k,j # k+1 and s; # o0, c1; = {28;,2s; +
1}. Let ¢ be the only element of N} which does not occur in S (see (iii) in
the definition of k;—sequence), then we set ¢; g4+1 = {2¢,2¢ + 1}. Thus,

k+1
U clj = {27 3’ MR/ 2k} U {001) 002) m3}7 (3.1)
J=1

this is, no vertex of B occurs is the first row more than once, and

Claim 1. The vertex a, is in the leave L, adjacent to vertices of {1/,2/, ...,
(2 -1Y}u{1}.

The next k — 1 rows of C,, will be constructed in a recursive manner. All
values in c¢;; are taken modulo 2k from the set Ny, co; + 2 = oo; for
1=1,2,3. For 2 <1<k, we set

(a) If Cic1,k41 = {m,y} then ¢; 41 = {.'B +2,y+ 2};

(b) If i1,k = {z,y} then ¢;) = {z + 2,y + 2}

() Ifcim1,; ={z,y} then¢;jp1 ={z+2,y+2} for1<j< k-1
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k+1
Hence, from (3.1) and from (a)-(c), for 2 < i <k, U cij = (Nax — {2i —
j=1

1}) U {oc01, 002, 003}, that is, no vertex of B occurs in the ¢ — th row more
than once, and

Claim 2. The vertex a;,i = 2, ..., k, is adjacent in L, to vertices {1’,2,...,
(2k-1)}u{2i-1}.

From (b) and (c) we get
(d) cs1 = {4,001}, and for 2 < i < k, © # 3, if spy2—; # 00, then
ci1 = {28k42-i+2(6—1), 28k42—i +2(i — 1)+ 1}, otherwise ¢;; = {00z, 003};
(e) if cx,j-1 = {z,y} then ¢ = {z + 2,y + 2}.

We show now that the vertices of B placed so far in the first column of
Cn (ie., in the first k rows of the first column) are all distinct. Assume
to the contrary that the same vertex appears in ¢); and c;;,%1 # j. From
(d) it follows that then either 2sg42-_; + 2(i — 1) = 2sp42—; +2(j — 1) or
2ppo—i+ 26 — 1) +1 = 28540 + 2(j — 1) + 1. In either case we get
Sk42—i + 1 = 28k4o—j + j which implies sgpo-; — (K +2 —19) = spq0-; —
(k + 2 — 7). However this contradicts the property (iv) in the definition
of k;—sequence. Further, vertices 1 and 2k do not occur yet in the first
column. If they did, there would be i so that a;; = {2sgyo—; + 2(2 —
1), 2sk42-i + 2( — 1) + 1} = {2k, 1}, i.e., 28p42—i + 2(i — 1) = 2k which
in turn implies sg4a—; — (k+ 2 — i) = —1 = k — 1(mod k) contradicting
again the property (iv) in the definition of k; — sequence. Summarizing the
above discussion we get that

{ea;i =1,...,k} ={{2,3},{4,001},{6, 7}, ..., {2k — 2,2k — 1}, {002, 003} }.

(3.2)
Let S = (s1,...,5x) be now a kp-sequence. The (k + 1) — th row, except
of the first term, is defined in the same way as the first row. Formally,
ce+1,1 = {1,281 + 1} = {1,5}, ceg1,k—1 = {2k,001}, for 1 < j < k,j #
k—1,s; # 00,cr41,; = {285,255 + 1}, if s; = oo then cxy1,; = {002,003},
and ci+1,k+1 = {2¢,2t + 1}, where ¢ is the only element of N which does
not occur in S. For k+2 <i <2k and 1 £ j < k+1, ¢ is defined by
(a),(b), and (c). By the same token as above we get:

{ci; k+1 < i <2k} = {{1,5}, {4,001}, {6, 7}, ..., {2k—2, 2k—1}, {002, 003} }
(3.3)
and consequently,

k
U Cij = {001’002’003} U Nag, — {2(1’ ~-k+ 1)}1 i=k+ 11"'aj1 (3'4)
j=1
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where the number 2(¢ — & + 1) is taken mod(2k) from Ny.

That is, no vertex occurs twice in the first column and rows & + 1 up to
2k. Combining (3.2) and (3.3), each pair {25,2j +1},3 < j < k-1 of
vertices occurs twice in the first 2k rows of the first column as well as pairs
{c02,003} and {4,001}; pairs {1,5} and {2,3} occur there once. Further,
(3.4) implies

Claim 3. The vertex a;,i = k + 1,...,2k, is adjacent in L, to vertices
{V,2,..,(2k-1)Y}u{2G - k+1)}.

Now we illustrate the first part of the construction of C, for n = 26.
Then k = 6, S = (1,00,5,2,6,3) and S’ = (2,00,5,1,6,4) are 6;— and
62—sequence, respectively. The first 12 rows of Cag are
9
o)

( 2,3  ocog,003 10,11 4,5 12, 001 6,7 8,
8,9 4,5 002,003 12,1 6,7 2,001 10, 1
4,000 10,11 6,7 ©0g,003 2,3 8,9 12,1
10,11 6,00, 12,1 8,9 o0o0g,003 4,5 2,3
6,7 12,1 8,001 2,3 10,11 oo03,003 4,5
g, 03 8,9 2, 3 10, 001 4, 3 12, 1 6, 7
1,5 oop,003 10,11 2,3 12,001 8,9 6,7
10,11 3,7 oog,003 12,1 4,5 2,00, 8,9
4,00, 12,1 51 9 002, 003 2) 3 6) 7 10, 11
8,9 6,001 2,3 7,11  oog,003 4,5 12,1
6,7 10,11 8,009 4,5 9,1 o0g,003 2,3
\ ooz,003 8,9 12,1 10,001 6,7 1,3 4,5

The last n— 2k rows of the matrix C, will be formed by a (n —2k) x (k+1)
matrix C}, = [c/;] defined as follows:

() ¢y = {2,3},c5n = {1,5},¢hy =y = {2k, 1} ¢ = iy =
{(2i —4),(2¢-3)'},i=3,...,n/2 -k,

(g) for j =2,...k, ¢} j = ch ; = Cn—2k,j~1, € k41 = Co 41 = {1/, 001}.

(h) Cl —2k—1,k+1 = C¢I—2k,k+l = {002, 003}, for a-ll Other 7 = 3, ey —
2k—2,j=2,..,k, weset if ¢j; = {1, 72} then ¢}, ;, = { Z1,F2}, where
T, =z ifz; € {1',...,(2k - 1)'}, and T; = x; +21if z; € {l,...,Zk} (the
sum z; + 2 is taken mod 2k from the set Nog).

From f), (3.2), and (3.3) we see that the first column of C, contains each
element twice and if a pair occurs in the first column, it occurs there exactly
twice. This is true for all columns of C,,, as C,, is defined in a cyclic way.
Further, (g) and (h) imply that no element occurs more than once in each
row of C},, as the only conflict (=having an element twice in a row) could
be with the elements of {1,2,....,2k}, where we add 2 to the element in the
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next column. However, there is no conflict since there is no conflict in the
third and fourth rows of Cj, as 2k # 4 for k > 3.

Thus, the matrix C, defines k+1 small edge-disjoint 2-factors of Ky, 5. From

Claim 1,2, and 3 one can see that the leave L, contains a complete bipartite

graph H = Ko 2k—1 on the vertex set {a1,...,a2c} U {1’,...,(2k — 1)’} and

a matching edge disjoint with H covering A’ = {ay, ..., a2}, thus L, does

not contain a small 2-factor.

Again we illustrate the construction of C’ for n = 26.

( 2,3 10,1 8,9 6,7 4,5 2,3 1,00 \

1,5 10,11’ 8,9 6,7 4’5 2.3 1, 001

12,1 4,5 10,11 8,9 6,7 45 2,3
12,1 3,7 10,11’ 8,9 6,7 4,5 2,3

2,3 2,1 6,7 10,11 §8,9 6,7 4" 5
2,3 2,1 59 10,11 §&,9 6,7 4',5
45 2,3 4,1 8,9 10,11’ &9 6,7
4.5 2'3 4,1 7,11 10,11 §&,9' 6,7
6,7 45 2,3 6,1 10,11 10,11’ 8,9
6,7 4’5 2,3 6,1’ 1,9 10,11 8,9
8,9 6,7 45 2,3 8,1 1,12 10,11
8,9 6,7 4’5 2,3 8,1 3,11 10,11

10,11’ 8,9 6,7 4.5 2.3 10,1’ 009,003

\ 10,11 89 6,7 45 2,3 101 oop005 |

To construct %-+1 small edge-disjoint 2-factors of Ky, for n = 0(mod 4),n >
24, we deﬁne an n x (% + 1) matrix D, = (di;] with the same properties

(i) and (ii) as matrix C, for the case n = 2(mod 4).

Let k = 2= 4 In this case the bipartition of K, ,, is given by A = {a1, ..., a»},
B=1{1,..,2k} U{l,...,(2k — 1)’} U {ooy, ... 005} The first 2k rows of D,
are obtained by a slight modification of the first 2k rows of the matrix
Cpea = [cij]. Fori=2,..,k,setdi;—1 =dix = {004,005}; fori=1,..,k,
set di k+2 = Cii—1 = {2 + 4,2 + 5}, where the numbers 2i + j,7 = 4,5
are taken mod 2k from the set Ny;. Thus the elements in the i-th row and
the last column of D,, are formed by numbers which where substituted in
the i-th row by the pair {0o4,005}. For all other %,j set di; = c;;. As to
the rows k + 1, ..., 2k we proceed as follows. For k > 5, the last number of
k;— sequence equals 3, and thus cp,; = {8,9}. Choose i € {k+1,. 2Ic} so
that c;; = {8,9}, cf. (3.3) to see that such 7 exists. For j =0,...,k -1,
set diyj,145 = {004,005} and diqj k42 = Cigja+i = {8 +25,9+ 2_7}, where
the indices ¢ 4 j, 1 + j are taken mod k from the set Nj. Thus, also for the
rows k + 1, ..., 2k, the elements in the last column are elements which were
substituted in the given row by the pair {co4,005}, and we can conclude
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that the first 2k rows of D, satisfy conditions (i) and (ii). Now we illustrate
our construction for n = 28.

2,3 002,003 10,11 4,5
004, X5 4,5 002, 003 1,12
4) 01 004, 005 6, 7 002, 03
10, 11 6, o0} ] 004, 005 8,9
6,7 1,12 8,001 004,005
002, 003 8,9 2,3 10, 001
1,5 002,003 10,11 004,005
10,11 3,7 002,003 1,12
4,00 1,12 59 002, 003
004,005 6,000 2,3 7,11
6, 7 004, 005 8, o1 4, 5
\ 002, 003 8,9 004, 005 10; 001

12, 01
6,7
2,3

002, 003

10,11

004, 05

12, [o.¢3]

004, 005
2,3
002, X3
9,1
6,7

004, 05
2,001
8,9
4,5
0902, 003
1,12
8,9
2,001
004, 005
4,5
002, 003
11,3

8,9 6,7
10,11 8,9
1,12 10,11
2,3 1,12
45 2,3
6,7 4,5
6,7 2,3
8,9 4,5
10,11 6,7
1,12 8,9
2,3 10,11
4,5 1,12

The last n — 2k rows of D, are formed by an (n — 2k) x (k + 2) matrix

Dl

[d};] defined in a very similar way as the matrix C;, for the case

n= 2(mod 4). We obtain the first column of D], by adding twice the pair
{8,9} to the first column of C},_,, add to the second column twice the pair
{10,11}, etc. Formally,

(a) di, = {2,3},dy = {1,5},dy; = dy, = {8,9}, d§;, = dg; =

d2n—k—2l - {Zk 1} d21—1 1~
Wwnf2—k— D) n/2 k}},
,(2k—1),004,005},and :v,—:z:,+21f

d2n—k—3 1=
ie{4,.
(b) for j=2,.

T1,T2}, where T; = a:, if :z:z e{V,.

z; € {1,..., 2k};
(c) fori=3,.

n—2k—2,5=2,.

d‘IZi,l = {(21

{8',9'},

—6)', (2 —5)'} for

""d2,g_{

k"' 1, d,_ok—3, k1= Apok—2,k41 =

dy_ok—1 k2 = dn—2k k2 = {°°2»°°3}’ n—2k—1,k+1 — = dp ok k1 = {004,

dn—2k—4 k2 =

1,001},

35§, dn—2k-—7 k+1, = dn—2k—6 kb1 = Gn2k—5 5,k+2 =
= {z1, 22} then diyg it =
(2k—1)},and T; = x; + 2 if z; € {1, ..

otherwise, if d s
x; € {1', ey

taken mod 2k from the set Noy).
As D), is defined in a cyclic way the only conflict (=having an element

twice in a row) could be with the elements of {1,2, ...,

Ty, T2}, where T; = z; if
., 2k} (the sum z; +2 is

2k}, where we add 2

to the element in the next column. However, as there is no conflict in the
third and fourth rows of D,

8,9 3,7 (2k-2),(2k—1) 6,1’

(8,9 4,5 (2k-2),(2k—1) 6,1 )

there is no conflict in D/, which is defined in a cyclic manner. Thus the
matrix D,, satisfies conditions (i) and (ii), that is, D,, defines k + 2 small
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edge-disjoint 2-factors F; of Ky 5. From the construction of D,, it also
follows that, for ¢ = 1,...,2k, | di; = U cij U {004,005}, (ci; being ele-
=1

ments of the matrix Cp,—2). Thus Claim 1 2 and 3 is valid also in this case,
hence Fs form a maximal set of small 2-factors. Bellow we illustrate the
construction of D), for n = 28.

3 10,11 4,1 6,7 4,5 2,3 8,9 004,005 \

5 10,11 4,V 6,7 4.5 2,3 8,9 004,005

9 4,5 10,11’ 6,1 6,7 4,5 2,3 8,9

9 3,7 10,11 6,1 6,7 4.5 2,3 8,9
8,9 10,11 6,7 10,11’ 8,V 6,7 4,5 2,3
8,9 10,11 59 10,11 8,1 6,7 4,5 2,3
2,3 8,9 1,12 8,9 107,11 10,V 6,7 4’5
2,3 8,9 1,12 7,11 10,11 10,V 6,7 4’5
4,5 2% 8,9 2,3 10,11 10,11 o004,V 6,7
4.5 2,3 8,9 2,3 9,1 10,11 oo,V 6,7
6,7 4.5 2,3 8,9 4,5 1,12 10,11 oo,V
6,7 4,5 2,3 8,9 4,5 11,3 10,11’ oo,V
12,1 6,7 4’5 2,3 8,9 6,7 oo2,003 10,11
12,1 6,7 4,5 2,3 8,9 6,7 oog,003 10,11’

10’, 11/ 2, 1 6’, 7 4', 5 2’, 3 8’, 9 004,005 002,003

\ 10’,11' 2, Iy 6',7' 4’,5' 2',3' 8',9' 004,005 ©O2,003 )

3.5. Proof of Theorem 3.7
The following lemma will be the key igredience of the proof.

Lemma 9. Ifk € Spec(t) then 3 — (§ — k) €Spec(n) for all even n > 2t.

Proof. If k = £ then the statement claims that 3 € Spec(n) which follows
from Lemma 3.1. For k < t/2, let C = [c;;] be a Latin square of order n/2
on the symbol set {1, ...,n/2} with a Latin subsquare D of order t/2 on the
symbol set {1,...,¢/2} in the upper right-hand corner of C. Such a square
is well known to exist, see (3], for any n > 2¢t. We will construct a set
of 2t + k small 2-factors F; of Ky n = (A,B;E), A = {a1,...,ax},B =
{b1,...,bn}. For j = 1,..,n/2, the j — th column of C defines a small 2-
factor H; comprising 4-cycles ag;—_1b2m_1a2ib2ma2i—1, where m = c;; and
i=1,..,n/2. As C is a Latin square the 2-factors H; are pairwise edge-
disjoint. Further, the upper right- hand corner of C is formed by the Latin
square D, thus, for j = 25t +1,. ., 2, the vertices of A’ = {ay,...,a:}
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are in Hj on 4-cycles only with vertices of B’ = {by,...,b;}. Let F},..., F},
be a maximal set of small edge-disjoint 2-factors of Ky: = (A,B;E),

A = {a1,...,as}, B’ = {b1,...., e}, I = K34 — U F. To construct a set
i=1

of 25t + k small 2-factors Fj of Ky, » we set, for j = 1, ..., "2", F; = Hj;

for J =2t +1,..,%% + k we obtain F; by replacmg in Hj; 4-cycles

on vertices of AU B by 4-cycles of F i_n-e. Formally, F; = FJ’_%__,. u{
5 ;

a2i—102m—102ib2ma0i_1, where m = ¢;j, £ +1 < i < 2}. As Hjs and FJs

are pairwise edge-disjoint the factors F; have the property as well.To see

that they form a maximal set of 2-factors it is sufficient to note that in the
2otk

leave L = K p — U F; vertices of A’ and B’ are not adjacent to any

vertex of A — A’ and B B’ and the subgraph of L induced by A’ U B’ is
isomorphic to L’. Hence, 25t + k=% — (§ — k) € Spec(n). B
With this in hand we are ready to prove Theorem 3.7.

Proof of Theorem 3.7. From Theorem 3.6 it follows that, for ¢ =

2(mod4), t ¢ {6,18}, 42 € Spec(t),6 € Spec(20), and from Theorem 3.4,

3 € Spec(8). Comblmng with Lemma 3.9 we get:

(i) if t < 3, ¢t =2(mod4),t ¢ {6,18}, then 3 — (3 -2) =3 -F2 €
Spec(n);

(ii) for 20 < % —4 € Spec(n);

(iii) for 8 < %, 2 —1 € Spec(n).
Let t,, be the largest number from the set T = {8,20}U{4j+2,5 > 2,7 # 4}
so that t, < %. Then, for n ¢ A = {16, 18,36, 38,40,42},¢, =4 I_"—s_-ﬁ-J +2,
tis = tig = 8,13 = t3zg = 14,t490 = t42 = 20. Take a fixed n. Then,
applying the numbers ¢t € T t < t,,, to (1) (11) and (iii) we get that, if

{1, 4]<z<"} {"_
n = 16 18; {2 -3,..,8} = {, [ +1 < ¥ < "} C Spec(n) for
n =36,38,and {§-4,%} = } € Spec(n) for n = 40, 42.
|
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