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Abstract. We study the behaviour of two domination pa-
rameters: the split domination number v, (G) of a graph G
and the maximal domination number 7,,, (G) of G after the
deletion of an edge from G. The motivation of these prob-
lems comes from [2]. In [6] Vizing gave an upper bound
for the size of a graph with a given domination number.
Inspired by [5] we formulate Vizing type relation between
IE(G)], IV(G)], AG) and §(C), where A(G) (8(G)) de-

notes the maximum (minimum) degree of G.

1. Introduction

By a graph G we mean a finite, not complete, undirected graph without
loops and multiple edges, where V(G) is the set of vertices and E(G) is
the set of edges of the graph G. A path joining vertices z; and z, in G is
the sequence of vertices z;, 2, ..., Zn € V(G) such that, (z;,z:+1) € E(G),
for i =1,2,..,n —1 and n > 2. We shall denote it by Pg(z1,Z,). The
open neighbourhood of a vertex z in a graph G, denoted by Ng(z), is the
set of all vertices adjacent to z in G. The closed neighbourhood of z in a
graph G is defined as Ng [y] = Ng(z) U {z}. Recall that the degree of the
vertez z, denoted by 6g(z), is the cardinality of the set Ng(z). If §g(z) = 1
(6c(z) = 0), then z is said to be a hanging vertez (an isolated vertex) of
G. An edge (u,v) € E(G) is a hanging edge of G if u or v is a hanging
vertex of G. Denote by §(G) (A(G)) the minimum (the maximum) degree
of G. By G — e we mean a subgraph of G containing all the vertices of G
with E(G) — {e} as the edge set. If X C V(G), then the notation {X)o
means the subgraph of G induced by a subset X. By P, we define a graph
on n > 2 vertices z;, Tz, ..., Tn and with the edge set E(G) = {(zi, Zi+1) :
i=1,.,n—1}

A subset D C V(G) is a dominating set of G if every vertex from V(G)—
D is adjacent to some vertex from D (for short: D is dominating in G). The
domination number (G) of G is the minimum cardinality of a dominating
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set of G. In this paper we study two of many variations of the domination.
A dominating set D of G is a split dominating set of G if the induced
subgraph (V(G) — D), is disconnected (for short: D is split dominating
in G). We note that the existence of such subset in a connected graph is
assured only if it is different from a complete graph. The split domination
number «,(G) of G is the minimum cardinality of a split dominating set of
G. A dominating set D of G is a mazimal dominating set of G if V(G) — D
is not a dominating set of G. The mazimal domination number =,,(G) of
G is the minimum cardinality of a maximal dominating set of G. For a
convenience, a subset which realizes number (G), v,(G), 7,,(G) will be
called a ¥(G) — set, a v,(G) — set and a 1,,(G) — set, respectively. For
more information about split domination graphs and maximal domination
" graphs, the reader is referred to [4] and [3], respectively.

Any term not defined in this paper may be found in Berge [1].
2. Perliminaries

Note that the fact that the subset D is dominating in G is equivalent to
the expression: for every z € V(G) — D Ng(z) N D # @. For a convenience,
we shall sometimes write that D dominates .

We begin with simple observations which will be useful in further inves-
tigations.
Let D C V(G) be a split dominating set of G and e = (z,y) € E(G) be an
arbitrary edge.

Propesition 2.1. Ifz,y € D, then D is o split dominating set of G — e.

Proof. Suppose that D is a split dominating set of G. Since D also there
must be dominating in G, for any w € V(G) — D holds Ng(w) N D # 0.
Moreover, Ng—e(w) N D # @ since z,y € D, what means that D is domi-
nating in G — e. There remains to show that the subgraph (V(G) — D)4_,
is disconnected. It is obvious from the definition of a split dominating set,
that the subgraph (V(G) — D),; is disconnected. This implies the existence
of two vertices u,v belonging to V(G) — D that every path Pg(u,v) con-
tains a vertex from D or there is no path joining % and v in G. Since the
removal of the edge e from G does not change the above relationship be-
tween vertices © and v, the subgraph (V(G) — D), _,, also is disconnected
what completes the proof. 1

Proposition 2.2. Ifz,y € V(G) — D, then D is a split dominating set of
G—e. '

Proof. Let D be as in the assumption of the proposition. We can conclude
from this that the vertex z is adjacent to some vertex from D in the graph
G. Moreover, Ng_(x) = Ng(z)—{y}. Combining the above facts we obtain
Ng-e(z)ND = Ng(z)ND # 0. Of course also Ng_(y)ND = Ng(y)ND #

148



0. Reassuming, for any w € V(G) — D, Ng_e(w) N D # 0, what shows that
the subset D is dominating in G—e. Since disconnectedness of the subgraph
(V(G) — D), implies disconnectedness of the subgraph (V(G) — D)¢_.,
the proof is complete. [ |

Let e = (z,y) € E(G) and D~ C V(G) be a split dominating set of
G —e. It is easy to see

Remark 2.3. If D~ is dominating in G —e, then D™ is dominating in G.

Proposition 2.4. If at least one of vertices z,y belongs to D, then D~
is a split dominating set of G.

Proof. Let D™ be a split dominating set of G —e and z € D~. By Remark
2.3 we conclude that D~ is dominating in G. Further, by the assumption it
follows that the subgraph H = (V(G) — D~)_, is disconnected. There-
fore, there exist two vertices u,v € V(G) — D~ not joined by a path in H.
Moreover, the adding the edge e = (2,y) (fory € D~ ory € V(G)—D") to
the subgraph H leads to no path Py.(u,v), what proves disconnectedness
of (V(G) — D™ ) and completes the proof. ]

3. The split domination number of a graph with a re-
moved edge

First we give the lower and upper bounds of the domination parameter
7,(G — €), for an edge different from a bridge of a graph G. Next it will
be examined the case whenever the graph G has a bridge. Recall that by
a 7,(G) - set we mean a split dominating set of G realizing the number
7,(G), and note a simple assertion

Remark 3.1. If a graph H is disconnected, then for any e € E(H) the
subgraph H — e also i3 disconnected.

Theorem 3.2. Let e € E(G). If G — e is connected, then
1) 7:(G —€) < 7,(G) +1.

Proof. Let D be 7,(G) - set, e = (z,y) and G — e is connected. First we
clime that z,y € D or z,y € V(G) — D. Then according to Proposition 2.1
and Proposition 2.2, respectively we obtain that D is a split dominating set
of G — e. This means that v,(G — €) < |D| = 7,(G), as required. Further,
let £ € V(G) — D and y € D. Assume additionally that Ng_.(z) N D # 0.
Thus D is split dominating in G — e. Moreover, disconnectedness of the
subgraph (V(G) — D)_, follows immediately from the assumption about
D and by Remark 3.1. Consequently, D is split dominating in G — e and
14(G - ) < D] =, (G).

Now, assume that Ng_.(z) N D = 0. Then, it is easy to check that the
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superset DU{z} is dominating in G—e. Further, we state that the subgraph
(V(G) — (DU {z}));_, is disconnected. Assuming the contrary, the vertex
z should be an isolated vertex of G—e, but it is impossible by connectedness
of G —e. Finally, 7,(G —e€) < |DU{z}| = 7,(G) + 1 and the proof is

complete. |
Theorem 3.3. Let e € E(G). If G — e is connected, then
) 7(G) = 1< 1,(G—e).

Proof. Let D~ be a 7,(G — €) - set and e = (z,y) € E(G) be an arbitrary
edge of G. First note that if at least one of vertices z,y belongs to the
subset D~, then by Proposition 2.4, D~ is split dominating in G. As a
consequence is the inequality 7,(G) < |D~| = 7,(G — e), as desired.

Now, let z,y € V(G)— D~.

Suppose that [V(G) — D~| = 2 (ie., (V(G)— D™)g = K3). Since a
graph G is not complete, so there exist at least two nonadjacent vertices ¢
and w in G. Obvious that {z,y} # {v, w}. Putting D = V(G) — {u,w}, we
obtain that the subset D is split dominating in G, since (V(G) — D) is
disconnected and by connectedness of G holds Ng(u)ND # 0 and Ng(w)N
D #0. Thus, 7,(G) < |D| = |D™| = 7,(G —¢).

Suppose that [V(G) — D~| > 2. If the subgraph (V(G) — D~ ) is dis-
connected, then the subset D~ is split dominating in G, since D~ is a
dominating set of G. As a consequence is 7,(G) < |D~| = 7,(G — ¢) and
the inequality in (2) holds. Now suppose that H = (V(G) — D™ ), is con-
nected. It can observe that the superset D~ U {z} is dominating in G.
We shall prove that the subgraph (V(G) — (D~ U {z})) is disconnected.
Noting that the subgraph (V(G) — D™ )_, is disconnected we can choose
two vertices, say z1,2p € V(G) — D~ such that every path Pg_.(z1,%2)
contains at least one vertex from D~.

Consider the following cases:

(1) z# z1,2o.
Then every path Py (2;,22) contains the edge (z,y). This means that
after removal of the vertex z from the subgraph H, there exists no
path joining the vertices x; and z2 in the subgraph
(V(G)— (D~ u{z})ce-
In consequence, the subgraph (V(G) — (D~ U {z})); is disconnected,
what implies that the superset D~ U {z} is split dominating in G. A
simple calculation leads to the inequality in (2).

(i) ==z 8nd y = z».
First we show that there exists a vertex 2 € V(G)— D~ such that 2 is
adjacent to one of vertices z or y in G—e. Indeed, since [V(G) — D~| >
2, then there exists a vertex u € V(G) — D™, different from x and
y. Next, by connectedness of (V(G) — D~), we conclude that there
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split dominating in G — e and v,(G — €) < |D| = 7,(G). Thus, the io-
equality in (4) holds. If Dy = 0, then V(Hj3) = {y}, what is impossible
since |V(Hz)| 2> 2. Hence it remains to consider the case when Dy does
not dominate y in Ha. We states that the superset Dz U{y} is dominating
in Hp. In a consequence, the set Dy UDp U {y} = DU {y} is dominat-
ing in G — e. Further, we shall prove disconnectedness of the subgraph
(V(®) — (DU {y}))g_. - Note that, it suffices to show the existence of two
vertices, say w € V(Hz) — (D2 U {y}) and u € V(H;) — D;. Indeed, the
existence of the vertex w follows from connectedness of Hp and from the
fact that Dy does not dominate y. Assume that V(H;) = D, then there
exists a subset Dy C D; such that Do U Ds is a split dominating set of G
which contradicts the assumption that D is a minimum split dominating
set of G. Consequently V(H;)— Dy # @ and all this together proves discon-
nectedness of the subgraph (V(G) — (DU {y}))g., . Finally, the superset,
DuU{y} is split dominating in G—e and ,(G—e) < |DU {y}| = 7,(G)+1,
as required.
Now, we shall show that

() 7:(G) — 1< 7,(G —e).

Let D~ be a %,(G — e) - set and recall that z € V(H,),y € V(Hz). If z or
y € D™, then D~ is split dominating in G, by Proposition 2.4. So, 7,(G) <
|D~| = 9,(G — e) and the inequality in (5) holds. If z,y € V(G) — D~
and the subgraph (V(G) — D~ ), is disconnected, then the set D™ is split
dominating in G. Hence inequality in (5) holds in this case. It remains
to consider the case while the subgraph (V(G) — D~); is connected. If
|V (H,)| = 2,88y V(H;) = {z,u}, then (z,4) € E(G) since H; is connected.
Moreover, u € D~ because Ng_.(z) = {¢} and D~ is dominating in G—e.
Certainly, Dy = (D~ U {z}) — {u} is dominating in G. Now, we shall prove
disconnectedness of the subgraph Hp = (V(G) — Do) . Namely, it suffices
to remark that v,y € V(Ho) and any path Pg(u,y) contains the vertex
T belonging to Dy. This means that the vertices v and y are not joined
by a path in Hp. Hence Dy is split dominating in G and v,(G) < |Do| =
|D™| = 9,(G — e), thus inequality in (5) holds. Assume that |V (H,)| > 3.
Note that there exists a vertex u € V(H,), such that u is different from
z and u ¢ D~. Otherwise, it would exist a subset D9 C V(H,) such
that Do U (D~ N V(Hz)) is a split dominating set of G — e. But then
we would have |Do U (D™ NV (Hz))] <'|D~|, contrary to the assumption
that D~ is a 7,(G — €) - set. Consider the superset D = D~ U {z}.
It is easy to observe that D is dominating in G. Since v € V(H,;) — D,
y € V(Hz) — D and any path Pg(u,y) contains the vertex z € D, then
(V(G) — D), is disconnected, what implies that D is a split dominating
set of G. Consequently, the set D~ U{z} = D is split dominating in G and
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75(G) < |D| = |D~ U {z}| = 7,(G — €) +1, as required.
By inequality in (4) and in (5) the theorem is proved. 1

Next, we discuss a graph G having hanging vertices taking into account
the number 7, (G — e). We begin by stating the proposition.

Proposition 3.7. Let D be a spkit dominating set of a connected graph G
and z € D, such that Ng(z) € D. Then D — {z} is split dominating in G.

Proof. First, we shall prove that D — {2} is dominating in G. Let D be
a split dominating set of G and Ng(2) € D. In order to do it we prove
that Ng(2) N (D — {2}) # 0. Since G is connected, so Ng(z) # 0. From
the fact, that Ng(2) C D we obtain Ng(2) N (D — {2}) # 0. Since D is
a split dominating set of G, so H = (V(G) — D), is disconnected. This
implies that there exist the vertices z; and x5 such that there is no path
Py (z1,z2). Since 2z is adjacent only to the vertices from D, we conclude
that there is no path joining z;,z2 in (V(G) — (D — {2})) . This means
that the subgraph (V(G) — (D — {2})) is disconnected and the proof is
complete. [

It has been proved in [4] the following statement
Theorem 3.8. [4]. For any graph G with hanging vertices

7:(G) = 7(@ .

Furthermore, there exists a 7,(G) - set D containing all vertices adjacent
to hanging vertices.

Remark 3.9. It is not difficult to see that any hanging vertez of G be-
longs to V(G) — D, where D is mentioned in the second part of Theorem
3.8. Otherwise D would not be a minimal split dominating set of G, by
Proposition 3.7.

Now we prove the lemma, which will be useful in a proof of Theorem
3.12

Lemma 3.10. Let G be a connected graph having at least two hanging
vertices. If D is a v,(G) - set, then the following conditions are equivalent:
1. V(G)-D|=2 :
2 G=2BR orG=Py.

Proof. Let D be a 7,{G) - set, containing all vertices adjacent to hanging
vertices. If graph G has more than two hanging vertices, then |V(G) — D| >
3 s0, we can assume that G has exactly two hanging vertices, say z,, 3.
Assume that [V(G) — D| =2 i.e., V(G) — D = {z,,2} .

If |D| = 1, then G & P.

Suppose that |D| = 2, say D = {u,w}. If Ne(z1) = Ng(z2) = {u}, then
by connectedness of G it follows that Ng(w) = {u}. This means that w is
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a hanging vertex of G, a contradiction. So it must be that Ng(z;) = {u}
and Ng(z2) = {w}. Moreover, (u,v) € E(G), since G is connected. All
this together gives G = P, as required. Now, we shall show that the case
when |D| > 3 can not occur.

Let |D| > 3, then there exists a vertex z € D which is not adjacent to
71 and z2,but 2is adjacent to some vertex from D. Then, by Proposition
3.7, the subset D — {z}is a split dominating set of G, but |D| > |D — {z}|
which is impossible since D is the minimum split dominating set of G. This
contradiction proves that |[D| < 3. If G is isomorphic to P; or to Py, then
the condition in 1. holds. Thus, the proof is complete. |

Note that by a simple calculation we obtain

Remark 3.11. If G = P, then v,(G) = 2 and v,(G — e) = 2 for any
e € E(G).

Using the above assertions we prove the following theorem.

Theorem 3.12. Let G be a connected graph with |V(G)| 2> 4. If G has at
least two hanging vertices, then for any e € E(G)

(6) 75(G) < 7:(G — €) < 71,(G) +1.

Proof. Let e = (z,y) € E(G). We shall prove the theorem by two steps.
First we shall prove that

(7) Vs (G - e) < 73(G) +1.

Let z; and z be two hanging vertices of G and let D be a ,(G) - set having
vertices adjacent to all hanging vertices of G (it is possible by Remark 3.9).
Moreover, z1,Z2 € V(G) — D. Of course it can be z; = z or z2 = z). If
z,y € D or z,y € V(G) — D, then by Proposition 2.1 and 2.2 respectively,
the subset D is split dominating in G — e. Hence 7,(G — €) < |D| = 7,(G),
as required in expression (7). It remains to consider the case when z €
V(G)—~Dandye€ D.

If [V(G)| = 4, then G = P, and the inequality in (7) holds, by Remark 3.11.
Now, assume that |V (G)| > 4, then by Lemma 3.10 |V(G) — D| > 3. Then,
there exists a vertex z € V(G) — D, different from z, and z3, (of course it
can be that z = z) such that all paths Pg(z1,2) and Pg(z2,2) contain a
vertex from D (since G is connected and z;,; are hanging vertices). This
means that the subgraph (V(G) — D)_, is disconnected. If additionally
Ng-e(z) N D # 0, then D is a split dommatmg set of G — e, hence (7)
bolds. ¥f Ng_(z) N D = 0, then DU {z} is split dominating in G. Thus
7:(G —€) < 1,(G) + 1.

Next we shall prove the second part of the inequality in (6), namely

(8) 'Ya(G) < 'Ys(G - e)'
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Let z,y € D" orz € V(G)—~ D~ and y € D~. Then D~ also is split
dominating in G, by Proposition 2.4. Hence 7,(G) < |D~| = 7,(G -
e). Suppose that z,y € V(G) — D~. The number of hanging vertices can
decrease when we remove a hanging edge so, we can observe that the graph
G — e has at least one hanging vertex, say z; (it can be that z; = z or
T = y). Let D™ be a v,(G — e) - set containing vertices adjacent to all
hanging vertices in G—e. Therefore, according to Theorem 3.8, the hanging
vertex z; of G—e belongg to the set V(G)—D~. Moreover, it turns out that
z; is adjacent to no vertex from V(G) — D~. From this, we conclude that
the subgraph (V(G) — D), is disconnected. In addition, by Remark 2.3
we have that D~ is dominating in G. Then it follows easily from the above
that the subset D~ is split dominating in G i.e. 7,(G) < |D™| = 'y,(G—e),
as desired in (8) and this completes the proof.

Applying Theorem 3.12 we obtain

Corollary 3.13. Let H be a connected graph and e € V(H), where H is a
complementary graph of H. If H +e has at least two hanging vertices, then

(9) Ya(H) — 1 < 7, (H +€) < 7,(H).
Proof. Putting G = H + e and using inequality in (7) and inequality in (8)
lead to expression (9). :

It may be note that Pj is the unique connected graph having at most
three vertices and different from a complete graph. But in this case the
inequalities in (6) are violated, since there exists no split dominating set of
P3 — e, for each e € E(B;).

4. The maximal domination number of a graph with a
removed edge

In this part of parer we study a similar subject with respect to the
maximal domination number. Note that a simple observation leads to the
following conclusion.

Remark 4.1. Let D be a dominating set of G. Then D is a mazimal
dominating set of G, if and only if there exists a vertex x € D, such that
Ng(z) C D. Moreover, if T is an isolated vertez of G, then z belongs to
every mazimal dominating set of G. ‘

Using the above remark we prove

Theorem 4.2. For any edge e of a graph G
(10) 'Ym(G) -1< 'Ym(G— e) < 7m(G) +1.
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among of sets: D, DU {z}, DU {y} always is a dominating set of G — e.
This gives 7(G — e) < 7(G) + 1, completing the proof. ]

In [3] it has been proved
Proposition 4.5. [3]. For any graph G,
G) = 1(G),

if and only if G contains an isolated verter.
There it follows easily from the above assertions that

Corollary 4.6. For any graph G containing isolated vertices and for any
e € E(G),
Tm(B) € T (G —€) 71 (G) + L.

Proof. The result follows immediately by Proposition 4.5 applied for G —e
and by Lemma 4.4. [ ]

5. Further results

In [6] V.G. Vizing has obtained an upper bound for the number of edges
in a graph with a given number of vertices and a given domination mumber.
We give an upper bound for the split domination number of a connected
graph with a given number of edges in terms of the maximum and the
minimum degree. To do it we use the following result of Vizing type.

Theorem 5.1. [5]. Let G a connected graph on n vertices and A be an
integer, such that A 2> 3. If A(G) < A, then

(13) |E(G)| € An+(A+1)7(G),
where ¥(G) is the domination number of G.

Theorem 5.2. Let G be a connected graph with |V(G)| = n, |E(G)| =m
and A 2> 3 be an integer. If A(G) < A, then

(14 1@ < 3022 4 5(0).

Proof. Let y be a vertex of G such that 8c(y) = §(G) and S be a set of all
isolated vertices of the subgraph (V(G) — Ng[y]); . Put G1 = (Ngly] U S) .
First we claim that S + 0.

From connectedness of G, it follows that for any w € S holds Ng(w) N

Ng(y) # 0 and of course Ng(y) dominates y in Gy. Thus, the subset

Ng(y) is dominating in G;. Furthermore, any path joining y and some

vertex w € S in G;, contains a vertex from Ng(y) (the existence of such

path is assured by connectedness of G1). All this together gives that Ng(y)

is a split dominating set of G;. Now, two cases can occur.
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If V(G) — V(G1) = 0, then G = Gy and Ng(y) is a split dominating set
of G. Thus v,(G) < |Ng(y)| = §(G). To prove the inequality in (14) it
remains to show that A’ﬁﬂ_ﬁgé > 0 or equivalently An —m —2A 2 0.
Since m < §(G)A(G) < §(G)A and n = §(G) +1 +|S|, we obtain
An—-m—2A 2 A(|S]-1)
and A(]S| — 1) > 0, because of |S| > 1. Hence
An—-m—2A
7.(G) < 8(C) S —x v +5(G),
as required.
Assume that V(G) — V(G:) # 0. By G2 we denote an induced subgraph
by the set V(G) — V(G1) in G. Further, we put m; = |E(G1)| 2 1, me =
|E(G2)| = 0, my2 = |E(G) — (E(G1) U E(G2))|. In other words m)3 is
a cardinality of the set of all edges (u,v) € E(G) such that u € V(Gy)
and v € V(G;). Note additionally, then it follows by connectedness of
G that my2 > 1. Since |Ng(y)| = 6(G) and for any vertex © € Ng(y),
6c(u) > A(G) = A, then

(15) my +me < Ng(y)A(G) < 6(G)A.

Assume that Dy is a 7(G?) - set. Then using the fact that A(Gz) < A(G) <
A and applying expression (13) we get

(16) my < n2A — (A + 1)7(Ga),

where ng = |V(G3)| and ¥(G2) = |Do]. Recall that subset Ng(y) is split
dominating in G;. Note that any vertex from S is adjacent to some vertex
from Ng(y), but not adjacent to y and not adjacent to any vertex from
V(G2). Further, we can observe that the subset D = Ng(y) U Dy is split
dominating in G and v,(G) < |D| = §(G) + ¥(Gz). Thus

7 Gz) 2 7,(G) + 8(G).

Noting that m = m; + my2 + mz, we have by (15) and (16) that

(18) m < §(G)A + Ang — (A + 1)v(G?).

Therefore, combining (17) and (18) we conclude that

(19) m < §(G)A + Angy — (A +1)(7,(G) +4(G))-

Further putting n; = |V(G,)|, we have n; = §(G) +1 +|S|.
Since ng = n —ny = 1 — §(G) — 1 — |S], then from (19) by a simple
calculation we obtain

m < An— A(IS]+1) + (A + 1)5(G) — (A +1)7,(G)

or equivalently m < An — 2A + (A + 1)6(G) — (A + 1)7,(G), because of
|S] = 1. Thus, we deduce that the inequality in (14) holds.
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Next we shall consider the case while S = @. Then Gy = (Nglyl)¢ -
IfV(G)-V(G,) = 0, then G = G; and n = §(G)+1 or equivalently §(G) =
n — 1, which is impossible since G can not be a complete graph, as it was
assumed. So it must be that V(G) —V(G,) # 0. Further, by connectedness
of G, it follows that there exist vertices u € Ng(y) and v € V(G) — V(Gh1)
such that (u,v) € E(G). Since S = @, then v is not an isolated vertex in
(V(G) — Nelyl)g = (V(G) — V(G1))¢ - This implies that exists a vertex
z € V(G) — V(G,) adjacent to v in G. Hence |V(G) —V(G;)| 2 2. Let
Gu = (Nc[y] U {v})G and Gzz = (V(G) - V(Gll))a and denote by n, N2
and my,me cardinalities of the sets V(Gn),V(Gm) and E(Gu),E(Gzz),
respectively. Observe also that my2 = |E(G) — (E(G11) U E(Gzz))|. Sup-
posing that Dj is a (Ggg) - set, we shall prove that the set Ng(y) U D2
is split dominating in G. It is enough to see that Ng(y) is dominating in
G (or more precisely the set Ng(y) dominates y and v in Gy;) and the
subgraph (V(G1) — Nelyl)g,, = ({#:¥})g,, is disconnected. For expla-
nation, the adding the set Dz to the set Ng(y) guarantees a domination
in G and disconnectedness of the subgraph (V(G) — (Ng(y) U Dz))- In &
consequernce, we obtain that v,(G) < |Ng(y) U Dz| = 8(y) +¥(Gz), so

(20) 7(G22) 2 7,(G) + 8(z)-

Since m; + my2 < §(G)A(G) < §(G)A and m = m; + myg + Mg, then
m < §(G)A+mgy. Further, applying the inequality in (13) for the subgraph
G2z and using the inequality in (20) we get

m < §(G)A +n2A — (A +1)(7,(G) +6(v))-
Thus, setting na = n — §(G) — 2, we can write the last inequality in form
m < An — 2A + (A +1)6(G) — (A + 1)7,(G).
This is equivalent to the inequality in (14) and the theorem is proved.

At the end we give the relationship between v,(G) and 7,,(G), for a
graph with hanging vertices. We start with a simple assertion.

Proposition 5.3. Let G be a connected graph. If D is a v, (G) - set, then
D i3 not the minimum dominating set of G.

Proof. Let D be a v,,(G) - set. Then by Remark 4.1 and by connectedness
of G it follows that there exists a vertex w € D such that D D Ng(w) # 0.
Thus we conclude that the subset D — {w} C D is dominating in G. But
this means that D can not be the minimum dominating set of G and proof
is complete. 1

Theorem 5.4. Let G be a connected graph with hanging vertices. Then
'Ym(G) = 'Ya(G) +1.
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Proof. Since, by Proposition 5.3, any maximal dominating set of G is not
the minimum dominating set of G, then ¥(G) < 7,,(G) or equivalently
Y(G) +1 < 4,,(G). Further, it follows by Remark 4.1 that ¥(G) = 7,(G)
and from the last inequality we obtain

(21) 75(G) +1 < ¥m(G)-

On the other hand let D be a v,(G) - set of G, containing the vertices
adjacent to all hanging vertices of G. The existence of such a set is assured
by Theorem 3.8. Let w € V(G) — D be a hanging vertex of G, by Remark
3.9. Then DU {w} is a maximal dominating set of G, because Nglw] C
DuU{w}. Thus v,,(G) < 7,(G)+1 and by the inequality in (21) the result
follows. [}
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