SPECIAL KINDS OF DOMINATION PARAMETERS OF EDGE-DELETED GRAPHS

MARIA KWASNIK & MACIEJ ZWIERZCHOWSKI

Institute of Mathematics
University of Technology of Szczecin
al. Piastów 48/49
70-310 Szczecin
Poland

 $e-mail: \ kwasnik@arcadia.tuniv.szczecin.pl$

e-mail: mzwierz@arcadia.tuniv.szczecin.pl

Abstract. We study the behaviour of two domination parameters: the split domination number $\gamma_s(G)$ of a graph G and the maximal domination number $\gamma_m(G)$ of G after the deletion of an edge from G. The motivation of these problems comes from [2]. In [6] Vizing gave an upper bound for the size of a graph with a given domination number. Inspired by [5] we formulate Vizing type relation between |E(G)|, |V(G)|, $\Delta(G)$ and $\delta(G)$, where $\Delta(G)$ ($\delta(G)$) denotes the maximum (minimum) degree of G.

1. Introduction

By a graph G we mean a finite, not complete, undirected graph without loops and multiple edges, where V(G) is the set of vertices and E(G) is the set of edges of the graph G. A path joining vertices x_1 and x_n in G is the sequence of vertices $x_1, x_2, ..., x_n \in V(G)$ such that, $(x_i, x_{i+1}) \in E(G)$, for i = 1, 2, ..., n-1 and $n \ge 2$. We shall denote it by $P_G(x_1, x_n)$. The open neighbourhood of a vertex x in a graph G, denoted by $N_G(x)$, is the set of all vertices adjacent to x in G. The closed neighbourhood of x in a graph G is defined as $N_G[y] = N_G(x) \cup \{x\}$. Recall that the degree of the vertex x, denoted by $\delta_G(x)$, is the cardinality of the set $N_G(x)$. If $\delta_G(x) = 1$ $(\delta_G(x) = 0)$, then x is said to be a hanging vertex (an isolated vertex) of G. An edge $(u,v) \in E(G)$ is a hanging edge of G if u or v is a hanging vertex of G. Denote by $\delta(G)$ ($\Delta(G)$) the minimum (the maximum) degree of G. By G - e we mean a subgraph of G containing all the vertices of G with $E(G) - \{e\}$ as the edge set. If $X \subseteq V(G)$, then the notation $\langle X \rangle_G$ means the subgraph of G induced by a subset X. By P_n we define a graph on $n \ge 2$ vertices $x_1, x_2, ..., x_n$ and with the edge set $E(G) = \{(x_i, x_{i+1}) : x_i \le 1\}$ i=1,...,n-1.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex from V(G)—D is adjacent to some vertex from D (for short: D is dominating in G). The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating

set of G. In this paper we study two of many variations of the domination. A dominating set D of G is a split dominating set of G if the induced subgraph $\langle V(G) - D \rangle_G$ is disconnected (for short: D is split dominating in G). We note that the existence of such subset in a connected graph is assured only if it is different from a complete graph. The split domination number $\gamma_s(G)$ of G is the minimum cardinality of a split dominating set of G. A dominating set D of G is a maximal dominating set of G if V(G) - D is not a dominating set of G. The maximal domination number $\gamma_m(G)$ of G is the minimum cardinality of a maximal dominating set of G. For a convenience, a subset which realizes number $\gamma(G)$, $\gamma_s(G)$, $\gamma_m(G)$ will be called a $\gamma(G) - set$, a $\gamma_s(G) - set$ and a $\gamma_m(G) - set$, respectively. For more information about split domination graphs and maximal domination graphs, the reader is referred to [4] and [3], respectively.

Any term not defined in this paper may be found in Berge [1].

2. Perliminaries

Note that the fact that the subset D is dominating in G is equivalent to the expression: for every $x \in V(G) - D$ $N_G(x) \cap D \neq \emptyset$. For a convenience, we shall sometimes write that D dominates x.

We begin with simple observations which will be useful in further investigations.

Let $D \subseteq V(G)$ be a split dominating set of G and $e = (x, y) \in E(G)$ be an arbitrary edge.

Proposition 2.1. If $x, y \in D$, then D is a split dominating set of G - e.

Proof. Suppose that D is a split dominating set of G. Since D also there must be dominating in G, for any $w \in V(G) - D$ holds $N_G(w) \cap D \neq \emptyset$. Moreover, $N_{G-e}(w) \cap D \neq \emptyset$ since $x,y \in D$, what means that D is dominating in G-e. There remains to show that the subgraph $\langle V(G) - D \rangle_{G-e}$ is disconnected. It is obvious from the definition of a split dominating set, that the subgraph $\langle V(G) - D \rangle_G$ is disconnected. This implies the existence of two vertices u,v belonging to V(G) - D that every path $P_G(u,v)$ contains a vertex from D or there is no path joining u and v in G. Since the removal of the edge e from G does not change the above relationship between vertices u and v, the subgraph $\langle V(G) - D \rangle_{G-e}$ also is disconnected what completes the proof.

Proposition 2.2. If $x, y \in V(G) - D$, then D is a split dominating set of G - e.

Proof. Let D be as in the assumption of the proposition. We can conclude from this that the vertex x is adjacent to some vertex from D in the graph G. Moreover, $N_{G-e}(x) = N_G(x) - \{y\}$. Combining the above facts we obtain $N_{G-e}(x) \cap D = N_G(x) \cap D \neq \emptyset$. Of course also $N_{G-e}(y) \cap D = N_G(y) \cap D \neq \emptyset$.

 \emptyset . Reassuming, for any $w \in V(G) - D$, $N_{G-e}(w) \cap D \neq \emptyset$, what shows that the subset D is dominating in G-e. Since disconnectedness of the subgraph $\langle V(G) - D \rangle_G$ implies disconnectedness of the subgraph $\langle V(G) - D \rangle_{G-e}$, the proof is complete.

Let $e = (x,y) \in E(G)$ and $D^- \subseteq V(G)$ be a split dominating set of G - e. It is easy to see

Remark 2.3. If D^- is dominating in G-e, then D^- is dominating in G.

Proposition 2.4. If at least one of vertices x, y belongs to D^- , then D^- is a split dominating set of G.

Proof. Let D^- be a split dominating set of G-e and $x\in D^-$. By Remark 2.3 we conclude that D^- is dominating in G. Further, by the assumption it follows that the subgraph $H=\langle V(G)-D^-\rangle_{G-e}$ is disconnected. Therefore, there exist two vertices $u,v\in V(G)-D^-$ not joined by a path in H. Moreover, the adding the edge e=(x,y) (for $y\in D^-$ or $y\in V(G)-D^-$) to the subgraph H leads to no path $P_{H+e}(u,v)$, what proves disconnectedness of $\langle V(G)-D^-\rangle_G$ and completes the proof.

3. The split domination number of a graph with a removed edge

First we give the lower and upper bounds of the domination parameter $\gamma_s(G-e)$, for an edge different from a bridge of a graph G. Next it will be examined the case whenever the graph G has a bridge. Recall that by a $\gamma_s(G)$ - set we mean a split dominating set of G realizing the number $\gamma_s(G)$, and note a simple assertion

Remark 3.1. If a graph H is disconnected, then for any $e \in E(H)$ the subgraph H - e also is disconnected.

Theorem 3.2. Let $e \in E(G)$. If G - e is connected, then

(1)
$$\gamma_s(G-e) \leqslant \gamma_s(G) + 1.$$

Proof. Let D be $\gamma_s(G)$ - set, e=(x,y) and G-e is connected. First we clime that $x,y\in D$ or $x,y\in V(G)-D$. Then according to Proposition 2.1 and Proposition 2.2, respectively we obtain that D is a split dominating set of G-e. This means that $\gamma_s(G-e)\leqslant |D|=\gamma_s(G)$, as required. Further, let $x\in V(G)-D$ and $y\in D$. Assume additionally that $N_{G-e}(x)\cap D\neq\emptyset$. Thus D is split dominating in G-e. Moreover, disconnectedness of the subgraph $\langle V(G)-D\rangle_{G-e}$ follows immediately from the assumption about D and by Remark 3.1. Consequently, D is split dominating in G-e and $\gamma_s(G-e)\leqslant |D|=\gamma_s(G)$.

Now, assume that $N_{G-e}(x) \cap D = \emptyset$. Then, it is easy to check that the

superset $D \cup \{x\}$ is dominating in G-e. Further, we state that the subgraph $\langle V(G) - (D \cup \{x\}) \rangle_{G-e}$ is disconnected. Assuming the contrary, the vertex x should be an isolated vertex of G-e, but it is impossible by connectedness of G-e. Finally, $\gamma_s(G-e) \leq |D \cup \{x\}| = \gamma_s(G) + 1$ and the proof is complete.

Theorem 3.3. Let $e \in E(G)$. If G - e is connected, then

(2)
$$\gamma_s(G) - 1 \leqslant \gamma_s(G - e).$$

Proof. Let D^- be a $\gamma_s(G-e)$ - set and $e=(x,y)\in E(G)$ be an arbitrary edge of G. First note that if at least one of vertices x,y belongs to the subset D^- , then by Proposition 2.4, D^- is split dominating in G. As a consequence is the inequality $\gamma_s(G) \leq |D^-| = \gamma_s(G-e)$, as desired. Now, let $x,y \in V(G) - D^-$.

Suppose that $|V(G)-D^-|=2$ (i.e., $\langle V(G)-D^-\rangle_G\cong K_2$). Since a graph G is not complete, so there exist at least two nonadjacent vertices u and w in G. Obvious that $\{x,y\}\neq\{u,w\}$. Putting $D=V(G)-\{u,w\}$, we obtain that the subset D is split dominating in G, since $\langle V(G)-D\rangle_G$ is disconnected and by connectedness of G holds $N_G(u)\cap D\neq\emptyset$ and $N_G(w)\cap D\neq\emptyset$. Thus, $\gamma_s(G)\leqslant |D|=|D^-|=\gamma_s(G-e)$.

Suppose that $|V(G)-D^-|>2$. If the subgraph $\langle V(G)-D^-\rangle_G$ is disconnected, then the subset D^- is split dominating in G, since D^- is a dominating set of G. As a consequence is $\gamma_s(G) \leq |D^-| = \gamma_s(G-e)$ and the inequality in (2) holds. Now suppose that $H = \langle V(G)-D^-\rangle_G$ is connected. It can observe that the superset $D^- \cup \{x\}$ is dominating in G. We shall prove that the subgraph $\langle V(G)-(D^-\cup\{x\})\rangle_G$ is disconnected. Noting that the subgraph $\langle V(G)-D^-\rangle_{G-e}$ is disconnected we can choose two vertices, say $x_1, x_2 \in V(G)-D^-$ such that every path $P_{G-e}(x_1, x_2)$ contains at least one vertex from D^- .

Consider the following cases:

(i) $x \neq x_1, x_2$.

Then every path $P_H(x_1, x_2)$ contains the edge (x, y). This means that after removal of the vertex x from the subgraph H, there exists no path joining the vertices x_1 and x_2 in the subgraph

 $\langle V(G) - (D^- \cup \{x\}) \rangle_G$.

In consequence, the subgraph $\langle V(G) - (D^- \cup \{x\}) \rangle_G$ is disconnected, what implies that the superset $D^- \cup \{x\}$ is split dominating in G. A simple calculation leads to the inequality in (2).

(ii) $x = x_1 \text{ and } y = x_2$.

First we show that there exists a vertex $z \in V(G) - D^-$ such that z is adjacent to one of vertices x or y in G-e. Indeed, since $|V(G) - D^-| > 2$, then there exists a vertex $u \in V(G) - D^-$, different from x and y. Next, by connectedness of $\langle V(G) - D^- \rangle_G$ we conclude that there

exists a path $P_H(x,u)$. It means that there must be a vertex $z \in V(G) - D^-$ different from x and y, adjacent to one of them in H.

Thus z is belongs to the neighbourhood of x or y in G - e. Without loss of generality, we may assume that z is adjacent to x in H, and arguing as in (i), we obtain that $D^- \cup \{x\}$ is split dominating in G. As the consequence is the inequality $\gamma_e(G) \leq |D^- \cup \{x\}| = |\gamma_e(G - e) + 1$ and proof is complete.

Theorem 3.2 and Theorem 3.3 lead immediately to the following conclutioned: $\frac{1}{2}$

.nois

Theorem 3.4. Let $e \in E(G)$. If G - e is connected, then

$$\gamma_s(G) - 1 \leq \gamma_s(G - e) \leq \gamma_s(G) + 1.$$

Cotollary 3.5. Let H be a connected graph and $e \in E(\overline{H})$, where \overline{H} is a complementary graph of H. Then putting G = H + e and using inequality in (1) and in (2) we obtain

$$\gamma_s(H) - 1 \leq \gamma_s(H + e) \leq \gamma_s(H) + 1$$

where H+e is a graph with V(H+e)=V(H) and $E(H+e)=E(H)\cup\{e\}$.

We now study the case when an removed edge is a bridge of a graph. Recall that an edge of a connected graph G is called a bridge of G, if G-e is disconnected.

Our aim is to prove the following

Theorem 3.6. Let G be a connected graph without hanging vertices, then

$$(5) \qquad \qquad 1 + (\mathfrak{D})_s \gamma \geqslant (\mathfrak{d} - \mathfrak{D})_s \gamma \geqslant 1 - (\mathfrak{D})_s \gamma$$

Proof. Let $\mathfrak{e}=(x,y)$ be an arbitrary edge of G. If $G-\mathfrak{e}$ is connected, then the result follows from Theorem 3.4. Assuming that $G-\mathfrak{e}$ is disconnected, denote by H_1 and H_2 the connected components of $G-\mathfrak{e}$. Note that $|V(H_1)|$, $|V(H_2)| \geqslant 2$, otherwise G would have a hanging vertex. First we

prove

$$1 + (\mathfrak{D})_{\mathfrak{d}} \not > (\mathfrak{d} - \mathfrak{d})_{\mathfrak{d}} \tag{4}$$

Let $D \subseteq V(G)$ be a $\gamma_s(G)$ - set and $x \in V(H_1)$, $y \in V(H_2)$. If $x, y \in D$ or $x, y \in V(G) - D$, then D is split dominating in G - e, by Proposition 2.1 and Proposition 2.2 respectively. In conclusion $\gamma_s(G - e) \leq |D| = \gamma_s(G)$ and Proposition 2.2 respectively. In conclusion $\gamma_s(G - e) \leq |D| = \gamma_s(G) - D$ and the inequality in (4) holds. Suppose that $x \in D$, $y \in V(G) - D$ and put $D_1 = V(H_1) \cap D$, $D_2 = V(H_2) \cap D$ (of course $D_1 \neq \emptyset$, since $x \in D \cap V(H_1) = D_1$). Therefore, we observe that the subset $D_1 \cup D_2 = D$ insting in $A_1 \cap A_2 \neq \emptyset$ and $A_2 \cap A_3 \cap A_4 \cap A_4 \cap A_5 \cap A_5$

split dominating in G-e and $\gamma_s(G-e) \leq |D| = \gamma_s(G)$. Thus, the inequality in (4) holds. If $D_2 = \emptyset$, then $V(H_2) = \{y\}$, what is impossible since $|V(H_2)| \ge 2$. Hence it remains to consider the case when D_2 does not dominate y in H_2 . We states that the superset $D_2 \cup \{y\}$ is dominating in H_2 . In a consequence, the set $D_1 \cup D_2 \cup \{y\} = D \cup \{y\}$ is dominating in G - e. Further, we shall prove disconnectedness of the subgraph $\langle V(G) - (D \cup \{y\}) \rangle_{G-e}$. Note that, it suffices to show the existence of two vertices, say $w \in V(H_2) - (D_2 \cup \{y\})$ and $u \in V(H_1) - D_1$. Indeed, the existence of the vertex w follows from connectedness of H_2 and from the fact that D_2 does not dominate y. Assume that $V(H_1) = D_1$, then there exists a subset $D_0 \subset D_1$ such that $D_0 \cup D_2$ is a split dominating set of G which contradicts the assumption that D is a minimum split dominating set of G. Consequently $V(H_1) - D_1 \neq \emptyset$ and all this together proves disconnectedness of the subgraph $\langle V(G) - (D \cup \{y\}) \rangle_{G-e}$. Finally, the superset $D \cup \{y\}$ is split dominating in G - e and $\gamma_s(G - e) \leq |D \cup \{y\}| = \gamma_s(G) + 1$, as required.

Now, we shall show that

(5)
$$\gamma_s(G) - 1 \leqslant \gamma_s(G - e).$$

Let D^- be a $\gamma_s(G-e)$ - set and recall that $x\in V(H_1),\,y\in V(H_2)$. If x or $y \in D^-$, then D^- is split dominating in G, by Proposition 2.4. So, $\gamma_s(G) \leq$ $|D^-| = \gamma_s(G - e)$ and the inequality in (5) holds. If $x, y \in V(G) - D^$ and the subgraph $\langle V(G) - D^- \rangle_G$ is disconnected, then the set D^- is split dominating in G. Hence inequality in (5) holds in this case. It remains to consider the case while the subgraph $\langle V(G) - D^- \rangle_G$ is connected. If $|V(H_1)|=2$, say $V(H_1)=\{x,u\}$, then $(x,u)\in E(G)$ since H_1 is connected. Moreover, $u \in D^-$ because $N_{G-e}(x) = \{u\}$ and D^- is dominating in G-e. Certainly, $D_0 = (D^- \cup \{x\}) - \{u\}$ is dominating in G. Now, we shall prove disconnectedness of the subgraph $H_0 = \langle V(G) - D_0 \rangle_G$. Namely, it suffices to remark that $u, y \in V(H_0)$ and any path $P_G(u, y)$ contains the vertex x belonging to D_0 . This means that the vertices u and y are not joined by a path in H_0 . Hence D_0 is split dominating in G and $\gamma_s(G) \leq |D_0| =$ $|D^-| = \gamma_s(G - e)$, thus inequality in (5) holds. Assume that $|V(H_1)| \ge 3$. Note that there exists a vertex $u \in V(H_1)$, such that u is different from x and $u \notin D^-$. Otherwise, it would exist a subset $D_0 \subset V(H_1)$ such that $D_0 \cup (D^- \cap V(H_2))$ is a split dominating set of G - e. But then we would have $|D_0 \cup (D^- \cap V(H_2))| < |D^-|$, contrary to the assumption that D^- is a $\gamma_s(G-e)$ - set. Consider the superset $D=D^-\cup\{x\}$. It is easy to observe that D is dominating in G. Since $u \in V(H_1) - D$, $y \in V(H_2) - D$ and any path $P_G(u, y)$ contains the vertex $x \in D$, then $\langle V(G) - D \rangle_G$ is disconnected, what implies that D is a split dominating set of G. Consequently, the set $D^- \cup \{x\} = D$ is split dominating in G and

 $\gamma_s(G) \leq |D| = |D^- \cup \{x\}| = \gamma_s(G - e) + 1$, as required. By inequality in (4) and in (5) the theorem is proved.

Next, we discuss a graph G having hanging vertices taking into account the number $\gamma_s(G-e)$. We begin by stating the proposition.

Proposition 3.7. Let D be a split dominating set of a connected graph G and $z \in D$, such that $N_G(z) \subseteq D$. Then $D - \{z\}$ is split dominating in G.

Proof. First, we shall prove that $D-\{z\}$ is dominating in G. Let D be a split dominating set of G and $N_G(z)\subseteq D$. In order to do it we prove that $N_G(z)\cap (D-\{z\})\neq \emptyset$. Since G is connected, so $N_G(z)\neq \emptyset$. From the fact, that $N_G(z)\subseteq D$ we obtain $N_G(z)\cap (D-\{z\})\neq \emptyset$. Since D is a split dominating set of G, so $H=\langle V(G)-D\rangle_G$ is disconnected. This implies that there exist the vertices x_1 and x_2 such that there is no path $P_H(x_1,x_2)$. Since z is adjacent only to the vertices from D, we conclude that there is no path joining x_1,x_2 in $\langle V(G)-(D-\{z\})\rangle_G$. This means that the subgraph $\langle V(G)-(D-\{z\})\rangle_G$ is disconnected and the proof is complete.

It has been proved in [4] the following statement

Theorem 3.8. [4]. For any graph G with hanging vertices

$$\gamma_s(G)=\gamma(G).$$

Furthermore, there exists a $\gamma_s(G)$ - set D containing all vertices adjacent to hanging vertices.

Remark 3.9. It is not difficult to see that any hanging vertex of G belongs to V(G) - D, where D is mentioned in the second part of Theorem 3.8. Otherwise D would not be a minimal split dominating set of G, by Proposition 3.7.

Now we prove the lemma, which will be useful in a proof of Theorem 3.12

Lemma 3.10. Let G be a connected graph having at least two hanging vertices. If D is a $\gamma_s(G)$ - set, then the following conditions are equivalent:

- 1. |V(G) D| = 2;
- 2. $G \cong P_3$ or $G \cong P_4$.

Proof. Let D be a $\gamma_s(G)$ - set, containing all vertices adjacent to hanging vertices. If graph G has more than two hanging vertices, then $|V(G) - D| \ge 3$ so, we can assume that G has exactly two hanging vertices, say x_1, x_2 . Assume that |V(G) - D| = 2 i.e., $V(G) - D = \{x_1, x_2\}$.

If |D|=1, then $G\cong P_3$.

Suppose that |D| = 2, say $D = \{u, w\}$. If $N_G(x_1) = N_G(x_2) = \{u\}$, then by connectedness of G it follows that $N_G(w) = \{u\}$. This means that w is

a hanging vertex of G, a contradiction. So it must be that $N_G(x_1) = \{u\}$ and $N_G(x_2) = \{w\}$. Moreover, $(u, v) \in E(G)$, since G is connected. All this together gives $G \cong P_4$, as required. Now, we shall show that the case when $|D| \geqslant 3$ can not occur.

Let $|D| \ge 3$, then there exists a vertex $z \in D$ which is not adjacent to x_1 and x_2 , but z is adjacent to some vertex from D. Then, by Proposition 3.7, the subset $D - \{z\}$ is a split dominating set of G, but $|D| > |D - \{z\}|$ which is impossible since D is the minimum split dominating set of G. This contradiction proves that |D| < 3. If G is isomorphic to P_3 or to P_4 , then the condition in 1. holds. Thus, the proof is complete.

Note that by a simple calculation we obtain

Remark 3.11. If $G \cong P_4$, then $\gamma_s(G) = 2$ and $\gamma_s(G - e) = 2$ for any $e \in E(G)$.

Using the above assertions we prove the following theorem.

Theorem 3.12. Let G be a connected graph with $|V(G)| \ge 4$. If G has at least two hanging vertices, then for any $e \in E(G)$

(6)
$$\gamma_s(G) \leqslant \gamma_s(G-e) \leqslant \gamma_s(G) + 1.$$

Proof. Let $e = (x,y) \in E(G)$. We shall prove the theorem by two steps. First we shall prove that

(7)
$$\gamma_s(G-e) \leqslant \gamma_s(G) + 1.$$

Let x_1 and x_2 be two hanging vertices of G and let D be a $\gamma_s(G)$ - set having vertices adjacent to all hanging vertices of G (it is possible by Remark 3.9). Moreover, $x_1, x_2 \in V(G) - D$. Of course it can be $x_1 = x$ or $x_2 = x$). If $x,y \in D$ or $x,y \in V(G) - D$, then by Proposition 2.1 and 2.2 respectively, the subset D is split dominating in G - e. Hence $\gamma_s(G - e) \leq |D| = \gamma_s(G)$, as required in expression (7). It remains to consider the case when $x \in V(G) - D$ and $y \in D$.

If |V(G)| = 4, then $G \cong P_4$ and the inequality in (7) holds, by Remark 3.11. Now, assume that |V(G)| > 4, then by Lemma 3.10 $|V(G) - D| \geqslant 3$. Then, there exists a vertex $z \in V(G) - D$, different from x_1 and x_2 , (of course it can be that z = x) such that all paths $P_G(x_1, z)$ and $P_G(x_2, z)$ contain a vertex from D (since G is connected and x_1, x_2 are hanging vertices). This means that the subgraph $\langle V(G) - D \rangle_{G-e}$ is disconnected. If additionally $N_{G-e}(x) \cap D \neq \emptyset$, then D is a split dominating set of G - e, hence (7) holds. If $N_{G-e}(x) \cap D = \emptyset$, then $D \cup \{x\}$ is split dominating in G. Thus $\gamma_s(G-e) \leqslant \gamma_s(G) + 1$.

Next we shall prove the second part of the inequality in (6), namely

$$\gamma_{\mathfrak{g}}(G)\leqslant \gamma_{\mathfrak{g}}(G-e).$$

Let $x,y\in D^-$ or $x\in V(G)-D^-$ and $y\in D^-$. Then D^- also is split dominating in G, by Proposition 2.4. Hence $\gamma_s(G)\leqslant |D^-|=\gamma_s(G-e)$. Suppose that $x,y\in V(G)-D^-$. The number of hanging vertices can decrease when we remove a hanging edge so, we can observe that the graph G-e has at least one hanging vertex, say x_1 (it can be that $x_1=x$ or $x_1=y$). Let D^- be a $\gamma_s(G-e)$ - set containing vertices adjacent to all hanging vertices in G-e. Therefore, according to Theorem 3.8, the hanging vertex x_1 of G-e belongs to the set $V(G)-D^-$. Moreover, it turns out that x_1 is adjacent to no vertex from $V(G)-D^-$. From this, we conclude that the subgraph $\langle V(G)-D^-\rangle_G$ is disconnected. In addition, by Remark 2.3 we have that D^- is dominating in G. Then it follows easily from the above that the subset D^- is split dominating in G i.e. $\gamma_s(G)\leqslant |D^-|=\gamma_s(G-e)$, as desired in (8) and this completes the proof.

Applying Theorem 3.12 we obtain

Corollary 3.13. Let H be a connected graph and $e \in V(\overline{H})$, where \overline{H} is a complementary graph of H. If H + e has at least two hanging vertices, then

(9)
$$\gamma_s(H) - 1 \leqslant \gamma_s(H + e) \leqslant \gamma_s(H).$$

Proof. Putting G = H + e and using inequality in (7) and inequality in (8) lead to expression (9).

It may be note that P_3 is the unique connected graph having at most three vertices and different from a complete graph. But in this case the inequalities in (6) are violated, since there exists no split dominating set of $P_3 - e$, for each $e \in E(P_3)$.

4. The maximal domination number of a graph with a removed edge

In this part of parer we study a similar subject with respect to the maximal domination number. Note that a simple observation leads to the following conclusion.

Remark 4.1. Let D be a dominating set of G. Then D is a maximal dominating set of G, if and only if there exists a vertex $x \in D$, such that $N_G(x) \subseteq D$. Moreover, if x is an isolated vertex of G, then x belongs to every maximal dominating set of G.

Using the above remark we prove

Theorem 4.2. For any edge e of a graph G

(10)
$$\gamma_m(G) - 1 \leqslant \gamma_m(G - e) \leqslant \gamma_m(G) + 1.$$

Proof. First we shall show an inequality

$$1 + (\mathfrak{D})_{m} \gamma \geqslant (\mathfrak{d} - \mathfrak{D})_{m} \gamma \tag{11}$$

Let D be a $\gamma_m(\mathbb{G})$ - set. By the definition of a maximal dominating set of \mathbb{G} and by Remark 4.1, we have that there exists a vertex $u \in D$ such that $N_{\mathbb{G}-e}(u) \subseteq D$, for any $e \in E(\mathbb{G})$. If that $N_{\mathbb{G}-e}(u) \subseteq D$, for any $e \in E(\mathbb{G})$. If D is dominating in $\mathbb{G}-e$, since $N_{\mathbb{G}-e}(u) \subseteq D$. Suppose on the contrary that D is not dominating in $\mathbb{G}-e$. Suppose on the contrary that D is not dominating in $\mathbb{G}-e$. Assuming that e = (x, y), this is possible if and only if $x \in V(\mathbb{G}) - D$, $y \in D$ and $N_{\mathbb{G}-e}(x) \cap D = \emptyset$. Consider the superset $D \cup \{x\}$. If x is not a banging vertex of \mathbb{G} , then $D \cup \{x\}$ is maximal dominating in $\mathbb{G}-e$ and as a consequence is $\gamma_m(\mathbb{G}-e) \leq |D \cup \{x\}| = \gamma_m(\mathbb{G}) + 1$. If x is a hanging vertex of \mathbb{G} , then x is an isolated vertex of $\mathbb{G}-e$ and the set is a hanging vertex of \mathbb{G} , then x is an isolated vertex of $\mathbb{G}-e$ and the set $\mathbb{G}-e$ and $\mathbb{G}-e$ is an isolated vertex of $\mathbb{G}-e$ and the set $\mathbb{G}-e$ and $\mathbb{G}-e$ is an invariantal dominating in $\mathbb{G}-e$ and the set $\mathbb{G}-e$ and $\mathbb{G}-e$ is an invariantal dominating in $\mathbb{G}-e$ and $\mathbb{G}-e$ and $\mathbb{G}-e$ is an invariantal dominating in $\mathbb{G}-e$ and the set $\mathbb{G}-\mathbb{G}=\mathbb{G}$ is an equived.

Next, we shall prove the second part of the assertion

$$(12) \gamma_m(G) - 1 \leq \gamma_m(G - e).$$

Let D^- be a $\gamma_m(G-\epsilon)$ - set and $\epsilon=(x,y)\in E(G)$. By Remark 4.1 it follows that there exists $u\in D^-$ such that $N_{G-\epsilon}(u)\subseteq D^-$. Consider the case while $x\in V(G)-D^-$ and $y=u\in D^-$. Then $D^-\cup \{x\}$ is dominating in G and $N_G(u)=N_{G-\epsilon}(u)\cup \{x\}\subseteq D^-\cup \{x\}$. Hence $D^-\cup \{x\}$ is a maximal dominating set of G and we conclude that $\gamma_m(G)\in |D^-\cup \{x\}|=1$ oneses the set D^- also is maximal dominating in G, since D^- is dominating in G and $N_G[u]\subseteq D$. As a consequence is $\gamma_m(G)\in |D|=\gamma_m(G-\epsilon)$. Finally, by (11) and (12) the result follows.

Corollary 4.3. Putting $G=H+\epsilon$ into (11) and (12), we obtain $\gamma_m(H)-1 \leqslant \gamma_m(H+\epsilon) \leqslant \gamma_m(H)+1,$

where $e \in E(\overline{H})$.

It may be to note that if G contains isolated vertices, then we are able to get the lower bound of G-e which is better than in (10). First we prove the following assertion

Lemma 4.4. For any edge $e \in E(G)$,

$$\gamma(G) \leqslant \gamma(G-e) \leqslant \gamma(G) + 1$$

where $\gamma(G)$ is a domination number of G.

Proof. If $D^-\subseteq V(G)$ is a $\gamma(G-e)$ - set, then also D^- is dominating in G. As a consequence is $\gamma(G)\leqslant |D^-|=\gamma(G-e)$. If D is $\gamma(G)$ - set, then

among of sets: $D, D \cup \{x\}, D \cup \{y\}$ always is a dominating set of G - e. This gives $\gamma(G - e) \leq \gamma(G) + 1$, completing the proof.

In [3] it has been proved

Proposition 4.5. [3]. For any graph G,

$$\gamma(G) = \gamma_m(G),$$

if and only if G contains an isolated vertex.

There it follows easily from the above assertions that

Corollary 4.6. For any graph G containing isolated vertices and for any $e \in E(G)$,

$$\gamma_m(G) \leqslant \gamma_m(G - e) \leqslant \gamma_m(G) + 1.$$

Proof. The result follows immediately by Proposition 4.5 applied for G-e and by Lemma 4.4.

5. Further results

In [6] V.G. Vizing has obtained an upper bound for the number of edges in a graph with a given number of vertices and a given domination number. We give an upper bound for the split domination number of a connected graph with a given number of edges in terms of the maximum and the minimum degree. To do it we use the following result of Vizing type.

Theorem 5.1. [5]. Let G a connected graph on n vertices and Δ be an integer, such that $\Delta \geqslant 3$. If $\Delta(G) \leqslant \Delta$, then

(13)
$$|E(G)| \leq \Delta n + (\Delta + 1)\gamma(G),$$

where $\gamma(G)$ is the domination number of G.

Theorem 5.2. Let G be a connected graph with |V(G)| = n, |E(G)| = m and $\Delta \ge 3$ be an integer. If $\Delta(G) \le \Delta$, then

(14)
$$\gamma_s(G) \leqslant \frac{\Delta n - m - 2\Delta}{\Delta + 1} + \delta(G).$$

Proof. Let y be a vertex of G such that $\delta_G(y) = \delta(G)$ and S be a set of all isolated vertices of the subgraph $\langle V(G) - N_G[y] \rangle_G$. Put $G_1 = \langle N_G[y] \cup S \rangle_G$. First we claim that $S \neq \emptyset$.

From connectedness of G, it follows that for any $w \in S$ holds $N_G(w) \cap N_G(y) \neq \emptyset$ and of course $N_G(y)$ dominates y in G_1 . Thus, the subset $N_G(y)$ is dominating in G_1 . Furthermore, any path joining y and some vertex $w \in S$ in G_1 , contains a vertex from $N_G(y)$ (the existence of such path is assured by connectedness of G_1). All this together gives that $N_G(y)$ is a split dominating set of G_1 . Now, two cases can occur.

If $V(G)-V(G_1)=\emptyset$, then $G=G_1$ and $N_G(y)$ is a split dominating set of G. Thus $\gamma_s(G)\leqslant |N_G(y)|=\delta(G)$. To prove the inequality in (14) it remains to show that $\frac{\Delta n-m-2\Delta}{\Delta+1}\geqslant 0$ or equivalently $\Delta n-m-2\Delta\geqslant 0$. Since $m\leqslant \delta(G)\Delta(G)\leqslant \delta(G)\Delta$ and $n=\delta(G)+1+|S|$, we obtain

$$\Delta n - m - 2\Delta \geqslant \Delta(|S| - 1)$$

and $\Delta(|S|-1) \ge 0$, because of $|S| \ge 1$. Hence

$$\gamma_s(G) \leqslant \delta(G) \leqslant \frac{\Delta n - m - 2\Delta}{\Delta + 1} + \delta(G),$$

as required.

Assume that $V(G)-V(G_1)\neq\emptyset$. By G_2 we denote an induced subgraph by the set $V(G)-V(G_1)$ in G. Further, we put $m_1=|E(G_1)|\geqslant 1$, $m_2=|E(G_2)|\geqslant 0$, $m_{12}=|E(G)-(E(G_1)\cup E(G_2))|$. In other words m_{12} is a cardinality of the set of all edges $(u,v)\in E(G)$ such that $u\in V(G_1)$ and $v\in V(G_2)$. Note additionally, then it follows by connectedness of G that $m_{12}\geqslant 1$. Since $|N_G(y)|=\delta(G)$ and for any vertex $u\in N_G(y)$, $\delta_G(u)\geqslant \Delta(G)\geqslant \Delta$, then

(15)
$$m_1 + m_{12} \leqslant N_G(y)\Delta(G) \leqslant \delta(G)\Delta.$$

Assume that D_0 is a $\gamma(G_2)$ - set. Then using the fact that $\Delta(G_2) \leq \Delta(G) \leq \Delta$ and applying expression (13) we get

(16)
$$m_2 \leqslant n_2 \Delta - (\Delta + 1)\gamma(G_2),$$

where $n_2 = |V(G_2)|$ and $\gamma(G_2) = |D_0|$. Recall that subset $N_G(y)$ is split dominating in G_1 . Note that any vertex from S is adjacent to some vertex from $N_G(y)$, but not adjacent to y and not adjacent to any vertex from $V(G_2)$. Further, we can observe that the subset $D = N_G(y) \cup D_0$ is split dominating in G and $\gamma_s(G) \leq |D| = \delta(G) + \gamma(G_2)$. Thus

(17)
$$\gamma(G_2) \geqslant \gamma_s(G) + \delta(G).$$

Noting that $m = m_1 + m_{12} + m_2$, we have by (15) and (16) that

(18)
$$m \leq \delta(G)\Delta + \Delta n_2 - (\Delta + 1)\gamma(G_2).$$

Therefore, combining (17) and (18) we conclude that

(19)
$$m \leq \delta(G)\Delta + \Delta n_2 - (\Delta + 1)(\gamma_s(G) + \delta(G)).$$

Further putting $n_1 = |V(G_1)|$, we have $n_1 = \delta(G) + 1 + |S|$. Since $n_2 = n - n_1 = n - \delta(G) - 1 - |S|$, then from (19) by a simple calculation we obtain

$$m \leq \Delta n - \Delta(|S|+1) + (\Delta+1)\delta(G) - (\Delta+1)\gamma_s(G)$$

or equivalently $m \leq \Delta n - 2\Delta + (\Delta + 1)\delta(G) - (\Delta + 1)\gamma_s(G)$, because of $|S| \geq 1$. Thus, we deduce that the inequality in (14) holds.

Next we shall consider the case while $S = \emptyset$. Then $G_1 = \langle N_G[y] \rangle_G$. If $V(G)-V(G_1)=\emptyset$, then $G=G_1$ and $n=\delta(G)+1$ or equivalently $\delta(G)=0$ n-1, which is impossible since G can not be a complete graph, as it was assumed. So it must be that $V(G)-V(G_1)\neq\emptyset$. Further, by connectedness of G, it follows that there exist vertices $u \in N_G(y)$ and $v \in V(G) - V(G_1)$ such that $(u,v) \in E(G)$. Since $S = \emptyset$, then v is not an isolated vertex in $\langle V(G) - N_G[y] \rangle_G = \langle V(G) - V(G_1) \rangle_G$. This implies that exists a vertex $z \in V(G) - V(G_1)$ adjacent to v in G. Hence $|V(G) - V(G_1)| \ge 2$. Let $G_{11} = \langle N_G[y] \cup \{v\} \rangle_G$ and $G_{22} = \langle V(G) - V(G_{11}) \rangle_G$ and denote by n_1, n_2 and m_1, m_2 cardinalities of the sets $V(G_{11}), V(G_{22})$ and $E(G_{11}), E(G_{22})$, respectively. Observe also that $m_{12} = |E(G) - (E(G_{11}) \cup E(G_{22}))|$. Supposing that D_2 is a $\gamma(G_{22})$ - set, we shall prove that the set $N_G(y) \cup D_2$ is split dominating in G. It is enough to see that $N_G(y)$ is dominating in G_{11} (or more precisely the set $N_G(y)$ dominates y and v in G_{11}) and the subgraph $\langle V(G_{11}) - N_G[y] \rangle_{G_{11}} = \langle \{y,v\} \rangle_{G_{11}}$ is disconnected. For explanation, the adding the set D_2 to the set $N_G(y)$ guarantees a domination in G and disconnectedness of the subgraph $\langle V(G) - (N_G(y) \cup D_2) \rangle_G$. In a consequence, we obtain that $\gamma_s(G) \leq |N_G(y) \cup D_2| = \delta(y) + \gamma(G_{22})$, so

(20)
$$\gamma(G_{22}) \geqslant \gamma_s(G) + \delta(y).$$

Since $m_1 + m_{12} \leq \delta(G)\Delta(G) \leq \delta(G)\Delta$ and $m = m_1 + m_{12} + m_2$, then $m \leq \delta(G)\Delta + m_2$. Further, applying the inequality in (13) for the subgraph G_{22} and using the inequality in (20) we get

$$m \leq \delta(G)\Delta + n_2\Delta - (\Delta+1)(\gamma_s(G) + \delta(y)).$$

Thus, setting $n_2 = n - \delta(G) - 2$, we can write the last inequality in form

$$m \leq \Delta n - 2\Delta + (\Delta + 1)\delta(G) - (\Delta + 1)\gamma_s(G)$$
.

This is equivalent to the inequality in (14) and the theorem is proved.

At the end we give the relationship between $\gamma_s(G)$ and $\gamma_m(G)$, for a graph with hanging vertices. We start with a simple assertion.

Proposition 5.3. Let G be a connected graph. If D is a $\gamma_m(G)$ - set, then D is not the minimum dominating set of G.

Proof. Let D be a $\gamma_m(G)$ - set. Then by Remark 4.1 and by connectedness of G it follows that there exists a vertex $w \in D$ such that $D \supseteq N_G(w) \neq \emptyset$. Thus we conclude that the subset $D - \{w\} \subset D$ is dominating in G. But this means that D can not be the minimum dominating set of G and proof is complete.

Theorem 5.4. Let G be a connected graph with hanging vertices. Then

$$\gamma_m(G) = \gamma_s(G) + 1.$$

Proof. Since, by Proposition 5.3, any maximal dominating set of G is not the minimum dominating set of G, then $\gamma(G) < \gamma_m(G)$ or equivalently $\gamma(G) + 1 \leqslant \gamma_m(G)$. Further, it follows by Remark 4.1 that $\gamma(G) = \gamma_s(G)$ and from the last inequality we obtain

(21)
$$\gamma_s(G) + 1 \leqslant \gamma_m(G).$$

On the other hand let D be a $\gamma_s(G)$ - set of G, containing the vertices adjacent to all hanging vertices of G. The existence of such a set is assured by Theorem 3.8. Let $w \in V(G) - D$ be a hanging vertex of G, by Remark 3.9. Then $D \cup \{w\}$ is a maximal dominating set of G, because $N_G[w] \subset D \cup \{w\}$. Thus $\gamma_m(G) \leq \gamma_s(G) + 1$ and by the inequality in (21) the result follows.

REFERENCES

- [1] C. Berge, Graphs and Hypergraphs, North-Holland Publishing, Amsterdam, (1973).
- [2] F. Harary, S. Schuster, Interpolation theorems for the independence and domination numbers of spanning trees, Ann. Discrete Math. 41(1989), 221-228.
- [3] V. R. Kulli, B. Janakiram, The maximal domination number of a graph, Graph Theory Notes of New York XXXIII(1997), 11-13.
- [4] V. R. Kulli, B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York XXXII(1997), 16-19.
- [5] D. Rautenbach, A linear Vizing-like relation between the size and the domination number of a graph, Journal of Graph Theory, vol. 31. Nº 4(1999), 297-302.
- [6] V. G. Vizing, An estimate on the external stability number of a graph, Dokl. Akad. Nauk SSSR 164(1965), 729-731.